mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 19:06:07 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
563 lines
19 KiB
C
563 lines
19 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_SUSPEND_H
|
|
#define _LINUX_SUSPEND_H
|
|
|
|
#include <linux/swap.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/freezer.h>
|
|
#include <asm/errno.h>
|
|
|
|
#ifdef CONFIG_VT
|
|
extern void pm_set_vt_switch(int);
|
|
#else
|
|
static inline void pm_set_vt_switch(int do_switch)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_VT_CONSOLE_SLEEP
|
|
extern void pm_prepare_console(void);
|
|
extern void pm_restore_console(void);
|
|
#else
|
|
static inline void pm_prepare_console(void)
|
|
{
|
|
}
|
|
|
|
static inline void pm_restore_console(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
typedef int __bitwise suspend_state_t;
|
|
|
|
#define PM_SUSPEND_ON ((__force suspend_state_t) 0)
|
|
#define PM_SUSPEND_TO_IDLE ((__force suspend_state_t) 1)
|
|
#define PM_SUSPEND_STANDBY ((__force suspend_state_t) 2)
|
|
#define PM_SUSPEND_MEM ((__force suspend_state_t) 3)
|
|
#define PM_SUSPEND_MIN PM_SUSPEND_TO_IDLE
|
|
#define PM_SUSPEND_MAX ((__force suspend_state_t) 4)
|
|
|
|
enum suspend_stat_step {
|
|
SUSPEND_FREEZE = 1,
|
|
SUSPEND_PREPARE,
|
|
SUSPEND_SUSPEND,
|
|
SUSPEND_SUSPEND_LATE,
|
|
SUSPEND_SUSPEND_NOIRQ,
|
|
SUSPEND_RESUME_NOIRQ,
|
|
SUSPEND_RESUME_EARLY,
|
|
SUSPEND_RESUME
|
|
};
|
|
|
|
struct suspend_stats {
|
|
int success;
|
|
int fail;
|
|
int failed_freeze;
|
|
int failed_prepare;
|
|
int failed_suspend;
|
|
int failed_suspend_late;
|
|
int failed_suspend_noirq;
|
|
int failed_resume;
|
|
int failed_resume_early;
|
|
int failed_resume_noirq;
|
|
#define REC_FAILED_NUM 2
|
|
int last_failed_dev;
|
|
char failed_devs[REC_FAILED_NUM][40];
|
|
int last_failed_errno;
|
|
int errno[REC_FAILED_NUM];
|
|
int last_failed_step;
|
|
enum suspend_stat_step failed_steps[REC_FAILED_NUM];
|
|
};
|
|
|
|
extern struct suspend_stats suspend_stats;
|
|
|
|
static inline void dpm_save_failed_dev(const char *name)
|
|
{
|
|
strlcpy(suspend_stats.failed_devs[suspend_stats.last_failed_dev],
|
|
name,
|
|
sizeof(suspend_stats.failed_devs[0]));
|
|
suspend_stats.last_failed_dev++;
|
|
suspend_stats.last_failed_dev %= REC_FAILED_NUM;
|
|
}
|
|
|
|
static inline void dpm_save_failed_errno(int err)
|
|
{
|
|
suspend_stats.errno[suspend_stats.last_failed_errno] = err;
|
|
suspend_stats.last_failed_errno++;
|
|
suspend_stats.last_failed_errno %= REC_FAILED_NUM;
|
|
}
|
|
|
|
static inline void dpm_save_failed_step(enum suspend_stat_step step)
|
|
{
|
|
suspend_stats.failed_steps[suspend_stats.last_failed_step] = step;
|
|
suspend_stats.last_failed_step++;
|
|
suspend_stats.last_failed_step %= REC_FAILED_NUM;
|
|
}
|
|
|
|
/**
|
|
* struct platform_suspend_ops - Callbacks for managing platform dependent
|
|
* system sleep states.
|
|
*
|
|
* @valid: Callback to determine if given system sleep state is supported by
|
|
* the platform.
|
|
* Valid (ie. supported) states are advertised in /sys/power/state. Note
|
|
* that it still may be impossible to enter given system sleep state if the
|
|
* conditions aren't right.
