mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 23:15:24 +07:00
60815cf2e0
As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com ACCESS_ONCE might fail with specific compilers for non-scalar accesses. Here is a set of patches to tackle that problem. The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure is larger than the machine word size memcpy is used and a warning is emitted. The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar types. This merge does not yet contain a patch that forces ACCESS_ONCE to work only on scalar types. This is targetted for the next merge window as Linux next already contains new offenders regarding ACCESS_ONCE vs. non-scalar types. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.14 (GNU/Linux) iQIcBAABAgAGBQJUkrVGAAoJEBF7vIC1phx8stkP/2LmN5y6LOseoEW06xa5MX4m cbIKsZNtsGHl7EDcTzzuWs6Sq5/Cj7V3yzeBF7QGbUKOqvFWU3jvpUBCCfjMg37C 77/Vf0ZPrxTXXxeJ4Ykdy2CGvuMtuYY9TWkrRNKmLU0xex7lGblEzCt9z6+mZviw 26/DN8ctjkHRvIUAi+7RfQBBc3oSMYAC1mzxYKBAsAFLV+LyFmsGU/4iofZMAsdt XFyVXlrLn0Bjx/MeceGkOlMDiVx4FnfccfFaD4hhuTLBJXWitkUK/MRa4JBiXWzH agY8942A8/j9wkI2DFp/pqZYqA/sTXLndyOWlhE//ZSti0n0BSJaOx3S27rTLkAc 5VmZEVyIrS3hyOpyyAi0sSoPkDnjeCHmQg9Rqn34/poKLd7JDrW2UkERNCf/T3eh GI2rbhAlZz3v5mIShn8RrxzslWYmOObpMr3HYNUdRk8YUfTf6d6aZ3txHp2nP4mD VBAEzsvP9rcVT2caVhU2dnBzeaZAj3zeDxBtjcb3X2osY9tI7qgLc9Fa/fWKgILk 2evkLcctsae2mlLNGHyaK3Dm/ZmYJv+57MyaQQEZNfZZgeB1y4k0DkxH4w1CFmCi s8XlH5voEHgnyjSQXXgc/PNVlkPAKr78ZyTiAfiKmh8rpe41/W4hGcgao7L9Lgiu SI0uSwKibuZt4dHGxQuG =IQ5o -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux Pull ACCESS_ONCE cleanup preparation from Christian Borntraeger: "kernel: Provide READ_ONCE and ASSIGN_ONCE As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com ACCESS_ONCE might fail with specific compilers for non-scalar accesses. Here is a set of patches to tackle that problem. The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure is larger than the machine word size memcpy is used and a warning is emitted. The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar types. This does not yet contain a patch that forces ACCESS_ONCE to work only on scalar types. This is targetted for the next merge window as Linux next already contains new offenders regarding ACCESS_ONCE vs. non-scalar types" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux: s390/kvm: REPLACE barrier fixup with READ_ONCE arm/spinlock: Replace ACCESS_ONCE with READ_ONCE arm64/spinlock: Replace ACCESS_ONCE READ_ONCE mips/gup: Replace ACCESS_ONCE with READ_ONCE x86/gup: Replace ACCESS_ONCE with READ_ONCE x86/spinlock: Replace ACCESS_ONCE with READ_ONCE mm: replace ACCESS_ONCE with READ_ONCE or barriers kernel: Provide READ_ONCE and ASSIGN_ONCE
226 lines
6.1 KiB
C
226 lines
6.1 KiB
C
#ifndef _ASM_X86_SPINLOCK_H
|
|
#define _ASM_X86_SPINLOCK_H
|
|
|
|
#include <linux/jump_label.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/paravirt.h>
|
|
#include <asm/bitops.h>
|
|
|
|
/*
|
|
* Your basic SMP spinlocks, allowing only a single CPU anywhere
|
|
*
|
|
* Simple spin lock operations. There are two variants, one clears IRQ's
|
|
* on the local processor, one does not.
|
|
*
|
|
* These are fair FIFO ticket locks, which support up to 2^16 CPUs.
|
|
*
|
|
* (the type definitions are in asm/spinlock_types.h)
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_32
|
|
# define LOCK_PTR_REG "a"
|
|
#else
|
|
# define LOCK_PTR_REG "D"
|
|
#endif
|
|
|
|
#if defined(CONFIG_X86_32) && (defined(CONFIG_X86_PPRO_FENCE))
|
|
/*
|
|
* On PPro SMP, we use a locked operation to unlock
|
|
* (PPro errata 66, 92)
|
|
*/
|
|
# define UNLOCK_LOCK_PREFIX LOCK_PREFIX
|
|
#else
|
|
# define UNLOCK_LOCK_PREFIX
|
|
#endif
|
|
|
|
/* How long a lock should spin before we consider blocking */
|
|
#define SPIN_THRESHOLD (1 << 15)
|
|
|
|
extern struct static_key paravirt_ticketlocks_enabled;
|
|
static __always_inline bool static_key_false(struct static_key *key);
|
|
|
|
#ifdef CONFIG_PARAVIRT_SPINLOCKS
|
|
|
|
static inline void __ticket_enter_slowpath(arch_spinlock_t *lock)
|
|
{
|
|
set_bit(0, (volatile unsigned long *)&lock->tickets.tail);
|
|
}
|
|
|
|
#else /* !CONFIG_PARAVIRT_SPINLOCKS */
|
|
static __always_inline void __ticket_lock_spinning(arch_spinlock_t *lock,
|
|
__ticket_t ticket)
|
|
{
|
|
}
|
|
static inline void __ticket_unlock_kick(arch_spinlock_t *lock,
|
|
__ticket_t ticket)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_PARAVIRT_SPINLOCKS */
|
|
|
|
static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock)
|
|
{
|
|
return lock.tickets.head == lock.tickets.tail;
|
|
}
|
|
|
|
/*
|
|
* Ticket locks are conceptually two parts, one indicating the current head of
|
|
* the queue, and the other indicating the current tail. The lock is acquired
|
|
* by atomically noting the tail and incrementing it by one (thus adding
|
|
* ourself to the queue and noting our position), then waiting until the head
|
|
* becomes equal to the the initial value of the tail.
