mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 23:08:42 +07:00
60ac10658c
Checksum generation is an attribute of our hardware TX queues, not TX descriptors. We previously used a single queue and turned checksum generation on or off as requested through ethtool. However, this can result in regenerating checksums in raw packets that should not be modified. We now create 2 hardware TX queues with checksum generation on or off. They are presented to the net core as one queue since it does not know how to select between them. The self-test verifies that a bad checksum is unaltered on the queue with checksum generation off. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2743 lines
78 KiB
C
2743 lines
78 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2006-2008 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/i2c-algo-bit.h>
|
|
#include "net_driver.h"
|
|
#include "bitfield.h"
|
|
#include "efx.h"
|
|
#include "mac.h"
|
|
#include "gmii.h"
|
|
#include "spi.h"
|
|
#include "falcon.h"
|
|
#include "falcon_hwdefs.h"
|
|
#include "falcon_io.h"
|
|
#include "mdio_10g.h"
|
|
#include "phy.h"
|
|
#include "boards.h"
|
|
#include "workarounds.h"
|
|
|
|
/* Falcon hardware control.
|
|
* Falcon is the internal codename for the SFC4000 controller that is
|
|
* present in SFE400X evaluation boards
|
|
*/
|
|
|
|
/**
|
|
* struct falcon_nic_data - Falcon NIC state
|
|
* @next_buffer_table: First available buffer table id
|
|
* @pci_dev2: The secondary PCI device if present
|
|
* @i2c_data: Operations and state for I2C bit-bashing algorithm
|
|
*/
|
|
struct falcon_nic_data {
|
|
unsigned next_buffer_table;
|
|
struct pci_dev *pci_dev2;
|
|
struct i2c_algo_bit_data i2c_data;
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Configurable values
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static int disable_dma_stats;
|
|
|
|
/* This is set to 16 for a good reason. In summary, if larger than
|
|
* 16, the descriptor cache holds more than a default socket
|
|
* buffer's worth of packets (for UDP we can only have at most one
|
|
* socket buffer's worth outstanding). This combined with the fact
|
|
* that we only get 1 TX event per descriptor cache means the NIC
|
|
* goes idle.
|
|
*/
|
|
#define TX_DC_ENTRIES 16
|
|
#define TX_DC_ENTRIES_ORDER 0
|
|
#define TX_DC_BASE 0x130000
|
|
|
|
#define RX_DC_ENTRIES 64
|
|
#define RX_DC_ENTRIES_ORDER 2
|
|
#define RX_DC_BASE 0x100000
|
|
|
|
/* RX FIFO XOFF watermark
|
|
*
|
|
* When the amount of the RX FIFO increases used increases past this
|
|
* watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
|
|
* This also has an effect on RX/TX arbitration
|
|
*/
|
|
static int rx_xoff_thresh_bytes = -1;
|
|
module_param(rx_xoff_thresh_bytes, int, 0644);
|
|
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
|
|
|
|
/* RX FIFO XON watermark
|
|
*
|
|
* When the amount of the RX FIFO used decreases below this
|
|
* watermark send XON. Only used if TX flow control is enabled (ethtool -A)
|
|
* This also has an effect on RX/TX arbitration
|
|
*/
|
|
static int rx_xon_thresh_bytes = -1;
|
|
module_param(rx_xon_thresh_bytes, int, 0644);
|
|
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
|
|
|
|
/* TX descriptor ring size - min 512 max 4k */
|
|
#define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
|
|
#define FALCON_TXD_RING_SIZE 1024
|
|
#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
|
|
|
|
/* RX descriptor ring size - min 512 max 4k */
|
|
#define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
|
|
#define FALCON_RXD_RING_SIZE 1024
|
|
#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
|
|
|
|
/* Event queue size - max 32k */
|
|
#define FALCON_EVQ_ORDER EVQ_SIZE_4K
|
|
#define FALCON_EVQ_SIZE 4096
|
|
#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
|
|
|
|
/* Max number of internal errors. After this resets will not be performed */
|
|
#define FALCON_MAX_INT_ERRORS 4
|
|
|
|
/* Maximum period that we wait for flush events. If the flush event
|
|
* doesn't arrive in this period of time then we check if the queue
|
|
* was disabled anyway. */
|
|
#define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon constants
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* DMA address mask */
|
|
#define FALCON_DMA_MASK DMA_BIT_MASK(46)
|
|
|
|
/* TX DMA length mask (13-bit) */
|
|
#define FALCON_TX_DMA_MASK (4096 - 1)
|
|
|
|
/* Size and alignment of special buffers (4KB) */
|
|
#define FALCON_BUF_SIZE 4096
|
|
|
|
/* Dummy SRAM size code */
|
|
#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
|
|
|
|
/* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
|
|
#define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
|
|
#define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
|
|
#define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
|
|
#define PCI_EXP_LNKSTA_LNK_WID 0x3f0
|
|
#define PCI_EXP_LNKSTA_LNK_WID_LBN 4
|
|
|
|
#define FALCON_IS_DUAL_FUNC(efx) \
|
|
(falcon_rev(efx) < FALCON_REV_B0)
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon hardware access
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Read the current event from the event queue */
|
|
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
|
|
unsigned int index)
|
|
{
|
|
return (((efx_qword_t *) (channel->eventq.addr)) + index);
|
|
}
|
|
|
|
/* See if an event is present
|
|
*
|
|
* We check both the high and low dword of the event for all ones. We
|
|
* wrote all ones when we cleared the event, and no valid event can
|
|
* have all ones in either its high or low dwords. This approach is
|
|
* robust against reordering.
|
|
*
|
|
* Note that using a single 64-bit comparison is incorrect; even
|
|
* though the CPU read will be atomic, the DMA write may not be.
|
|
*/
|
|
static inline int falcon_event_present(efx_qword_t *event)
|
|
{
|
|
return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
|
EFX_DWORD_IS_ALL_ONES(event->dword[1])));
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* I2C bus - this is a bit-bashing interface using GPIO pins
|
|
* Note that it uses the output enables to tristate the outputs
|
|
* SDA is the data pin and SCL is the clock
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
static void falcon_setsda(void *data, int state)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
|
|
falcon_write(efx, ®, GPIO_CTL_REG_KER);
|
|
}
|
|
|
|
static void falcon_setscl(void *data, int state)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
|
|
falcon_write(efx, ®, GPIO_CTL_REG_KER);
|
|
}
|
|
|
|
static int falcon_getsda(void *data)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
return EFX_OWORD_FIELD(reg, GPIO3_IN);
|
|
}
|
|
|
|
static int falcon_getscl(void *data)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
return EFX_OWORD_FIELD(reg, GPIO0_IN);
|
|
}
|
|
|
|
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
|
|
.setsda = falcon_setsda,
|
|
.setscl = falcon_setscl,
|
|
.getsda = falcon_getsda,
|
|
.getscl = falcon_getscl,
|
|
.udelay = 5,
|
|
/* Wait up to 50 ms for slave to let us pull SCL high */
|
|
.timeout = DIV_ROUND_UP(HZ, 20),
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon special buffer handling
|
|
* Special buffers are used for event queues and the TX and RX
|
|
* descriptor rings.
|
|
*
|
|
*************************************************************************/
|
|
|
|
/*
|
|
* Initialise a Falcon special buffer
|
|
*
|
|
* This will define a buffer (previously allocated via
|
|
* falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
|
|
* it to be used for event queues, descriptor rings etc.
|
|
*/
|
|
static int
|
|
falcon_init_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer)
|
|
{
|
|
efx_qword_t buf_desc;
|
|
int index;
|
|
dma_addr_t dma_addr;
|
|
int i;
|
|
|
|
EFX_BUG_ON_PARANOID(!buffer->addr);
|
|
|
|
/* Write buffer descriptors to NIC */
|
|
for (i = 0; i < buffer->entries; i++) {
|
|
index = buffer->index + i;
|
|
dma_addr = buffer->dma_addr + (i * 4096);
|
|
EFX_LOG(efx, "mapping special buffer %d at %llx\n",
|
|
index, (unsigned long long)dma_addr);
|
|
EFX_POPULATE_QWORD_4(buf_desc,
|
|
IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
|
|
BUF_ADR_REGION, 0,
|
|
BUF_ADR_FBUF, (dma_addr >> 12),
|
|
BUF_OWNER_ID_FBUF, 0);
|
|
falcon_write_sram(efx, &buf_desc, index);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmaps a buffer from Falcon and clears the buffer table entries */
|
|
static void
|
|
falcon_fini_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer)
|
|
{
|
|
efx_oword_t buf_tbl_upd;
|
|
unsigned int start = buffer->index;
|
|
unsigned int end = (buffer->index + buffer->entries - 1);
|
|
|
|
if (!buffer->entries)
|
|
return;
|
|
|
|
EFX_LOG(efx, "unmapping special buffers %d-%d\n",
|
|
buffer->index, buffer->index + buffer->entries - 1);
|
|
|
|
EFX_POPULATE_OWORD_4(buf_tbl_upd,
|
|
BUF_UPD_CMD, 0,
|
|
BUF_CLR_CMD, 1,
|
|
BUF_CLR_END_ID, end,
|
|
BUF_CLR_START_ID, start);
|
|
falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new Falcon special buffer
|
|
*
|
|
* This allocates memory for a new buffer, clears it and allocates a
|
|
* new buffer ID range. It does not write into Falcon's buffer table.
|
|
*
|
|
* This call will allocate 4KB buffers, since Falcon can't use 8KB
|
|
* buffers for event queues and descriptor rings.