|
|
* There is the %suspend_valid_only_mem function available that can be
|
|
* assigned to this if the platform only supports mem sleep.
|
|
*
|
|
* @begin: Initialise a transition to given system sleep state.
|
|
* @begin() is executed right prior to suspending devices. The information
|
|
* conveyed to the platform code by @begin() should be disregarded by it as
|
|
* soon as @end() is executed. If @begin() fails (ie. returns nonzero),
|
|
* @prepare(), @enter() and @finish() will not be called by the PM core.
|
|
* This callback is optional. However, if it is implemented, the argument
|
|
* passed to @enter() is redundant and should be ignored.
|
|
*
|
|
* @prepare: Prepare the platform for entering the system sleep state indicated
|
|
* by @begin().
|
|
* @prepare() is called right after devices have been suspended (ie. the
|
|
* appropriate .suspend() method has been executed for each device) and
|
|
* before device drivers' late suspend callbacks are executed. It returns
|
|
* 0 on success or a negative error code otherwise, in which case the
|
|
* system cannot enter the desired sleep state (@prepare_late(), @enter(),
|
|
* and @wake() will not be called in that case).
|
|
*
|
|
* @prepare_late: Finish preparing the platform for entering the system sleep
|
|
* state indicated by @begin().
|
|
* @prepare_late is called before disabling nonboot CPUs and after
|
|
* device drivers' late suspend callbacks have been executed. It returns
|
|
* 0 on success or a negative error code otherwise, in which case the
|
|
* system cannot enter the desired sleep state (@enter() will not be
|
|
* executed).
|
|
*
|
|
* @enter: Enter the system sleep state indicated by @begin() or represented by
|
|
* the argument if @begin() is not implemented.
|
|
* This callback is mandatory. It returns 0 on success or a negative
|
|
* error code otherwise, in which case the system cannot enter the desired
|
|
* sleep state.
|
|
*
|
|
* @wake: Called when the system has just left a sleep state, right after
|
|
* the nonboot CPUs have been enabled and before device drivers' early
|
|
* resume callbacks are executed.
|
|
* This callback is optional, but should be implemented by the platforms
|
|
* that implement @prepare_late(). If implemented, it is always called
|
|
* after @prepare_late and @enter(), even if one of them fails.
|
|
*
|
|
* @finish: Finish wake-up of the platform.
|
|
* @finish is called right prior to calling device drivers' regular suspend
|
|
* callbacks.
|
|
* This callback is optional, but should be implemented by the platforms
|
|
* that implement @prepare(). If implemented, it is always called after
|
|
* @enter() and @wake(), even if any of them fails. It is executed after
|
|
* a failing @prepare.
|
|
*
|
|
* @suspend_again: Returns whether the system should suspend again (true) or
|
|
* not (false). If the platform wants to poll sensors or execute some
|
|
* code during suspended without invoking userspace and most of devices,
|
|
* suspend_again callback is the place assuming that periodic-wakeup or
|
|
* alarm-wakeup is already setup. This allows to execute some codes while
|
|
* being kept suspended in the view of userland and devices.
|
|
*
|
|
* @end: Called by the PM core right after resuming devices, to indicate to
|
|
* the platform that the system has returned to the working state or
|
|
* the transition to the sleep state has been aborted.
|
|
* This callback is optional, but should be implemented by the platforms
|
|
* that implement @begin(). Accordingly, platforms implementing @begin()
|
|
* should also provide a @end() which cleans up transitions aborted before
|
|
* @enter().
|
|
*
|
|
* @recover: Recover the platform from a suspend failure.
|
|
* Called by the PM core if the suspending of devices fails.
|
|
* This callback is optional and should only be implemented by platforms
|
|
* which require special recovery actions in that situation.