|
|
*
|
|
* We use an xadd covering *both* parts of the lock, to increment the tail and
|
|
* also load the position of the head, which takes care of memory ordering
|
|
* issues and should be optimal for the uncontended case. Note the tail must be
|
|
* in the high part, because a wide xadd increment of the low part would carry
|
|
* up and contaminate the high part.
|
|
*/
|
|
static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
|
|
{
|
|
register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC };
|
|
|
|
inc = xadd(&lock->tickets, inc);
|
|
if (likely(inc.head == inc.tail))
|
|
goto out;
|
|
|
|
inc.tail &= ~TICKET_SLOWPATH_FLAG;
|
|
for (;;) {
|
|
unsigned count = SPIN_THRESHOLD;
|
|
|
|
do {
|
|
if (READ_ONCE(lock->tickets.head) == inc.tail)
|
|
goto out;
|
|
cpu_relax();
|
|
} while (--count);
|
|
__ticket_lock_spinning(lock, inc.tail);
|
|
}
|
|
out: barrier(); /* make sure nothing creeps before the lock is taken */
|
|
}
|
|
|
|
static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
|
|
{
|
|
arch_spinlock_t old, new;
|
|
|
|
old.tickets = READ_ONCE(lock->tickets);
|
|
if (old.tickets.head != (old.tickets.tail & ~TICKET_SLOWPATH_FLAG))
|
|
return 0;
|
|
|
|
new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT);
|
|
|
|
/* cmpxchg is a full barrier, so nothing can move before it */
|
|
return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
|
|
}
|
|
|
|
static inline void __ticket_unlock_slowpath(arch_spinlock_t *lock,
|
|
arch_spinlock_t old)
|
|
{
|
|
arch_spinlock_t new;
|
|
|
|
BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS);
|
|
|
|
/* Perform the unlock on the "before" copy */
|
|
old.tickets.head += TICKET_LOCK_INC;
|
|
|
|
/* Clear the slowpath flag */
|
|
new.head_tail = old.head_tail & ~(TICKET_SLOWPATH_FLAG << TICKET_SHIFT);
|
|
|
|
/*
|
|
* If the lock is uncontended, clear the flag - use cmpxchg in
|
|
* case it changes behind our back though.
|
|
*/
|
|
if (new.tickets.head != new.tickets.tail ||
|
|
cmpxchg(&lock->head_tail, old.head_tail,
|
|
new.head_tail) != old.head_tail) {
|
|
/*
|
|
* Lock still has someone queued for it, so wake up an
|
|
* appropriate waiter.
|
|
*/
|
|
__ticket_unlock_kick(lock, old.tickets.head);
|
|
}
|
|
}
|
|
|
|
static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
|
|
{
|
|
if (TICKET_SLOWPATH_FLAG &&
|
|
static_key_false(¶virt_ticketlocks_enabled)) {
|
|
arch_spinlock_t prev;
|
|
|
|
prev = *lock;
|
|
add_smp(&lock->tickets.head, TICKET_LOCK_INC);
|
|
|
|
/* add_smp() is a full mb() */
|
|
|
|
if (unlikely(lock->tickets.tail & TICKET_SLOWPATH_FLAG))
|
|
__ticket_unlock_slowpath(lock, prev);
|
|
} else
|
|
__add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
|
|
}
|
|
|
|
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
|
|
{
|
|
struct __raw_tickets tmp = READ_ONCE(lock->tickets);
|
|
|
|
return tmp.tail != tmp.head;
|
|
}
|
|
|
|
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
|
|
{
|
|
struct __raw_tickets tmp = READ_ONCE(lock->tickets);
|
|
|
|
return (__ticket_t)(tmp.tail - tmp.head) > TICKET_LOCK_INC;
|
|
}
|
|
#define arch_spin_is_contended arch_spin_is_contended
|
|
|
|
static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
|
|
unsigned long flags)
|
|
{
|
|
arch_spin_lock(lock);
|
|
}
|
|
|
|
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
|
|
{
|
|
__ticket_t head = ACCESS_ONCE(lock->tickets.head);
|
|
|
|
for (;;) {
|
|
struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
|
|
/*
|
|
* We need to check "unlocked" in a loop, tmp.head == head
|
|
* can be false positive because of overflow.
|
|
*/
|
|
if (tmp.head == (tmp.tail & ~TICKET_SLOWPATH_FLAG) ||
|
|
tmp.head != head)
|
|
break;
|
|
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read-write spinlocks, allowing multiple readers
|
|
* but only one writer.
|
|
*
|
|
* NOTE! it is quite common to have readers in interrupts
|
|
* but no interrupt writers. For those circumstances we
|
|
* can "mix" irq-safe locks - any writer needs to get a
|
|
* irq-safe write-lock, but readers can get non-irqsafe
|
|
* read-locks.
|
|
*
|
|
* On x86, we implement read-write locks using the generic qrwlock with
|
|
* x86 specific optimization.
|
|
*/
|
|
|
|
#include <asm/qrwlock.h>
|
|
|
|
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
|
|
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
|
|
|
|
#define arch_spin_relax(lock) cpu_relax()
|
|
#define arch_read_relax(lock) cpu_relax()
|
|
#define arch_write_relax(lock) cpu_relax()
|
|
|
|
#endif /* _ASM_X86_SPINLOCK_H */
|