|
|
*/
|
|
static int falcon_alloc_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer,
|
|
unsigned int len)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
|
|
len = ALIGN(len, FALCON_BUF_SIZE);
|
|
|
|
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
|
&buffer->dma_addr);
|
|
if (!buffer->addr)
|
|
return -ENOMEM;
|
|
buffer->len = len;
|
|
buffer->entries = len / FALCON_BUF_SIZE;
|
|
BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
|
|
|
|
/* All zeros is a potentially valid event so memset to 0xff */
|
|
memset(buffer->addr, 0xff, len);
|
|
|
|
/* Select new buffer ID */
|
|
buffer->index = nic_data->next_buffer_table;
|
|
nic_data->next_buffer_table += buffer->entries;
|
|
|
|
EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
|
|
"(virt %p phys %lx)\n", buffer->index,
|
|
buffer->index + buffer->entries - 1,
|
|
(unsigned long long)buffer->dma_addr, len,
|
|
buffer->addr, virt_to_phys(buffer->addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_free_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer)
|
|
{
|
|
if (!buffer->addr)
|
|
return;
|
|
|
|
EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
|
|
"(virt %p phys %lx)\n", buffer->index,
|
|
buffer->index + buffer->entries - 1,
|
|
(unsigned long long)buffer->dma_addr, buffer->len,
|
|
buffer->addr, virt_to_phys(buffer->addr));
|
|
|
|
pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
|
|
buffer->dma_addr);
|
|
buffer->addr = NULL;
|
|
buffer->entries = 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon generic buffer handling
|
|
* These buffers are used for interrupt status and MAC stats
|
|
*
|
|
**************************************************************************/
|
|
|
|
static int falcon_alloc_buffer(struct efx_nic *efx,
|
|
struct efx_buffer *buffer, unsigned int len)
|
|
{
|
|
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
|
&buffer->dma_addr);
|
|
if (!buffer->addr)
|
|
return -ENOMEM;
|
|
buffer->len = len;
|
|
memset(buffer->addr, 0, len);
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
|
|
{
|
|
if (buffer->addr) {
|
|
pci_free_consistent(efx->pci_dev, buffer->len,
|
|
buffer->addr, buffer->dma_addr);
|
|
buffer->addr = NULL;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon TX path
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Returns a pointer to the specified transmit descriptor in the TX
|
|
* descriptor queue belonging to the specified channel.
|
|
*/
|
|
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
|
|
unsigned int index)
|
|
{
|
|
return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
|
|
}
|
|
|
|
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
|
|
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned write_ptr;
|
|
efx_dword_t reg;
|
|
|
|
write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
|
|
EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
|
|
falcon_writel_page(tx_queue->efx, ®,
|
|
TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
|
|
}
|
|
|
|
|
|
/* For each entry inserted into the software descriptor ring, create a
|
|
* descriptor in the hardware TX descriptor ring (in host memory), and
|
|
* write a doorbell.
|
|
*/
|
|
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
|
|
{
|
|
|
|
struct efx_tx_buffer *buffer;
|
|
efx_qword_t *txd;
|
|
unsigned write_ptr;
|
|
|
|
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
|
|
|
|
do {
|
|
write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
|
|
buffer = &tx_queue->buffer[write_ptr];
|
|
txd = falcon_tx_desc(tx_queue, write_ptr);
|
|
++tx_queue->write_count;
|
|
|
|
/* Create TX descriptor ring entry */
|
|
EFX_POPULATE_QWORD_5(*txd,
|
|
TX_KER_PORT, 0,
|
|
TX_KER_CONT, buffer->continuation,
|
|
TX_KER_BYTE_CNT, buffer->len,
|
|
TX_KER_BUF_REGION, 0,
|
|
TX_KER_BUF_ADR, buffer->dma_addr);
|
|
} while (tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
wmb(); /* Ensure descriptors are written before they are fetched */
|
|
falcon_notify_tx_desc(tx_queue);
|
|
}
|
|
|
|
/* Allocate hardware resources for a TX queue */
|
|
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
return falcon_alloc_special_buffer(efx, &tx_queue->txd,
|
|
FALCON_TXD_RING_SIZE *
|
|
sizeof(efx_qword_t));
|
|
}
|
|
|
|
int falcon_init_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
efx_oword_t tx_desc_ptr;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
int rc;
|
|
|
|
/* Pin TX descriptor ring */
|
|
rc = falcon_init_special_buffer(efx, &tx_queue->txd);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Push TX descriptor ring to card */
|
|
EFX_POPULATE_OWORD_10(tx_desc_ptr,
|
|
TX_DESCQ_EN, 1,
|
|
TX_ISCSI_DDIG_EN, 0,
|
|
TX_ISCSI_HDIG_EN, 0,
|
|
TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
|
|
TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
|
|
TX_DESCQ_OWNER_ID, 0,
|
|
TX_DESCQ_LABEL, tx_queue->queue,
|
|
TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
|
|
TX_DESCQ_TYPE, 0,
|
|
TX_NON_IP_DROP_DIS_B0, 1);
|
|
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
|
|
EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
|
|
EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
|
|
}
|
|
|
|
falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
|
tx_queue->queue);
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0) {
|
|
efx_oword_t reg;
|
|
|
|
/* Only 128 bits in this register */
|
|
BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
|
|
|
|
falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
|
|
if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
|
|
clear_bit_le(tx_queue->queue, (void *)®);
|
|
else
|
|
set_bit_le(tx_queue->queue, (void *)®);
|
|
falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct efx_channel *channel = &efx->channel[0];
|
|
efx_oword_t tx_flush_descq;
|
|
unsigned int read_ptr, i;
|
|
|
|
/* Post a flush command */
|
|
EFX_POPULATE_OWORD_2(tx_flush_descq,
|
|
TX_FLUSH_DESCQ_CMD, 1,
|
|
TX_FLUSH_DESCQ, tx_queue->queue);
|
|
falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
|
|
msleep(FALCON_FLUSH_TIMEOUT);
|
|
|
|
if (EFX_WORKAROUND_7803(efx))
|
|
return 0;
|
|
|
|
/* Look for a flush completed event */
|
|
read_ptr = channel->eventq_read_ptr;
|
|
for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
|
|
efx_qword_t *event = falcon_event(channel, read_ptr);
|
|
int ev_code, ev_sub_code, ev_queue;
|
|
if (!falcon_event_present(event))
|
|
break;
|
|
|
|
ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
|
|
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
|
|
ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
|
|
if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
|
|
(ev_queue == tx_queue->queue)) {
|
|
EFX_LOG(efx, "tx queue %d flush command succesful\n",
|
|
tx_queue->queue);
|
|
return 0;
|
|
}
|
|
|
|
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
|
|
}
|
|
|
|
if (EFX_WORKAROUND_11557(efx)) {
|
|
efx_oword_t reg;
|
|
int enabled;
|
|
|
|
falcon_read_table(efx, ®, efx->type->txd_ptr_tbl_base,
|
|
tx_queue->queue);
|
|
enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
|
|
if (!enabled) {
|
|
EFX_LOG(efx, "tx queue %d disabled without a "
|
|
"flush event seen\n", tx_queue->queue);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
void falcon_fini_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
efx_oword_t tx_desc_ptr;
|
|
|
|
/* Stop the hardware using the queue */
|
|
if (falcon_flush_tx_queue(tx_queue))
|
|
EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
|
|
|
|
/* Remove TX descriptor ring from card */
|
|
EFX_ZERO_OWORD(tx_desc_ptr);
|
|
falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
|
tx_queue->queue);
|
|
|
|
/* Unpin TX descriptor ring */
|
|
falcon_fini_special_buffer(efx, &tx_queue->txd);
|
|
}
|
|
|
|
/* Free buffers backing TX queue */
|
|
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon RX path
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
|
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
|
|
unsigned int index)
|
|
{
|
|
return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
|
|
}
|
|
|
|
/* This creates an entry in the RX descriptor queue */
|
|
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
|
|
unsigned index)
|
|
{
|
|
struct efx_rx_buffer *rx_buf;
|
|
efx_qword_t *rxd;
|
|
|
|
rxd = falcon_rx_desc(rx_queue, index);
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
EFX_POPULATE_QWORD_3(*rxd,
|
|
RX_KER_BUF_SIZE,
|
|
rx_buf->len -
|
|
rx_queue->efx->type->rx_buffer_padding,
|
|
RX_KER_BUF_REGION, 0,
|
|
RX_KER_BUF_ADR, rx_buf->dma_addr);
|
|
}
|
|
|
|
/* This writes to the RX_DESC_WPTR register for the specified receive
|
|
* descriptor ring.