|
|
*/
|
|
struct platform_suspend_ops {
|
|
int (*valid)(suspend_state_t state);
|
|
int (*begin)(suspend_state_t state);
|
|
int (*prepare)(void);
|
|
int (*prepare_late)(void);
|
|
int (*enter)(suspend_state_t state);
|
|
void (*wake)(void);
|
|
void (*finish)(void);
|
|
bool (*suspend_again)(void);
|
|
void (*end)(void);
|
|
void (*recover)(void);
|
|
};
|
|
|
|
struct platform_s2idle_ops {
|
|
int (*begin)(void);
|
|
int (*prepare)(void);
|
|
void (*wake)(void);
|
|
void (*sync)(void);
|
|
void (*restore)(void);
|
|
void (*end)(void);
|
|
};
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
extern suspend_state_t mem_sleep_current;
|
|
extern suspend_state_t mem_sleep_default;
|
|
|
|
/**
|
|
* suspend_set_ops - set platform dependent suspend operations
|
|
* @ops: The new suspend operations to set.
|
|
*/
|
|
extern void suspend_set_ops(const struct platform_suspend_ops *ops);
|
|
extern int suspend_valid_only_mem(suspend_state_t state);
|
|
|
|
extern unsigned int pm_suspend_global_flags;
|
|
|
|
#define PM_SUSPEND_FLAG_FW_SUSPEND (1 << 0)
|
|
#define PM_SUSPEND_FLAG_FW_RESUME (1 << 1)
|
|
|
|
static inline void pm_suspend_clear_flags(void)
|
|
{
|
|
pm_suspend_global_flags = 0;
|
|
}
|
|
|
|
static inline void pm_set_suspend_via_firmware(void)
|
|
{
|
|
pm_suspend_global_flags |= PM_SUSPEND_FLAG_FW_SUSPEND;
|
|
}
|
|
|
|
static inline void pm_set_resume_via_firmware(void)
|
|
{
|
|
pm_suspend_global_flags |= PM_SUSPEND_FLAG_FW_RESUME;
|
|
}
|
|
|
|
static inline bool pm_suspend_via_firmware(void)
|
|
{
|
|
return !!(pm_suspend_global_flags & PM_SUSPEND_FLAG_FW_SUSPEND);
|
|
}
|
|
|
|
static inline bool pm_resume_via_firmware(void)
|
|
{
|
|
return !!(pm_suspend_global_flags & PM_SUSPEND_FLAG_FW_RESUME);
|
|
}
|
|
|
|
/* Suspend-to-idle state machnine. */
|
|
enum s2idle_states {
|
|
S2IDLE_STATE_NONE, /* Not suspended/suspending. */
|
|
S2IDLE_STATE_ENTER, /* Enter suspend-to-idle. */
|
|
S2IDLE_STATE_WAKE, /* Wake up from suspend-to-idle. */
|
|
};
|
|
|
|
extern enum s2idle_states __read_mostly s2idle_state;
|
|
|
|
static inline bool idle_should_enter_s2idle(void)
|
|
{
|
|
return unlikely(s2idle_state == S2IDLE_STATE_ENTER);
|
|
}
|
|
|
|
extern void __init pm_states_init(void);
|
|
extern void s2idle_set_ops(const struct platform_s2idle_ops *ops);
|
|
extern void s2idle_wake(void);
|
|
|
|
/**
|
|
* arch_suspend_disable_irqs - disable IRQs for suspend
|
|
*
|
|
* Disables IRQs (in the default case). This is a weak symbol in the common
|
|
* code and thus allows architectures to override it if more needs to be
|
|
* done. Not called for suspend to disk.
|
|
*/
|
|
extern void arch_suspend_disable_irqs(void);
|
|
|
|
/**
|
|
* arch_suspend_enable_irqs - enable IRQs after suspend
|
|
*
|
|
* Enables IRQs (in the default case). This is a weak symbol in the common
|
|
* code and thus allows architectures to override it if more needs to be
|
|
* done. Not called for suspend to disk.
|
|
*/
|
|
extern void arch_suspend_enable_irqs(void);
|
|
|
|
extern int pm_suspend(suspend_state_t state);
|
|
#else /* !CONFIG_SUSPEND */
|
|
#define suspend_valid_only_mem NULL
|
|
|
|
static inline void pm_suspend_clear_flags(void) {}
|
|
static inline void pm_set_suspend_via_firmware(void) {}
|
|
static inline void pm_set_resume_via_firmware(void) {}
|
|
static inline bool pm_suspend_via_firmware(void) { return false; }
|
|
static inline bool pm_resume_via_firmware(void) { return false; }
|
|
|
|
static inline void suspend_set_ops(const struct platform_suspend_ops *ops) {}
|
|
static inline int pm_suspend(suspend_state_t state) { return -ENOSYS; }
|
|
static inline bool idle_should_enter_s2idle(void) { return false; }
|
|
static inline void __init pm_states_init(void) {}
|
|
static inline void s2idle_set_ops(const struct platform_s2idle_ops *ops) {}
|
|
static inline void s2idle_wake(void) {}
|
|
#endif /* !CONFIG_SUSPEND */
|
|
|
|
/* struct pbe is used for creating lists of pages that should be restored
|
|
* atomically during the resume from disk, because the page frames they have
|
|
* occupied before the suspend are in use.
