linux_dsm_epyc7002/Documentation/networking/cxacru.txt
Simon Arlott 817db5b34e USB: cxacru: remove cxacru-cf.bin loader
This has never worked properly because wsize passed to
cxacru_cm() is incorrectly set to the number of values
instead of the data bytes. The maximum number of values
that can be set at once is 7 which means the device will
not get enough data to work with and none of the
configuration values will be used.

At least one existing cxacru-cf.bin file contains invalid
data which will prevent the modem from syncing properly.

Fixing it is likely to break existing systems, and the
new sysfs interface for setting configuration parameters
can provide the same functionality. A script is provided
to convert from the original format.

Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-03-02 14:53:01 -08:00

101 lines
2.9 KiB
Plaintext

Firmware is required for this device: http://accessrunner.sourceforge.net/
While it is capable of managing/maintaining the ADSL connection without the
module loaded, the device will sometimes stop responding after unloading the
driver and it is necessary to unplug/remove power to the device to fix this.
Note: support for cxacru-cf.bin has been removed. It was not loaded correctly
so it had no effect on the device configuration. Fixing it could have stopped
existing devices working when an invalid configuration is supplied.
There is a script cxacru-cf.py to convert an existing file to the sysfs form.
Detected devices will appear as ATM devices named "cxacru". In /sys/class/atm/
these are directories named cxacruN where N is the device number. A symlink
named device points to the USB interface device's directory which contains
several sysfs attribute files for retrieving device statistics:
* adsl_controller_version
* adsl_headend
* adsl_headend_environment
Information about the remote headend.
* adsl_config
Configuration writing interface.
Write parameters in hexadecimal format <index>=<value>,
separated by whitespace, e.g.:
"1=0 a=5"
Up to 7 parameters at a time will be sent and the modem will restart
the ADSL connection when any value is set. These are logged for future
reference.
* downstream_attenuation (dB)
* downstream_bits_per_frame
* downstream_rate (kbps)
* downstream_snr_margin (dB)
Downstream stats.
* upstream_attenuation (dB)
* upstream_bits_per_frame
* upstream_rate (kbps)
* upstream_snr_margin (dB)
* transmitter_power (dBm/Hz)
Upstream stats.
* downstream_crc_errors
* downstream_fec_errors
* downstream_hec_errors
* upstream_crc_errors
* upstream_fec_errors
* upstream_hec_errors
Error counts.
* line_startable
Indicates that ADSL support on the device
is/can be enabled, see adsl_start.
* line_status
"initialising"
"down"
"attempting to activate"
"training"
"channel analysis"
"exchange"
"waiting"
"up"
Changes between "down" and "attempting to activate"
if there is no signal.
* link_status
"not connected"
"connected"
"lost"
* mac_address
* modulation
"" (when not connected)
"ANSI T1.413"
"ITU-T G.992.1 (G.DMT)"
"ITU-T G.992.2 (G.LITE)"
* startup_attempts
Count of total attempts to initialise ADSL.
To enable/disable ADSL, the following can be written to the adsl_state file:
"start"
"stop
"restart" (stops, waits 1.5s, then starts)
"poll" (used to resume status polling if it was disabled due to failure)
Changes in adsl/line state are reported via kernel log messages:
[4942145.150704] ATM dev 0: ADSL state: running
[4942243.663766] ATM dev 0: ADSL line: down
[4942249.665075] ATM dev 0: ADSL line: attempting to activate
[4942253.654954] ATM dev 0: ADSL line: training
[4942255.666387] ATM dev 0: ADSL line: channel analysis
[4942259.656262] ATM dev 0: ADSL line: exchange
[2635357.696901] ATM dev 0: ADSL line: up (8128 kb/s down | 832 kb/s up)