|
|
*/
|
|
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
|
{
|
|
efx_dword_t reg;
|
|
unsigned write_ptr;
|
|
|
|
while (rx_queue->notified_count != rx_queue->added_count) {
|
|
falcon_build_rx_desc(rx_queue,
|
|
rx_queue->notified_count &
|
|
FALCON_RXD_RING_MASK);
|
|
++rx_queue->notified_count;
|
|
}
|
|
|
|
wmb();
|
|
write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
|
|
EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
|
|
falcon_writel_page(rx_queue->efx, ®,
|
|
RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
|
|
}
|
|
|
|
int falcon_probe_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
|
|
FALCON_RXD_RING_SIZE *
|
|
sizeof(efx_qword_t));
|
|
}
|
|
|
|
int falcon_init_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
efx_oword_t rx_desc_ptr;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
int rc;
|
|
int is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
|
|
int iscsi_digest_en = is_b0;
|
|
|
|
EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
|
|
rx_queue->queue, rx_queue->rxd.index,
|
|
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
|
|
|
|
/* Pin RX descriptor ring */
|
|
rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Push RX descriptor ring to card */
|
|
EFX_POPULATE_OWORD_10(rx_desc_ptr,
|
|
RX_ISCSI_DDIG_EN, iscsi_digest_en,
|
|
RX_ISCSI_HDIG_EN, iscsi_digest_en,
|
|
RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
|
|
RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
|
|
RX_DESCQ_OWNER_ID, 0,
|
|
RX_DESCQ_LABEL, rx_queue->queue,
|
|
RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
|
|
RX_DESCQ_TYPE, 0 /* kernel queue */ ,
|
|
/* For >=B0 this is scatter so disable */
|
|
RX_DESCQ_JUMBO, !is_b0,
|
|
RX_DESCQ_EN, 1);
|
|
falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
|
rx_queue->queue);
|
|
return 0;
|
|
}
|
|
|
|
static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_channel *channel = &efx->channel[0];
|
|
unsigned int read_ptr, i;
|
|
efx_oword_t rx_flush_descq;
|
|
|
|
/* Post a flush command */
|
|
EFX_POPULATE_OWORD_2(rx_flush_descq,
|
|
RX_FLUSH_DESCQ_CMD, 1,
|
|
RX_FLUSH_DESCQ, rx_queue->queue);
|
|
falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
|
|
msleep(FALCON_FLUSH_TIMEOUT);
|
|
|
|
if (EFX_WORKAROUND_7803(efx))
|
|
return 0;
|
|
|
|
/* Look for a flush completed event */
|
|
read_ptr = channel->eventq_read_ptr;
|
|
for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
|
|
efx_qword_t *event = falcon_event(channel, read_ptr);
|
|
int ev_code, ev_sub_code, ev_queue, ev_failed;
|
|
if (!falcon_event_present(event))
|
|
break;
|
|
|
|
ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
|
|
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
|
|
ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
|
|
ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
|
|
|
|
if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
|
|
(ev_queue == rx_queue->queue)) {
|
|
if (ev_failed) {
|
|
EFX_INFO(efx, "rx queue %d flush command "
|
|
"failed\n", rx_queue->queue);
|
|
return -EAGAIN;
|
|
} else {
|
|
EFX_LOG(efx, "rx queue %d flush command "
|
|
"succesful\n", rx_queue->queue);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
|
|
}
|
|
|
|
if (EFX_WORKAROUND_11557(efx)) {
|
|
efx_oword_t reg;
|
|
int enabled;
|
|
|
|
falcon_read_table(efx, ®, efx->type->rxd_ptr_tbl_base,
|
|
rx_queue->queue);
|
|
enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
|
|
if (!enabled) {
|
|
EFX_LOG(efx, "rx queue %d disabled without a "
|
|
"flush event seen\n", rx_queue->queue);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
void falcon_fini_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
efx_oword_t rx_desc_ptr;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
int i, rc;
|
|
|
|
/* Try and flush the rx queue. This may need to be repeated */
|
|
for (i = 0; i < 5; i++) {
|
|
rc = falcon_flush_rx_queue(rx_queue);
|
|
if (rc == -EAGAIN)
|
|
continue;
|
|
break;
|
|
}
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
|
|
efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
|
|
}
|
|
|
|
/* Remove RX descriptor ring from card */
|
|
EFX_ZERO_OWORD(rx_desc_ptr);
|
|
falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
|
rx_queue->queue);
|
|
|
|
/* Unpin RX descriptor ring */
|
|
falcon_fini_special_buffer(efx, &rx_queue->rxd);
|
|
}
|
|
|
|
/* Free buffers backing RX queue */
|
|
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon event queue processing
|
|
* Event queues are processed by per-channel tasklets.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Update a channel's event queue's read pointer (RPTR) register
|
|
*
|
|
* This writes the EVQ_RPTR_REG register for the specified channel's
|
|
* event queue.
|
|
*
|
|
* Note that EVQ_RPTR_REG contains the index of the "last read" event,
|
|
* whereas channel->eventq_read_ptr contains the index of the "next to
|
|
* read" event.
|
|
*/
|
|
void falcon_eventq_read_ack(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t reg;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
|
|
falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base,
|
|
channel->evqnum);
|
|
}
|
|
|
|
/* Use HW to insert a SW defined event */
|
|
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
|
|
{
|
|
efx_oword_t drv_ev_reg;
|
|
|
|
EFX_POPULATE_OWORD_2(drv_ev_reg,
|
|
DRV_EV_QID, channel->evqnum,
|
|
DRV_EV_DATA,
|
|
EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
|
|
falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
|
|
}
|
|
|
|
/* Handle a transmit completion event
|
|
*
|
|
* Falcon batches TX completion events; the message we receive is of
|
|
* the form "complete all TX events up to this index".
|
|
*/
|
|
static inline void falcon_handle_tx_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
unsigned int tx_ev_desc_ptr;
|
|
unsigned int tx_ev_q_label;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
|
|
/* Transmit completion */
|
|
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
|
|
tx_queue = &efx->tx_queue[tx_ev_q_label];
|
|
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
|
|
} else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
|
|
/* Rewrite the FIFO write pointer */
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
|
|
tx_queue = &efx->tx_queue[tx_ev_q_label];
|
|
|
|
if (efx_dev_registered(efx))
|
|
netif_tx_lock(efx->net_dev);
|
|
falcon_notify_tx_desc(tx_queue);
|
|
if (efx_dev_registered(efx))
|
|
netif_tx_unlock(efx->net_dev);
|
|
} else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
|
|
EFX_WORKAROUND_10727(efx)) {
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
|
} else {
|
|
EFX_ERR(efx, "channel %d unexpected TX event "
|
|
EFX_QWORD_FMT"\n", channel->channel,
|
|
EFX_QWORD_VAL(*event));
|
|
}
|
|
}
|
|
|
|
/* Check received packet's destination MAC address. */
|
|
static int check_dest_mac(struct efx_rx_queue *rx_queue,
|
|
const efx_qword_t *event)
|
|
{
|
|
struct efx_rx_buffer *rx_buf;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
int rx_ev_desc_ptr;
|
|
struct ethhdr *eh;
|
|
|
|
if (efx->promiscuous)
|
|
return 1;
|
|
|
|
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
|
|
rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
|
|
eh = (struct ethhdr *)rx_buf->data;
|
|
if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Detect errors included in the rx_evt_pkt_ok bit. */
|
|
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
|
|
const efx_qword_t *event,
|
|
unsigned *rx_ev_pkt_ok,
|
|
int *discard, int byte_count)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
|
|
unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
|
|
unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
|
|
unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
|
|
unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
|
|
int snap, non_ip;
|
|
|
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
|
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
|
|
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
|
|
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
|
|
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
|
|
RX_EV_BUF_OWNER_ID_ERR);
|
|
rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
|
|
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
|
|
RX_EV_IP_HDR_CHKSUM_ERR);
|
|
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
|
|
RX_EV_TCP_UDP_CHKSUM_ERR);
|
|
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
|
|
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
|
|
rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
|
|
0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
|
|
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
|
|
|
|
/* Every error apart from tobe_disc and pause_frm */
|
|
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
|
|
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
|
|
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
|
|
|
|
snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
|
|
(rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
|
|
non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
|
|
|
|
/* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
|
|
* length field of an LLC frame, which sets TOBE_DISC. We could set
|
|
* PASS_LEN_ERR, but we want the MAC to filter out short frames (to
|
|
* protect the RX block).
|
|
*
|
|
* bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
|
|
* bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
|
|
* LLC can't encapsulate IP, so by definition
|
|
* these packets are NON_IP.
|
|
*
|
|
* Unicast mismatch will also cause TOBE_DISC, so the driver needs
|
|
* to check this.
|
|
*/
|
|
if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
|
|
/* If all the other flags are zero then we can state the
|
|
* entire packet is ok, which will flag to the kernel not
|
|
* to recalculate checksums.
|
|
*/
|
|
if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
|
|
*rx_ev_pkt_ok = 1;
|
|
|
|
rx_ev_tobe_disc = 0;
|
|
|
|
/* TOBE_DISC is set for unicast mismatch. But given that
|
|
* we can't trust TOBE_DISC here, we must validate the dest
|
|
* MAC address ourselves.
|
|
*/
|
|
if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
|
|
rx_ev_tobe_disc = 1;
|
|
}
|
|
|
|
/* Count errors that are not in MAC stats. */
|
|
if (rx_ev_frm_trunc)
|
|
++rx_queue->channel->n_rx_frm_trunc;
|
|
else if (rx_ev_tobe_disc)
|
|
++rx_queue->channel->n_rx_tobe_disc;
|
|
else if (rx_ev_ip_hdr_chksum_err)
|
|
++rx_queue->channel->n_rx_ip_hdr_chksum_err;
|
|
else if (rx_ev_tcp_udp_chksum_err)
|
|
++rx_queue->channel->n_rx_tcp_udp_chksum_err;
|
|
if (rx_ev_ip_frag_err)
|
|
++rx_queue->channel->n_rx_ip_frag_err;
|
|
|
|
/* The frame must be discarded if any of these are true. */
|
|
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
|
|
rx_ev_tobe_disc | rx_ev_pause_frm);
|
|
|
|
/* TOBE_DISC is expected on unicast mismatches; don't print out an
|
|
* error message. FRM_TRUNC indicates RXDP dropped the packet due
|
|
* to a FIFO overflow.
|
|
*/
|
|
#ifdef EFX_ENABLE_DEBUG
|
|
if (rx_ev_other_err) {
|
|
EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
|
|
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
|
|
rx_queue->queue, EFX_QWORD_VAL(*event),
|
|
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
|
|
rx_ev_ip_hdr_chksum_err ?
|
|
" [IP_HDR_CHKSUM_ERR]" : "",
|
|
rx_ev_tcp_udp_chksum_err ?
|
|
" [TCP_UDP_CHKSUM_ERR]" : "",
|
|
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
|
|
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
|
|
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
|
|
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
|
|
rx_ev_pause_frm ? " [PAUSE]" : "",
|
|
snap ? " [SNAP/LLC]" : "");
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
|
|
efx->phy_type == PHY_TYPE_10XPRESS))
|
|
tenxpress_crc_err(efx);
|
|
}
|
|
|
|
/* Handle receive events that are not in-order. */
|
|
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
|
|
unsigned index)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned expected, dropped;
|
|
|
|
expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
|
|
dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
|
|
FALCON_RXD_RING_MASK);
|
|
EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
|
|
dropped, index, expected);
|
|
|
|
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
|
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
|
}
|
|
|
|
/* Handle a packet received event
|
|
*
|
|
* Falcon silicon gives a "discard" flag if it's a unicast packet with the
|
|
* wrong destination address
|
|
* Also "is multicast" and "matches multicast filter" flags can be used to
|
|
* discard non-matching multicast packets.