|
|
*/
|
|
struct pbe {
|
|
void *address; /* address of the copy */
|
|
void *orig_address; /* original address of a page */
|
|
struct pbe *next;
|
|
};
|
|
|
|
/* mm/page_alloc.c */
|
|
extern void mark_free_pages(struct zone *zone);
|
|
|
|
/**
|
|
* struct platform_hibernation_ops - hibernation platform support
|
|
*
|
|
* The methods in this structure allow a platform to carry out special
|
|
* operations required by it during a hibernation transition.
|
|
*
|
|
* All the methods below, except for @recover(), must be implemented.
|
|
*
|
|
* @begin: Tell the platform driver that we're starting hibernation.
|
|
* Called right after shrinking memory and before freezing devices.
|
|
*
|
|
* @end: Called by the PM core right after resuming devices, to indicate to
|
|
* the platform that the system has returned to the working state.
|
|
*
|
|
* @pre_snapshot: Prepare the platform for creating the hibernation image.
|
|
* Called right after devices have been frozen and before the nonboot
|
|
* CPUs are disabled (runs with IRQs on).
|
|
*
|
|
* @finish: Restore the previous state of the platform after the hibernation
|
|
* image has been created *or* put the platform into the normal operation
|
|
* mode after the hibernation (the same method is executed in both cases).
|
|
* Called right after the nonboot CPUs have been enabled and before
|
|
* thawing devices (runs with IRQs on).
|
|
*
|
|
* @prepare: Prepare the platform for entering the low power state.
|
|
* Called right after the hibernation image has been saved and before
|
|
* devices are prepared for entering the low power state.
|
|
*
|
|
* @enter: Put the system into the low power state after the hibernation image
|
|
* has been saved to disk.
|
|
* Called after the nonboot CPUs have been disabled and all of the low
|
|
* level devices have been shut down (runs with IRQs off).
|
|
*
|
|
* @leave: Perform the first stage of the cleanup after the system sleep state
|
|
* indicated by @set_target() has been left.
|
|
* Called right after the control has been passed from the boot kernel to
|
|
* the image kernel, before the nonboot CPUs are enabled and before devices
|
|
* are resumed. Executed with interrupts disabled.
|
|
*
|
|
* @pre_restore: Prepare system for the restoration from a hibernation image.
|
|
* Called right after devices have been frozen and before the nonboot
|
|
* CPUs are disabled (runs with IRQs on).
|
|
*
|
|
* @restore_cleanup: Clean up after a failing image restoration.
|
|
* Called right after the nonboot CPUs have been enabled and before
|
|
* thawing devices (runs with IRQs on).
|
|
*
|
|
* @recover: Recover the platform from a failure to suspend devices.
|
|
* Called by the PM core if the suspending of devices during hibernation
|
|
* fails. This callback is optional and should only be implemented by
|
|
* platforms which require special recovery actions in that situation.