|
|
*/
|
|
static inline int falcon_handle_rx_event(struct efx_channel *channel,
|
|
const efx_qword_t *event)
|
|
{
|
|
unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
|
|
unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
|
|
unsigned expected_ptr;
|
|
int discard = 0, checksummed;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Basic packet information */
|
|
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
|
|
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
|
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
|
|
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
|
|
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
|
|
|
|
rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
|
|
rx_queue = &efx->rx_queue[rx_ev_q_label];
|
|
|
|
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
|
|
expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
|
|
if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
|
|
falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
|
|
return rx_ev_q_label;
|
|
}
|
|
|
|
if (likely(rx_ev_pkt_ok)) {
|
|
/* If packet is marked as OK and packet type is TCP/IPv4 or
|
|
* UDP/IPv4, then we can rely on the hardware checksum.
|
|
*/
|
|
checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
|
|
} else {
|
|
falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
|
|
&discard, rx_ev_byte_cnt);
|
|
checksummed = 0;
|
|
}
|
|
|
|
/* Detect multicast packets that didn't match the filter */
|
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
|
|
if (rx_ev_mcast_pkt) {
|
|
unsigned int rx_ev_mcast_hash_match =
|
|
EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
|
|
|
|
if (unlikely(!rx_ev_mcast_hash_match))
|
|
discard = 1;
|
|
}
|
|
|
|
/* Handle received packet */
|
|
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
|
|
checksummed, discard);
|
|
|
|
return rx_ev_q_label;
|
|
}
|
|
|
|
/* Global events are basically PHY events */
|
|
static void falcon_handle_global_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
int is_phy_event = 0, handled = 0;
|
|
|
|
/* Check for interrupt on either port. Some boards have a
|
|
* single PHY wired to the interrupt line for port 1. */
|
|
if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
|
|
EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
|
|
EFX_QWORD_FIELD(*event, XG_PHY_INTR))
|
|
is_phy_event = 1;
|
|
|
|
if ((falcon_rev(efx) >= FALCON_REV_B0) &&
|
|
EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
|
|
is_phy_event = 1;
|
|
|
|
if (is_phy_event) {
|
|
efx->phy_op->clear_interrupt(efx);
|
|
queue_work(efx->workqueue, &efx->reconfigure_work);
|
|
handled = 1;
|
|
}
|
|
|
|
if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
|
|
EFX_ERR(efx, "channel %d seen global RX_RESET "
|
|
"event. Resetting.\n", channel->channel);
|
|
|
|
atomic_inc(&efx->rx_reset);
|
|
efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
|
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
|
handled = 1;
|
|
}
|
|
|
|
if (!handled)
|
|
EFX_ERR(efx, "channel %d unknown global event "
|
|
EFX_QWORD_FMT "\n", channel->channel,
|
|
EFX_QWORD_VAL(*event));
|
|
}
|
|
|
|
static void falcon_handle_driver_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned int ev_sub_code;
|
|
unsigned int ev_sub_data;
|
|
|
|
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
|
|
ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
|
|
|
|
switch (ev_sub_code) {
|
|
case TX_DESCQ_FLS_DONE_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case RX_DESCQ_FLS_DONE_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case EVQ_INIT_DONE_EV_DECODE:
|
|
EFX_LOG(efx, "channel %d EVQ %d initialised\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case SRM_UPD_DONE_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d SRAM update done\n",
|
|
channel->channel);
|
|
break;
|
|
case WAKE_UP_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case TIMER_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case RX_RECOVERY_EV_DECODE:
|
|
EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
|
|
"Resetting.\n", channel->channel);
|
|
atomic_inc(&efx->rx_reset);
|
|
efx_schedule_reset(efx,
|
|
EFX_WORKAROUND_6555(efx) ?
|
|
RESET_TYPE_RX_RECOVERY :
|
|
RESET_TYPE_DISABLE);
|
|
break;
|
|
case RX_DSC_ERROR_EV_DECODE:
|
|
EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
|
|
" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
|
|
break;
|
|
case TX_DSC_ERROR_EV_DECODE:
|
|
EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
|
|
" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
|
break;
|
|
default:
|
|
EFX_TRACE(efx, "channel %d unknown driver event code %d "
|
|
"data %04x\n", channel->channel, ev_sub_code,
|
|
ev_sub_data);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
|
|
{
|
|
unsigned int read_ptr;
|
|
efx_qword_t event, *p_event;
|
|
int ev_code;
|
|
int rxq;
|
|
int rxdmaqs = 0;
|
|
|
|
read_ptr = channel->eventq_read_ptr;
|
|
|
|
do {
|
|
p_event = falcon_event(channel, read_ptr);
|
|
event = *p_event;
|
|
|
|
if (!falcon_event_present(&event))
|
|
/* End of events */
|
|
break;
|
|
|
|
EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
|
|
channel->channel, EFX_QWORD_VAL(event));
|
|
|
|
/* Clear this event by marking it all ones */
|
|
EFX_SET_QWORD(*p_event);
|
|
|
|
ev_code = EFX_QWORD_FIELD(event, EV_CODE);
|
|
|
|
switch (ev_code) {
|
|
case RX_IP_EV_DECODE:
|
|
rxq = falcon_handle_rx_event(channel, &event);
|
|
rxdmaqs |= (1 << rxq);
|
|
(*rx_quota)--;
|
|
break;
|
|
case TX_IP_EV_DECODE:
|
|
falcon_handle_tx_event(channel, &event);
|
|
break;
|
|
case DRV_GEN_EV_DECODE:
|
|
channel->eventq_magic
|
|
= EFX_QWORD_FIELD(event, EVQ_MAGIC);
|
|
EFX_LOG(channel->efx, "channel %d received generated "
|
|
"event "EFX_QWORD_FMT"\n", channel->channel,
|
|
EFX_QWORD_VAL(event));
|
|
break;
|
|
case GLOBAL_EV_DECODE:
|
|
falcon_handle_global_event(channel, &event);
|
|
break;
|
|
case DRIVER_EV_DECODE:
|
|
falcon_handle_driver_event(channel, &event);
|
|
break;
|
|
default:
|
|
EFX_ERR(channel->efx, "channel %d unknown event type %d"
|
|
" (data " EFX_QWORD_FMT ")\n", channel->channel,
|
|
ev_code, EFX_QWORD_VAL(event));
|
|
}
|
|
|
|
/* Increment read pointer */
|
|
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
|
|
|
|
} while (*rx_quota);
|
|
|
|
channel->eventq_read_ptr = read_ptr;
|
|
return rxdmaqs;
|
|
}
|
|
|
|
void falcon_set_int_moderation(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t timer_cmd;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Set timer register */
|
|
if (channel->irq_moderation) {
|
|
/* Round to resolution supported by hardware. The value we
|
|
* program is based at 0. So actual interrupt moderation
|
|
* achieved is ((x + 1) * res).
|
|
*/
|
|
unsigned int res = 5;
|
|
channel->irq_moderation -= (channel->irq_moderation % res);
|
|
if (channel->irq_moderation < res)
|
|
channel->irq_moderation = res;
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
TIMER_MODE, TIMER_MODE_INT_HLDOFF,
|
|
TIMER_VAL,
|
|
(channel->irq_moderation / res) - 1);
|
|
} else {
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
TIMER_MODE, TIMER_MODE_DIS,
|
|
TIMER_VAL, 0);
|
|
}
|
|
falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
|
|
channel->evqnum);
|
|
|
|
}
|
|
|
|
/* Allocate buffer table entries for event queue */
|
|
int falcon_probe_eventq(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned int evq_size;
|
|
|
|
evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
|
|
return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
|
|
}
|
|
|
|
int falcon_init_eventq(struct efx_channel *channel)
|
|
{
|
|
efx_oword_t evq_ptr;
|
|
struct efx_nic *efx = channel->efx;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
|
|
channel->channel, channel->eventq.index,
|
|
channel->eventq.index + channel->eventq.entries - 1);
|
|
|
|
/* Pin event queue buffer */
|
|
rc = falcon_init_special_buffer(efx, &channel->eventq);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Fill event queue with all ones (i.e. empty events) */
|
|
memset(channel->eventq.addr, 0xff, channel->eventq.len);
|
|
|
|
/* Push event queue to card */
|
|
EFX_POPULATE_OWORD_3(evq_ptr,
|
|
EVQ_EN, 1,
|
|
EVQ_SIZE, FALCON_EVQ_ORDER,
|
|
EVQ_BUF_BASE_ID, channel->eventq.index);
|
|
falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
|
|
channel->evqnum);
|
|
|
|
falcon_set_int_moderation(channel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void falcon_fini_eventq(struct efx_channel *channel)
|
|
{
|
|
efx_oword_t eventq_ptr;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Remove event queue from card */
|
|
EFX_ZERO_OWORD(eventq_ptr);
|
|
falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
|
|
channel->evqnum);
|
|
|
|
/* Unpin event queue */
|
|
falcon_fini_special_buffer(efx, &channel->eventq);
|
|
}
|
|
|
|
/* Free buffers backing event queue */
|
|
void falcon_remove_eventq(struct efx_channel *channel)
|
|
{
|
|
falcon_free_special_buffer(channel->efx, &channel->eventq);
|
|
}
|
|
|
|
|
|
/* Generates a test event on the event queue. A subsequent call to
|
|
* process_eventq() should pick up the event and place the value of
|
|
* "magic" into channel->eventq_magic;
|
|
*/
|
|
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
|
|
{
|
|
efx_qword_t test_event;
|
|
|
|
EFX_POPULATE_QWORD_2(test_event,
|
|
EV_CODE, DRV_GEN_EV_DECODE,
|
|
EVQ_MAGIC, magic);
|
|
falcon_generate_event(channel, &test_event);
|
|
}
|
|
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon hardware interrupts
|
|
* The hardware interrupt handler does very little work; all the event
|
|
* queue processing is carried out by per-channel tasklets.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Enable/disable/generate Falcon interrupts */
|
|
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
|
|
int force)
|
|
{
|
|
efx_oword_t int_en_reg_ker;
|
|
|
|
EFX_POPULATE_OWORD_2(int_en_reg_ker,
|
|
KER_INT_KER, force,
|
|
DRV_INT_EN_KER, enabled);
|
|
falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
|
|
}
|
|
|
|
void falcon_enable_interrupts(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t int_adr_reg_ker;
|
|
struct efx_channel *channel;
|
|
|
|
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
|
|
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
|
|
|
|
/* Program address */
|
|
EFX_POPULATE_OWORD_2(int_adr_reg_ker,
|
|
NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
|
|
INT_ADR_KER, efx->irq_status.dma_addr);
|
|
falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
|
|
|
|
/* Enable interrupts */
|
|
falcon_interrupts(efx, 1, 0);
|
|
|
|
/* Force processing of all the channels to get the EVQ RPTRs up to
|
|
date */
|
|
efx_for_each_channel_with_interrupt(channel, efx)
|
|
efx_schedule_channel(channel);
|
|
}
|
|
|
|
void falcon_disable_interrupts(struct efx_nic *efx)
|
|
{
|
|
/* Disable interrupts */
|
|
falcon_interrupts(efx, 0, 0);
|
|
}
|
|
|
|
/* Generate a Falcon test interrupt
|
|
* Interrupt must already have been enabled, otherwise nasty things
|
|
* may happen.
|
|
*/
|
|
void falcon_generate_interrupt(struct efx_nic *efx)
|
|
{
|
|
falcon_interrupts(efx, 1, 1);
|
|
}
|
|
|
|
/* Acknowledge a legacy interrupt from Falcon
|
|
*
|
|
* This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
|
|
*
|
|
* Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
|
|
* BIU. Interrupt acknowledge is read sensitive so must write instead
|
|
* (then read to ensure the BIU collector is flushed)
|
|
*
|
|
* NB most hardware supports MSI interrupts
|
|
*/
|
|
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t reg;
|
|
|
|
EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
|
|
falcon_writel(efx, ®, INT_ACK_REG_KER_A1);
|
|
falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
|
|
}
|
|
|
|
/* Process a fatal interrupt
|
|
* Disable bus mastering ASAP and schedule a reset
|
|
*/
|
|
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
efx_oword_t fatal_intr;
|
|
int error, mem_perr;
|
|
static int n_int_errors;
|
|
|
|
falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
|
|
error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
|
|
|
|
EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
|
|
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
|
|
EFX_OWORD_VAL(fatal_intr),
|
|
error ? "disabling bus mastering" : "no recognised error");
|
|
if (error == 0)
|
|
goto out;
|
|
|
|
/* If this is a memory parity error dump which blocks are offending */
|
|
mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
|
|
if (mem_perr) {
|
|
efx_oword_t reg;
|
|
falcon_read(efx, ®, MEM_STAT_REG_KER);
|
|
EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
|
|
EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
|
|
}
|
|
|
|
/* Disable DMA bus mastering on both devices */
|
|
pci_disable_device(efx->pci_dev);
|
|
if (FALCON_IS_DUAL_FUNC(efx))
|
|
pci_disable_device(nic_data->pci_dev2);
|
|
|
|
if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
|
|
EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
|
|
} else {
|
|
EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
|
|
"NIC will be disabled\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
}
|
|
out:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle a legacy interrupt from Falcon
|
|
* Acknowledges the interrupt and schedule event queue processing.
|
|
*/
|
|
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
|
|
{
|
|
struct efx_nic *efx = dev_id;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
struct efx_channel *channel;
|
|
efx_dword_t reg;
|
|
u32 queues;
|
|
int syserr;
|
|
|
|
/* Read the ISR which also ACKs the interrupts */
|
|
falcon_readl(efx, ®, INT_ISR0_B0);
|
|
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return falcon_fatal_interrupt(efx);
|
|
|
|
if (queues == 0)
|
|
return IRQ_NONE;
|
|
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
|
|
|
|
/* Schedule processing of any interrupting queues */
|
|
channel = &efx->channel[0];
|
|
while (queues) {
|
|
if (queues & 0x01)
|
|
efx_schedule_channel(channel);
|
|
channel++;
|
|
queues >>= 1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
|
|
{
|
|
struct efx_nic *efx = dev_id;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
struct efx_channel *channel;
|
|
int syserr;
|
|
int queues;
|
|
|
|
/* Check to see if this is our interrupt. If it isn't, we
|
|
* exit without having touched the hardware.
|
|
*/
|
|
if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
|
|
raw_smp_processor_id());
|
|
return IRQ_NONE;
|
|
}
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return falcon_fatal_interrupt(efx);
|
|
|
|
/* Determine interrupting queues, clear interrupt status
|
|
* register and acknowledge the device interrupt.
|
|
*/
|
|
BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
|
|
queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
|
|
EFX_ZERO_OWORD(*int_ker);
|
|
wmb(); /* Ensure the vector is cleared before interrupt ack */
|
|
falcon_irq_ack_a1(efx);
|
|
|
|
/* Schedule processing of any interrupting queues */
|
|
channel = &efx->channel[0];
|
|
while (queues) {
|
|
if (queues & 0x01)
|
|
efx_schedule_channel(channel);
|
|
channel++;
|
|
queues >>= 1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle an MSI interrupt from Falcon
|
|
*
|
|
* Handle an MSI hardware interrupt. This routine schedules event
|
|
* queue processing. No interrupt acknowledgement cycle is necessary.
|
|
* Also, we never need to check that the interrupt is for us, since
|
|
* MSI interrupts cannot be shared.
|
|
*/
|
|
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct efx_channel *channel = dev_id;
|
|
struct efx_nic *efx = channel->efx;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
int syserr;
|
|
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return falcon_fatal_interrupt(efx);
|
|
|
|
/* Schedule processing of the channel */
|
|
efx_schedule_channel(channel);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/* Setup RSS indirection table.
|
|
* This maps from the hash value of the packet to RXQ
|
|
*/
|
|
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
|
|
{
|
|
int i = 0;
|
|
unsigned long offset;
|
|
efx_dword_t dword;
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0)
|
|
return;
|
|
|
|
for (offset = RX_RSS_INDIR_TBL_B0;
|
|
offset < RX_RSS_INDIR_TBL_B0 + 0x800;
|
|
offset += 0x10) {
|
|
EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
|
|
i % efx->rss_queues);
|
|
falcon_writel(efx, &dword, offset);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* Hook interrupt handler(s)
|
|
* Try MSI and then legacy interrupts.
|
|
*/
|
|
int falcon_init_interrupt(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
if (!EFX_INT_MODE_USE_MSI(efx)) {
|
|
irq_handler_t handler;
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
handler = falcon_legacy_interrupt_b0;
|
|
else
|
|
handler = falcon_legacy_interrupt_a1;
|
|
|
|
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
|
|
efx->name, efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
|
|
efx->pci_dev->irq);
|
|
goto fail1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Hook MSI or MSI-X interrupt */
|
|
efx_for_each_channel_with_interrupt(channel, efx) {
|
|
rc = request_irq(channel->irq, falcon_msi_interrupt,
|
|
IRQF_PROBE_SHARED, /* Not shared */
|
|
efx->name, channel);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
efx_for_each_channel_with_interrupt(channel, efx)
|
|
free_irq(channel->irq, channel);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
void falcon_fini_interrupt(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
efx_oword_t reg;
|
|
|
|
/* Disable MSI/MSI-X interrupts */
|
|
efx_for_each_channel_with_interrupt(channel, efx) {
|
|
if (channel->irq)
|
|
free_irq(channel->irq, channel);
|
|
}
|
|
|
|
/* ACK legacy interrupt */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
falcon_read(efx, ®, INT_ISR0_B0);
|
|
else
|
|
falcon_irq_ack_a1(efx);
|
|
|
|
/* Disable legacy interrupt */
|
|
if (efx->legacy_irq)
|
|
free_irq(efx->legacy_irq, efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* EEPROM/flash
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
|
|
|
|
/* Wait for SPI command completion */
|
|
static int falcon_spi_wait(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
int cmd_en, timer_active;
|
|
int count;
|
|
|
|
count = 0;
|
|
do {
|
|
falcon_read(efx, ®, EE_SPI_HCMD_REG_KER);
|
|
cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
|
|
timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
|
|
if (!cmd_en && !timer_active)
|
|
return 0;
|
|
udelay(10);
|
|
} while (++count < 10000); /* wait upto 100msec */
|
|
EFX_ERR(efx, "timed out waiting for SPI\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int
|
|
falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
|
|
unsigned int address, unsigned int addr_len,
|
|
void *data, unsigned int len)
|
|
{
|
|
efx_oword_t reg;
|
|
int rc;
|
|
|
|
BUG_ON(len > FALCON_SPI_MAX_LEN);
|
|
|
|
/* Check SPI not currently being accessed */
|
|
rc = falcon_spi_wait(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Program address register */
|
|
EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
|
|
falcon_write(efx, ®, EE_SPI_HADR_REG_KER);
|
|
|
|
/* Issue read command */
|
|
EFX_POPULATE_OWORD_7(reg,
|
|
EE_SPI_HCMD_CMD_EN, 1,
|
|
EE_SPI_HCMD_SF_SEL, device_id,
|
|
EE_SPI_HCMD_DABCNT, len,
|
|
EE_SPI_HCMD_READ, EE_SPI_READ,
|
|
EE_SPI_HCMD_DUBCNT, 0,
|
|
EE_SPI_HCMD_ADBCNT, addr_len,
|
|
EE_SPI_HCMD_ENC, command);
|
|
falcon_write(efx, ®, EE_SPI_HCMD_REG_KER);
|
|
|
|
/* Wait for read to complete */
|
|
rc = falcon_spi_wait(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Read data */
|
|
falcon_read(efx, ®, EE_SPI_HDATA_REG_KER);
|
|
memcpy(data, ®, len);
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* MAC wrapper
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
void falcon_drain_tx_fifo(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t temp;
|
|
int count;
|
|
|
|
if ((falcon_rev(efx) < FALCON_REV_B0) ||
|
|