|
|
*/
|
|
struct platform_hibernation_ops {
|
|
int (*begin)(void);
|
|
void (*end)(void);
|
|
int (*pre_snapshot)(void);
|
|
void (*finish)(void);
|
|
int (*prepare)(void);
|
|
int (*enter)(void);
|
|
void (*leave)(void);
|
|
int (*pre_restore)(void);
|
|
void (*restore_cleanup)(void);
|
|
void (*recover)(void);
|
|
};
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
/* kernel/power/snapshot.c */
|
|
extern void __register_nosave_region(unsigned long b, unsigned long e, int km);
|
|
static inline void __init register_nosave_region(unsigned long b, unsigned long e)
|
|
{
|
|
__register_nosave_region(b, e, 0);
|
|
}
|
|
static inline void __init register_nosave_region_late(unsigned long b, unsigned long e)
|
|
{
|
|
__register_nosave_region(b, e, 1);
|
|
}
|
|
extern int swsusp_page_is_forbidden(struct page *);
|
|
extern void swsusp_set_page_free(struct page *);
|
|
extern void swsusp_unset_page_free(struct page *);
|
|
extern unsigned long get_safe_page(gfp_t gfp_mask);
|
|
|
|
extern void hibernation_set_ops(const struct platform_hibernation_ops *ops);
|
|
extern int hibernate(void);
|
|
extern bool system_entering_hibernation(void);
|
|
extern bool hibernation_available(void);
|
|
asmlinkage int swsusp_save(void);
|
|
extern struct pbe *restore_pblist;
|
|
#else /* CONFIG_HIBERNATION */
|
|
static inline void register_nosave_region(unsigned long b, unsigned long e) {}
|
|
static inline void register_nosave_region_late(unsigned long b, unsigned long e) {}
|
|
static inline int swsusp_page_is_forbidden(struct page *p) { return 0; }
|
|
static inline void swsusp_set_page_free(struct page *p) {}
|
|
static inline void swsusp_unset_page_free(struct page *p) {}
|
|
|
|
static inline void hibernation_set_ops(const struct platform_hibernation_ops *ops) {}
|
|
static inline int hibernate(void) { return -ENOSYS; }
|
|
static inline bool system_entering_hibernation(void) { return false; }
|
|
static inline bool hibernation_available(void) { return false; }
|
|
#endif /* CONFIG_HIBERNATION */
|
|
|
|
/* Hibernation and suspend events */
|
|
#define PM_HIBERNATION_PREPARE 0x0001 /* Going to hibernate */
|
|
#define PM_POST_HIBERNATION 0x0002 /* Hibernation finished */
|
|
#define PM_SUSPEND_PREPARE 0x0003 /* Going to suspend the system */
|
|
#define PM_POST_SUSPEND 0x0004 /* Suspend finished */
|
|
#define PM_RESTORE_PREPARE 0x0005 /* Going to restore a saved image */
|
|
#define PM_POST_RESTORE 0x0006 /* Restore failed */
|
|
|
|
extern struct mutex pm_mutex;
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
void save_processor_state(void);
|
|
void restore_processor_state(void);
|
|
|
|
/* kernel/power/main.c */
|
|
extern int register_pm_notifier(struct notifier_block *nb);
|
|
extern int unregister_pm_notifier(struct notifier_block *nb);
|
|
|
|
#define pm_notifier(fn, pri) { \
|
|
static struct notifier_block fn##_nb = \
|
|
{ .notifier_call = fn, .priority = pri }; \
|
|
register_pm_notifier(&fn##_nb); \
|
|
}
|
|
|
|
/* drivers/base/power/wakeup.c */
|
|
extern bool events_check_enabled;
|
|
extern unsigned int pm_wakeup_irq;
|
|
extern suspend_state_t pm_suspend_target_state;
|
|
|
|
extern bool pm_wakeup_pending(void);
|
|
extern void pm_system_wakeup(void);
|
|
extern void pm_system_cancel_wakeup(void);
|
|
extern void pm_wakeup_clear(bool reset);
|
|
extern void pm_system_irq_wakeup(unsigned int irq_number);
|
|
extern bool pm_get_wakeup_count(unsigned int *count, bool block);
|
|
extern bool pm_save_wakeup_count(unsigned int count);
|
|
extern void pm_wakep_autosleep_enabled(bool set);
|
|
extern void pm_print_active_wakeup_sources(void);
|
|
|
|
static inline void lock_system_sleep(void)
|
|
{
|
|
current->flags |= PF_FREEZER_SKIP;
|
|
mutex_lock(&pm_mutex);
|
|
}
|
|
|
|
static inline void unlock_system_sleep(void)
|
|
{
|
|
/*
|
|
* Don't use freezer_count() because we don't want the call to
|
|
* try_to_freeze() here.