(efx->loopback_mode != LOOPBACK_NONE))
|
|
return;
|
|
|
|
falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
|
|
/* There is no point in draining more than once */
|
|
if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
|
|
return;
|
|
|
|
/* MAC stats will fail whilst the TX fifo is draining. Serialise
|
|
* the drain sequence with the statistics fetch */
|
|
spin_lock(&efx->stats_lock);
|
|
|
|
EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
|
|
falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
|
|
|
|
/* Reset the MAC and EM block. */
|
|
falcon_read(efx, &temp, GLB_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
|
|
EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
|
|
EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
|
|
falcon_write(efx, &temp, GLB_CTL_REG_KER);
|
|
|
|
count = 0;
|
|
while (1) {
|
|
falcon_read(efx, &temp, GLB_CTL_REG_KER);
|
|
if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
|
|
!EFX_OWORD_FIELD(temp, RST_XGRX) &&
|
|
!EFX_OWORD_FIELD(temp, RST_EM)) {
|
|
EFX_LOG(efx, "Completed MAC reset after %d loops\n",
|
|
count);
|
|
break;
|
|
}
|
|
if (count > 20) {
|
|
EFX_ERR(efx, "MAC reset failed\n");
|
|
break;
|
|
}
|
|
count++;
|
|
udelay(10);
|
|
}
|
|
|
|
spin_unlock(&efx->stats_lock);
|
|
|
|
/* If we've reset the EM block and the link is up, then
|
|
* we'll have to kick the XAUI link so the PHY can recover */
|
|
if (efx->link_up && EFX_WORKAROUND_5147(efx))
|
|
falcon_reset_xaui(efx);
|
|
}
|
|
|
|
void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t temp;
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0)
|
|
return;
|
|
|
|
/* Isolate the MAC -> RX */
|
|
falcon_read(efx, &temp, RX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
|
|
falcon_write(efx, &temp, RX_CFG_REG_KER);
|
|
|
|
if (!efx->link_up)
|
|
falcon_drain_tx_fifo(efx);
|
|
}
|
|
|
|
void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
int link_speed;
|
|
unsigned int tx_fc;
|
|
|
|
if (efx->link_options & GM_LPA_10000)
|
|
link_speed = 0x3;
|
|
else if (efx->link_options & GM_LPA_1000)
|
|
link_speed = 0x2;
|
|
else if (efx->link_options & GM_LPA_100)
|
|
link_speed = 0x1;
|
|
else
|
|
link_speed = 0x0;
|
|
/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
|
|
* as advertised. Disable to ensure packets are not
|
|
* indefinitely held and TX queue can be flushed at any point
|
|
* while the link is down. */
|
|
EFX_POPULATE_OWORD_5(reg,
|
|
MAC_XOFF_VAL, 0xffff /* max pause time */,
|
|
MAC_BCAD_ACPT, 1,
|
|
MAC_UC_PROM, efx->promiscuous,
|
|
MAC_LINK_STATUS, 1, /* always set */
|
|
MAC_SPEED, link_speed);
|
|
/* On B0, MAC backpressure can be disabled and packets get
|
|
* discarded. */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
|
|
!efx->link_up);
|
|
}
|
|
|
|
falcon_write(efx, ®, MAC0_CTRL_REG_KER);
|
|
|
|
/* Restore the multicast hash registers. */
|
|
falcon_set_multicast_hash(efx);
|
|
|
|
/* Transmission of pause frames when RX crosses the threshold is
|
|
* covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
|
|
* Action on receipt of pause frames is controller by XM_DIS_FCNTL */
|
|
tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
|
|
falcon_read(efx, ®, RX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
|
|
|
|
/* Unisolate the MAC -> RX */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
|
|
falcon_write(efx, ®, RX_CFG_REG_KER);
|
|
}
|
|
|
|
int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
|
|
{
|
|
efx_oword_t reg;
|
|
u32 *dma_done;
|
|
int i;
|
|
|
|
if (disable_dma_stats)
|
|
return 0;
|
|
|
|
/* Statistics fetch will fail if the MAC is in TX drain */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
efx_oword_t temp;
|
|
falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
|
|
if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
|
|
return 0;
|
|
}
|
|
|
|
dma_done = (efx->stats_buffer.addr + done_offset);
|
|
*dma_done = FALCON_STATS_NOT_DONE;
|
|
wmb(); /* ensure done flag is clear */
|
|
|
|
/* Initiate DMA transfer of stats */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MAC_STAT_DMA_CMD, 1,
|
|
MAC_STAT_DMA_ADR,
|
|
efx->stats_buffer.dma_addr);
|
|
falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER);
|
|
|
|
/* Wait for transfer to complete */
|
|
for (i = 0; i < 400; i++) {
|
|
if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
|
|
return 0;
|
|
udelay(10);
|
|
}
|
|
|
|
EFX_ERR(efx, "timed out waiting for statistics\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* PHY access via GMII
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Use the top bit of the MII PHY id to indicate the PHY type
|
|
* (1G/10G), with the remaining bits as the actual PHY id.
|
|
*
|
|
* This allows us to avoid leaking information from the mii_if_info
|
|
* structure into other data structures.
|
|
*/
|
|
#define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
|
|
#define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
|
|
#define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
|
|
#define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
|
|
#define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
|
|
|
|
|
|
/* Packing the clause 45 port and device fields into a single value */
|
|
#define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
|
|
#define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
|
|
#define MD_DEV_ADR_COMP_LBN 0
|
|
#define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
|
|
|
|
|
|
/* Wait for GMII access to complete */
|
|
static int falcon_gmii_wait(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t md_stat;
|
|
int count;
|
|
|
|
for (count = 0; count < 1000; count++) { /* wait upto 10ms */
|
|
falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
|
|
if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
|
|
if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
|
|
EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
|
|
EFX_ERR(efx, "error from GMII access "
|
|
EFX_DWORD_FMT"\n",
|
|
EFX_DWORD_VAL(md_stat));
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
udelay(10);
|
|
}
|
|
EFX_ERR(efx, "timed out waiting for GMII\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Writes a GMII register of a PHY connected to Falcon using MDIO. */
|
|
static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
|
|
int addr, int value)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
|
|
efx_oword_t reg;
|
|
|
|
/* The 'generic' prt/dev packing in mdio_10g.h is conveniently
|
|
* chosen so that the only current user, Falcon, can take the
|
|
* packed value and use them directly.
|
|
* Fail to build if this assumption is broken.
|
|
*/
|
|
BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
|
|
BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
|
|
BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
|
|
BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
|
|
|
|
if (phy_id2 == PHY_ADDR_INVALID)
|
|
return;
|
|
|
|
/* See falcon_mdio_read for an explanation. */
|
|
if (!(phy_id & FALCON_PHY_ID_10G)) {
|
|
int mmd = ffs(efx->phy_op->mmds) - 1;
|
|
EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
|
|
phy_id2 = mdio_clause45_pack(phy_id2, mmd)
|
|
& FALCON_PHY_ID_ID_MASK;
|
|
}
|
|
|
|
EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
|
|
addr, value);
|
|
|
|
spin_lock_bh(&efx->phy_lock);
|
|
|
|
/* Check MII not currently being accessed */
|
|
if (falcon_gmii_wait(efx) != 0)
|
|
goto out;
|
|
|
|
/* Write the address/ID register */
|
|
EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
|
|
falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
|
|
|
|
EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
|
|
falcon_write(efx, ®, MD_ID_REG_KER);
|
|
|
|
/* Write data */
|
|
EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
|
|
falcon_write(efx, ®, MD_TXD_REG_KER);
|
|
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MD_WRC, 1,
|
|
MD_GC, 0);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
|
|
/* Wait for data to be written */
|
|
if (falcon_gmii_wait(efx) != 0) {
|
|
/* Abort the write operation */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MD_WRC, 0,
|
|
MD_GC, 1);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
udelay(10);
|
|
}
|
|
|
|
out:
|
|
spin_unlock_bh(&efx->phy_lock);
|
|
}
|
|
|
|
/* Reads a GMII register from a PHY connected to Falcon. If no value
|
|
* could be read, -1 will be returned. */
|
|
static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
|
|
efx_oword_t reg;
|
|
int value = -1;
|
|
|
|
if (phy_addr == PHY_ADDR_INVALID)
|
|
return -1;
|
|
|
|
/* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
|
|
* but the generic Linux code does not make any distinction or have
|
|
* any state for this.
|
|
* We spot the case where someone tried to talk 22 to a 45 PHY and
|
|
* redirect the request to the lowest numbered MMD as a clause45
|
|
* request. This is enough to allow simple queries like id and link
|
|
* state to succeed. TODO: We may need to do more in future.
|
|
*/
|
|
if (!(phy_id & FALCON_PHY_ID_10G)) {
|
|
int mmd = ffs(efx->phy_op->mmds) - 1;
|
|
EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
|
|
phy_addr = mdio_clause45_pack(phy_addr, mmd)
|
|
& FALCON_PHY_ID_ID_MASK;
|
|
}
|
|
|
|
spin_lock_bh(&efx->phy_lock);
|
|
|
|
/* Check MII not currently being accessed */
|
|
if (falcon_gmii_wait(efx) != 0)
|
|
goto out;
|
|
|
|
EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
|
|
falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
|
|
|
|
EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
|
|
falcon_write(efx, ®, MD_ID_REG_KER);
|
|
|
|
/* Request data to be read */
|
|
EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
|
|
/* Wait for data to become available */
|
|
value = falcon_gmii_wait(efx);
|
|
if (value == 0) {
|
|
falcon_read(efx, ®, MD_RXD_REG_KER);
|
|
value = EFX_OWORD_FIELD(reg, MD_RXD);
|
|
EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
|
|
phy_id, addr, value);
|
|
} else {
|
|
/* Abort the read operation */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MD_RIC, 0,
|
|
MD_GC, 1);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
|
|
EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
|
|
"error %d\n", phy_id, addr, value);
|
|
}
|
|
|
|
out:
|
|
spin_unlock_bh(&efx->phy_lock);
|
|
|
|
return value;
|
|
}
|
|
|
|
static void falcon_init_mdio(struct mii_if_info *gmii)
|
|
{
|
|
gmii->mdio_read = falcon_mdio_read;
|
|
gmii->mdio_write = falcon_mdio_write;
|
|
gmii->phy_id_mask = FALCON_PHY_ID_MASK;
|
|
gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
|
|
}
|
|
|
|
static int falcon_probe_phy(struct efx_nic *efx)
|
|
{
|
|
switch (efx->phy_type) {
|
|
case PHY_TYPE_10XPRESS:
|
|
efx->phy_op = &falcon_tenxpress_phy_ops;
|
|
break;
|
|
case PHY_TYPE_XFP:
|
|
efx->phy_op = &falcon_xfp_phy_ops;
|
|
break;
|
|
default:
|
|
EFX_ERR(efx, "Unknown PHY type %d\n",
|
|
efx->phy_type);
|
|
return -1;
|
|
}
|
|
|
|
efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
|
|
return 0;
|
|
}
|
|
|
|
/* This call is responsible for hooking in the MAC and PHY operations */
|
|
int falcon_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
/* Hook in PHY operations table */
|
|
rc = falcon_probe_phy(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Set up GMII structure for PHY */
|
|
efx->mii.supports_gmii = 1;
|
|
falcon_init_mdio(&efx->mii);
|
|
|
|
/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
efx->flow_control = EFX_FC_RX | EFX_FC_TX;
|
|
else
|
|
efx->flow_control = EFX_FC_RX;
|
|
|
|
/* Allocate buffer for stats */
|
|
rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
|
|
FALCON_MAC_STATS_SIZE);
|
|
if (rc)
|
|
return rc;
|
|
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
|
|
(unsigned long long)efx->stats_buffer.dma_addr,
|
|
efx->stats_buffer.addr,
|
|
virt_to_phys(efx->stats_buffer.addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void falcon_remove_port(struct efx_nic *efx)
|
|
{
|
|
falcon_free_buffer(efx, &efx->stats_buffer);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Multicast filtering
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
void falcon_set_multicast_hash(struct efx_nic *efx)
|
|
{
|
|
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
|
|
|
|
/* Broadcast packets go through the multicast hash filter.
|
|
* ether_crc_le() of the broadcast address is 0xbe2612ff
|
|
* so we always add bit 0xff to the mask.
|
|
*/
|
|
set_bit_le(0xff, mc_hash->byte);
|
|
|
|
falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
|
|
falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Device reset
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Resets NIC to known state. This routine must be called in process
|
|
* context and is allowed to sleep. */
|
|
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t glb_ctl_reg_ker;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "performing hardware reset (%d)\n", method);
|
|
|
|
/* Initiate device reset */
|
|
if (method == RESET_TYPE_WORLD) {
|
|
rc = pci_save_state(efx->pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to backup PCI state of primary "
|
|
"function prior to hardware reset\n");
|
|
goto fail1;
|
|
}
|
|
if (FALCON_IS_DUAL_FUNC(efx)) {
|
|
rc = pci_save_state(nic_data->pci_dev2);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to backup PCI state of "
|
|
"secondary function prior to "
|
|
"hardware reset\n");
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
|
|
EXT_PHY_RST_DUR, 0x7,
|
|
SWRST, 1);
|
|
} else {
|
|
int reset_phy = (method == RESET_TYPE_INVISIBLE ?
|
|
EXCLUDE_FROM_RESET : 0);
|
|
|
|
EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
|
|
EXT_PHY_RST_CTL, reset_phy,
|
|
PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
|
|
PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
|
|
PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
|
|
EE_RST_CTL, EXCLUDE_FROM_RESET,
|
|
EXT_PHY_RST_DUR, 0x7 /* 10ms */,
|
|
SWRST, 1);
|
|
}
|
|
falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
|
|
|
|
EFX_LOG(efx, "waiting for hardware reset\n");
|
|
schedule_timeout_uninterruptible(HZ / 20);
|
|
|
|
/* Restore PCI configuration if needed */
|
|
if (method == RESET_TYPE_WORLD) {
|
|
if (FALCON_IS_DUAL_FUNC(efx)) {
|
|
rc = pci_restore_state(nic_data->pci_dev2);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to restore PCI config for "
|
|
"the secondary function\n");
|
|
goto fail3;
|
|
}
|
|
}
|
|
rc = pci_restore_state(efx->pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to restore PCI config for the "
|
|
"primary function\n");
|
|
goto fail4;
|
|
}
|
|
EFX_LOG(efx, "successfully restored PCI config\n");
|
|
}
|
|
|
|
/* Assert that reset complete */
|
|
falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
|
|
if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
|
|
rc = -ETIMEDOUT;
|
|
EFX_ERR(efx, "timed out waiting for hardware reset\n");
|
|
goto fail5;
|
|
}
|
|
EFX_LOG(efx, "hardware reset complete\n");
|
|
|
|
return 0;
|
|
|
|
/* pci_save_state() and pci_restore_state() MUST be called in pairs */
|
|
fail2:
|
|
fail3:
|
|
pci_restore_state(efx->pci_dev);
|
|
fail1:
|
|
fail4:
|
|
fail5:
|
|
return rc;
|
|
}
|
|
|
|
/* Zeroes out the SRAM contents. This routine must be called in
|
|
* process context and is allowed to sleep.
|
|
*/
|
|
static int falcon_reset_sram(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
|
|
int count;
|
|
|
|
/* Set the SRAM wake/sleep GPIO appropriately. */
|
|
falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
|
|
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
|
|
falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
|
|
|
|
/* Initiate SRAM reset */
|
|
EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
|
|
SRAM_OOB_BT_INIT_EN, 1,
|
|
SRM_NUM_BANKS_AND_BANK_SIZE, 0);
|
|
falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
|
|
|
|
/* Wait for SRAM reset to complete */
|
|
count = 0;
|
|
do {
|
|
EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
|
|
|
|
/* SRAM reset is slow; expect around 16ms */
|
|
schedule_timeout_uninterruptible(HZ / 50);
|
|
|
|
/* Check for reset complete */
|
|
falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
|
|
if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
|
|
EFX_LOG(efx, "SRAM reset complete\n");
|
|
|
|
return 0;
|
|
}
|
|
} while (++count < 20); /* wait upto 0.4 sec */
|
|
|
|
EFX_ERR(efx, "timed out waiting for SRAM reset\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Extract non-volatile configuration */
|
|
static int falcon_probe_nvconfig(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nvconfig *nvconfig;
|
|
efx_oword_t nic_stat;
|
|
int device_id;
|
|
unsigned addr_len;
|
|
size_t offset, len;
|
|
int magic_num, struct_ver, board_rev;
|
|
int rc;
|
|
|
|
/* Find the boot device. */
|
|
falcon_read(efx, &nic_stat, NIC_STAT_REG);
|
|
if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
|
|
device_id = EE_SPI_FLASH;
|
|
addr_len = 3;
|
|
} else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
|
|
device_id = EE_SPI_EEPROM;
|
|
addr_len = 2;
|
|
} else {
|
|
return -ENODEV;
|
|
}
|
|
|
|
nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
|
|
|
|
/* Read the whole configuration structure into memory. */
|
|
for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
|
|
len = min(sizeof(*nvconfig) - offset,
|
|
(size_t) FALCON_SPI_MAX_LEN);
|
|
rc = falcon_spi_read(efx, device_id, SPI_READ,
|
|
NVCONFIG_BASE + offset, addr_len,
|
|
(char *)nvconfig + offset, len);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
/* Read the MAC addresses */
|
|
memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
|
|
|
|
/* Read the board configuration. */
|
|
magic_num = le16_to_cpu(nvconfig->board_magic_num);
|
|
struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
|
|
|
|
if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
|
|
EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
|
|
"therefore using defaults\n", magic_num, struct_ver);
|
|
efx->phy_type = PHY_TYPE_NONE;
|
|
efx->mii.phy_id = PHY_ADDR_INVALID;
|
|
board_rev = 0;
|
|
} else {
|
|
struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
|
|
|
|
efx->phy_type = v2->port0_phy_type;
|
|
efx->mii.phy_id = v2->port0_phy_addr;
|
|
board_rev = le16_to_cpu(v2->board_revision);
|
|
}
|
|
|
|
EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
|
|
|
|
efx_set_board_info(efx, board_rev);
|
|
|
|
out:
|
|
kfree(nvconfig);
|
|
return rc;
|
|
}
|
|
|
|
/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
|
|
* count, port speed). Set workaround and feature flags accordingly.