|
|
*
|
|
* Reason:
|
|
* Fundamentally, we just don't need it, because freezing condition
|
|
* doesn't come into effect until we release the pm_mutex lock,
|
|
* since the freezer always works with pm_mutex held.
|
|
*
|
|
* More importantly, in the case of hibernation,
|
|
* unlock_system_sleep() gets called in snapshot_read() and
|
|
* snapshot_write() when the freezing condition is still in effect.
|
|
* Which means, if we use try_to_freeze() here, it would make them
|
|
* enter the refrigerator, thus causing hibernation to lockup.
|
|
*/
|
|
current->flags &= ~PF_FREEZER_SKIP;
|
|
mutex_unlock(&pm_mutex);
|
|
}
|
|
|
|
#else /* !CONFIG_PM_SLEEP */
|
|
|
|
static inline int register_pm_notifier(struct notifier_block *nb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int unregister_pm_notifier(struct notifier_block *nb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#define pm_notifier(fn, pri) do { (void)(fn); } while (0)
|
|
|
|
static inline bool pm_wakeup_pending(void) { return false; }
|
|
static inline void pm_system_wakeup(void) {}
|
|
static inline void pm_wakeup_clear(bool reset) {}
|
|
static inline void pm_system_irq_wakeup(unsigned int irq_number) {}
|
|
|
|
static inline void lock_system_sleep(void) {}
|
|
static inline void unlock_system_sleep(void) {}
|
|
|
|
#endif /* !CONFIG_PM_SLEEP */
|
|
|
|
#ifdef CONFIG_PM_SLEEP_DEBUG
|
|
extern bool pm_print_times_enabled;
|
|
extern bool pm_debug_messages_on;
|
|
extern __printf(2, 3) void __pm_pr_dbg(bool defer, const char *fmt, ...);
|
|
#else
|
|
#define pm_print_times_enabled (false)
|
|
#define pm_debug_messages_on (false)
|
|
|
|
#include <linux/printk.h>
|
|
|
|
#define __pm_pr_dbg(defer, fmt, ...) \
|
|
no_printk(KERN_DEBUG fmt, ##__VA_ARGS__)
|
|
#endif
|
|
|
|
#define pm_pr_dbg(fmt, ...) \
|
|
__pm_pr_dbg(false, fmt, ##__VA_ARGS__)
|
|
|
|
#define pm_deferred_pr_dbg(fmt, ...) \
|
|
__pm_pr_dbg(true, fmt, ##__VA_ARGS__)
|
|
|
|
#ifdef CONFIG_PM_AUTOSLEEP
|
|
|
|
/* kernel/power/autosleep.c */
|
|
void queue_up_suspend_work(void);
|
|
|
|
#else /* !CONFIG_PM_AUTOSLEEP */
|
|
|
|
static inline void queue_up_suspend_work(void) {}
|
|
|
|
#endif /* !CONFIG_PM_AUTOSLEEP */
|
|
|
|
#ifdef CONFIG_ARCH_SAVE_PAGE_KEYS
|
|
/*
|
|
* The ARCH_SAVE_PAGE_KEYS functions can be used by an architecture
|
|
* to save/restore additional information to/from the array of page
|
|
* frame numbers in the hibernation image. For s390 this is used to
|
|
* save and restore the storage key for each page that is included
|
|
* in the hibernation image.
|
|
*/
|
|
unsigned long page_key_additional_pages(unsigned long pages);
|
|
int page_key_alloc(unsigned long pages);
|
|
void page_key_free(void);
|
|
void page_key_read(unsigned long *pfn);
|
|
void page_key_memorize(unsigned long *pfn);
|
|
void page_key_write(void *address);
|
|
|
|
#else /* !CONFIG_ARCH_SAVE_PAGE_KEYS */
|
|
|
|
static inline unsigned long page_key_additional_pages(unsigned long pages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int page_key_alloc(unsigned long pages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void page_key_free(void) {}
|
|
static inline void page_key_read(unsigned long *pfn) {}
|
|
static inline void page_key_memorize(unsigned long *pfn) {}
|
|
static inline void page_key_write(void *address) {}
|
|
|
|
#endif /* !CONFIG_ARCH_SAVE_PAGE_KEYS */
|
|
|
|
#endif /* _LINUX_SUSPEND_H */
|