|
|
*/
|
|
static int falcon_probe_nic_variant(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t altera_build;
|
|
|
|
falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
|
|
if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
|
|
EFX_ERR(efx, "Falcon FPGA not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
switch (falcon_rev(efx)) {
|
|
case FALCON_REV_A0:
|
|
case 0xff:
|
|
EFX_ERR(efx, "Falcon rev A0 not supported\n");
|
|
return -ENODEV;
|
|
|
|
case FALCON_REV_A1:{
|
|
efx_oword_t nic_stat;
|
|
|
|
falcon_read(efx, &nic_stat, NIC_STAT_REG);
|
|
|
|
if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
|
|
EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
|
|
EFX_ERR(efx, "1G mode not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FALCON_REV_B0:
|
|
break;
|
|
|
|
default:
|
|
EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int falcon_probe_nic(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data;
|
|
int rc;
|
|
|
|
/* Allocate storage for hardware specific data */
|
|
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
|
|
efx->nic_data = nic_data;
|
|
|
|
/* Determine number of ports etc. */
|
|
rc = falcon_probe_nic_variant(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
/* Probe secondary function if expected */
|
|
if (FALCON_IS_DUAL_FUNC(efx)) {
|
|
struct pci_dev *dev = pci_dev_get(efx->pci_dev);
|
|
|
|
while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
|
|
dev))) {
|
|
if (dev->bus == efx->pci_dev->bus &&
|
|
dev->devfn == efx->pci_dev->devfn + 1) {
|
|
nic_data->pci_dev2 = dev;
|
|
break;
|
|
}
|
|
}
|
|
if (!nic_data->pci_dev2) {
|
|
EFX_ERR(efx, "failed to find secondary function\n");
|
|
rc = -ENODEV;
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Now we can reset the NIC */
|
|
rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to reset NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
/* Allocate memory for INT_KER */
|
|
rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
|
|
if (rc)
|
|
goto fail4;
|
|
BUG_ON(efx->irq_status.dma_addr & 0x0f);
|
|
|
|
EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
|
|
(unsigned long long)efx->irq_status.dma_addr,
|
|
efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
|
|
|
|
/* Read in the non-volatile configuration */
|
|
rc = falcon_probe_nvconfig(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
/* Initialise I2C adapter */
|
|
efx->i2c_adap.owner = THIS_MODULE;
|
|
nic_data->i2c_data = falcon_i2c_bit_operations;
|
|
nic_data->i2c_data.data = efx;
|
|
efx->i2c_adap.algo_data = &nic_data->i2c_data;
|
|
efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
|
|
strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
|
|
rc = i2c_bit_add_bus(&efx->i2c_adap);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
return 0;
|
|
|
|
fail5:
|
|
falcon_free_buffer(efx, &efx->irq_status);
|
|
fail4:
|
|
fail3:
|
|
if (nic_data->pci_dev2) {
|
|
pci_dev_put(nic_data->pci_dev2);
|
|
nic_data->pci_dev2 = NULL;
|
|
}
|
|
fail2:
|
|
fail1:
|
|
kfree(efx->nic_data);
|
|
return rc;
|
|
}
|
|
|
|
/* This call performs hardware-specific global initialisation, such as
|
|
* defining the descriptor cache sizes and number of RSS channels.
|
|
* It does not set up any buffers, descriptor rings or event queues.
|
|
*/
|
|
int falcon_init_nic(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t temp;
|
|
unsigned thresh;
|
|
int rc;
|
|
|
|
/* Set up the address region register. This is only needed
|
|
* for the B0 FPGA, but since we are just pushing in the
|
|
* reset defaults this may as well be unconditional. */
|
|
EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
|
|
ADR_REGION1, (1 << 16),
|
|
ADR_REGION2, (2 << 16),
|
|
ADR_REGION3, (3 << 16));
|
|
falcon_write(efx, &temp, ADR_REGION_REG_KER);
|
|
|
|
/* Use on-chip SRAM */
|
|
falcon_read(efx, &temp, NIC_STAT_REG);
|
|
EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
|
|
falcon_write(efx, &temp, NIC_STAT_REG);
|
|
|
|
/* Set buffer table mode */
|
|
EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
|
|
falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
|
|
|
|
rc = falcon_reset_sram(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Set positions of descriptor caches in SRAM. */
|
|
EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
|
|
falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
|
|
EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
|
|
falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
|
|
|
|
/* Set TX descriptor cache size. */
|
|
BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
|
|
EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
|
|
falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
|
|
|
|
/* Set RX descriptor cache size. Set low watermark to size-8, as
|
|
* this allows most efficient prefetching.
|
|
*/
|
|
BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
|
|
EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
|
|
falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
|
|
EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
|
|
falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
|
|
|
|
/* Clear the parity enables on the TX data fifos as
|
|
* they produce false parity errors because of timing issues
|
|
*/
|
|
if (EFX_WORKAROUND_5129(efx)) {
|
|
falcon_read(efx, &temp, SPARE_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
|
|
falcon_write(efx, &temp, SPARE_REG_KER);
|
|
}
|
|
|
|
/* Enable all the genuinely fatal interrupts. (They are still
|
|
* masked by the overall interrupt mask, controlled by
|
|
* falcon_interrupts()).
|
|
*
|
|
* Note: All other fatal interrupts are enabled
|
|
*/
|
|
EFX_POPULATE_OWORD_3(temp,
|
|
ILL_ADR_INT_KER_EN, 1,
|
|
RBUF_OWN_INT_KER_EN, 1,
|
|
TBUF_OWN_INT_KER_EN, 1);
|
|
EFX_INVERT_OWORD(temp);
|
|
falcon_write(efx, &temp, FATAL_INTR_REG_KER);
|
|
|
|
/* Set number of RSS queues for receive path. */
|
|
falcon_read(efx, &temp, RX_FILTER_CTL_REG);
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
|
|
else
|
|
EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
|
|
if (EFX_WORKAROUND_7244(efx)) {
|
|
EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
|
|
}
|
|
falcon_write(efx, &temp, RX_FILTER_CTL_REG);
|
|
|
|
falcon_setup_rss_indir_table(efx);
|
|
|
|
/* Setup RX. Wait for descriptor is broken and must
|
|
* be disabled. RXDP recovery shouldn't be needed, but is.
|
|
*/
|
|
falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
|
|
EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
|
|
if (EFX_WORKAROUND_5583(efx))
|
|
EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
|
|
falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
|
|
|
|
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
|
|
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
|
|
*/
|
|
falcon_read(efx, &temp, TX_CFG2_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
|
|
EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
|
|
EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
|
|
EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
|
|
EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
|
|
/* Enable SW_EV to inherit in char driver - assume harmless here */
|
|
EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
|
|
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
|
|
EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
|
|
/* Squash TX of packets of 16 bytes or less */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
|
|
EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
|
|
falcon_write(efx, &temp, TX_CFG2_REG_KER);
|
|
|
|
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
|
|
* descriptors (which is bad).
|
|
*/
|
|
falcon_read(efx, &temp, TX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
|
|
falcon_write(efx, &temp, TX_CFG_REG_KER);
|
|
|
|
/* RX config */
|
|
falcon_read(efx, &temp, RX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
|
|
if (EFX_WORKAROUND_7575(efx))
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
|
|
(3 * 4096) / 32);
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
|
|
|
|
/* RX FIFO flow control thresholds */
|
|
thresh = ((rx_xon_thresh_bytes >= 0) ?
|
|
rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
|
|
thresh = ((rx_xoff_thresh_bytes >= 0) ?
|
|
rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
|
|
/* RX control FIFO thresholds [32 entries] */
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
|
|
falcon_write(efx, &temp, RX_CFG_REG_KER);
|
|
|
|
/* Set destination of both TX and RX Flush events */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
|
|
falcon_write(efx, &temp, DP_CTRL_REG);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void falcon_remove_nic(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
rc = i2c_del_adapter(&efx->i2c_adap);
|
|
BUG_ON(rc);
|
|
|
|
falcon_free_buffer(efx, &efx->irq_status);
|
|
|
|
falcon_reset_hw(efx, RESET_TYPE_ALL);
|
|
|
|
/* Release the second function after the reset */
|
|
if (nic_data->pci_dev2) {
|
|
pci_dev_put(nic_data->pci_dev2);
|
|
nic_data->pci_dev2 = NULL;
|
|
}
|
|
|
|
/* Tear down the private nic state */
|
|
kfree(efx->nic_data);
|
|
efx->nic_data = NULL;
|
|
}
|
|
|
|
void falcon_update_nic_stats(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t cnt;
|
|
|
|
falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
|
|
efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Revision-dependent attributes used by efx.c
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
struct efx_nic_type falcon_a_nic_type = {
|
|
.mem_bar = 2,
|
|
.mem_map_size = 0x20000,
|
|
.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
|
|
.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
|
|
.buf_tbl_base = BUF_TBL_KER_A1,
|
|
.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
|
|
.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
|
|
.txd_ring_mask = FALCON_TXD_RING_MASK,
|
|
.rxd_ring_mask = FALCON_RXD_RING_MASK,
|
|
.evq_size = FALCON_EVQ_SIZE,
|
|
.max_dma_mask = FALCON_DMA_MASK,
|
|
.tx_dma_mask = FALCON_TX_DMA_MASK,
|
|
.bug5391_mask = 0xf,
|
|
.rx_xoff_thresh = 2048,
|
|
.rx_xon_thresh = 512,
|
|
.rx_buffer_padding = 0x24,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSI,
|
|
.phys_addr_channels = 4,
|
|
};
|
|
|
|
struct efx_nic_type falcon_b_nic_type = {
|
|
.mem_bar = 2,
|
|
/* Map everything up to and including the RSS indirection
|
|
* table. Don't map MSI-X table, MSI-X PBA since Linux
|
|
* requires that they not be mapped. */
|
|
.mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
|
|
.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
|
|
.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
|
|
.buf_tbl_base = BUF_TBL_KER_B0,
|
|
.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
|
|
.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
|
|
.txd_ring_mask = FALCON_TXD_RING_MASK,
|
|
.rxd_ring_mask = FALCON_RXD_RING_MASK,
|
|
.evq_size = FALCON_EVQ_SIZE,
|
|
.max_dma_mask = FALCON_DMA_MASK,
|
|
.tx_dma_mask = FALCON_TX_DMA_MASK,
|
|
.bug5391_mask = 0,
|
|
.rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
|
|
.rx_xon_thresh = 27648, /* ~3*max MTU */
|
|
.rx_buffer_padding = 0,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
|
|
* interrupt handler only supports 32
|
|
* channels */
|
|
};
|
|
|