mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 08:39:47 +07:00
b98cca444d
Architectures which support kprobes have very similar boilerplate around
calling kprobe_fault_handler(). Use a helper function in kprobes.h to
unify them, based on the x86 code.
This changes the behaviour for other architectures when preemption is
enabled. Previously, they would have disabled preemption while calling
the kprobe handler. However, preemption would be disabled if this fault
was due to a kprobe, so we know the fault was not due to a kprobe
handler and can simply return failure.
This behaviour was introduced in commit a980c0ef9f
("x86/kprobes:
Refactor kprobes_fault() like kprobe_exceptions_notify()")
[anshuman.khandual@arm.com: export kprobe_fault_handler()]
Link: http://lkml.kernel.org/r/1561133358-8876-1-git-send-email-anshuman.khandual@arm.com
Link: http://lkml.kernel.org/r/1560420444-25737-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
567 lines
14 KiB
C
567 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
* arch/mips/kernel/kprobes.c
|
|
*
|
|
* Copyright 2006 Sony Corp.
|
|
* Copyright 2010 Cavium Networks
|
|
*
|
|
* Some portions copied from the powerpc version.
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/ptrace.h>
|
|
#include <asm/branch.h>
|
|
#include <asm/break.h>
|
|
|
|
#include "probes-common.h"
|
|
|
|
static const union mips_instruction breakpoint_insn = {
|
|
.b_format = {
|
|
.opcode = spec_op,
|
|
.code = BRK_KPROBE_BP,
|
|
.func = break_op
|
|
}
|
|
};
|
|
|
|
static const union mips_instruction breakpoint2_insn = {
|
|
.b_format = {
|
|
.opcode = spec_op,
|
|
.code = BRK_KPROBE_SSTEPBP,
|
|
.func = break_op
|
|
}
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static int __kprobes insn_has_delayslot(union mips_instruction insn)
|
|
{
|
|
return __insn_has_delay_slot(insn);
|
|
}
|
|
|
|
/*
|
|
* insn_has_ll_or_sc function checks whether instruction is ll or sc
|
|
* one; putting breakpoint on top of atomic ll/sc pair is bad idea;
|
|
* so we need to prevent it and refuse kprobes insertion for such
|
|
* instructions; cannot do much about breakpoint in the middle of
|
|
* ll/sc pair; it is upto user to avoid those places
|
|
*/
|
|
static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (insn.i_format.opcode) {
|
|
case ll_op:
|
|
case lld_op:
|
|
case sc_op:
|
|
case scd_op:
|
|
ret = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
union mips_instruction insn;
|
|
union mips_instruction prev_insn;
|
|
int ret = 0;
|
|
|
|
insn = p->addr[0];
|
|
|
|
if (insn_has_ll_or_sc(insn)) {
|
|
pr_notice("Kprobes for ll and sc instructions are not"
|
|
"supported\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((probe_kernel_read(&prev_insn, p->addr - 1,
|
|
sizeof(mips_instruction)) == 0) &&
|
|
insn_has_delayslot(prev_insn)) {
|
|
pr_notice("Kprobes for branch delayslot are not supported\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (__insn_is_compact_branch(insn)) {
|
|
pr_notice("Kprobes for compact branches are not supported\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* insn: must be on special executable page on mips. */
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* In the kprobe->ainsn.insn[] array we store the original
|
|
* instruction at index zero and a break trap instruction at
|
|
* index one.
|
|
*
|
|
* On MIPS arch if the instruction at probed address is a
|
|
* branch instruction, we need to execute the instruction at
|
|
* Branch Delayslot (BD) at the time of probe hit. As MIPS also
|
|
* doesn't have single stepping support, the BD instruction can
|
|
* not be executed in-line and it would be executed on SSOL slot
|
|
* using a normal breakpoint instruction in the next slot.
|
|
* So, read the instruction and save it for later execution.
|
|
*/
|
|
if (insn_has_delayslot(insn))
|
|
memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
|
|
else
|
|
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.insn[1] = breakpoint2_insn;
|
|
p->opcode = *p->addr;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = breakpoint_insn;
|
|
flush_insn_slot(p);
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = p->opcode;
|
|
flush_insn_slot(p);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
|
|
kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
|
|
kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
|
|
}
|
|
|
|
static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
|
|
kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
|
|
kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
|
|
}
|
|
|
|
static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
|
|
kcb->kprobe_saved_epc = regs->cp0_epc;
|
|
}
|
|
|
|
/**
|
|
* evaluate_branch_instrucion -
|
|
*
|
|
* Evaluate the branch instruction at probed address during probe hit. The
|
|
* result of evaluation would be the updated epc. The insturction in delayslot
|
|
* would actually be single stepped using a normal breakpoint) on SSOL slot.
|
|
*
|
|
* The result is also saved in the kprobe control block for later use,
|
|
* in case we need to execute the delayslot instruction. The latter will be
|
|
* false for NOP instruction in dealyslot and the branch-likely instructions
|
|
* when the branch is taken. And for those cases we set a flag as
|
|
* SKIP_DELAYSLOT in the kprobe control block
|
|
*/
|
|
static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
union mips_instruction insn = p->opcode;
|
|
long epc;
|
|
int ret = 0;
|
|
|
|
epc = regs->cp0_epc;
|
|
if (epc & 3)
|
|
goto unaligned;
|
|
|
|
if (p->ainsn.insn->word == 0)
|
|
kcb->flags |= SKIP_DELAYSLOT;
|
|
else
|
|
kcb->flags &= ~SKIP_DELAYSLOT;
|
|
|
|
ret = __compute_return_epc_for_insn(regs, insn);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret == BRANCH_LIKELY_TAKEN)
|
|
kcb->flags |= SKIP_DELAYSLOT;
|
|
|
|
kcb->target_epc = regs->cp0_epc;
|
|
|
|
return 0;
|
|
|
|
unaligned:
|
|
pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
|
|
force_sig(SIGBUS);
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
int ret = 0;
|
|
|
|
regs->cp0_status &= ~ST0_IE;
|
|
|
|
/* single step inline if the instruction is a break */
|
|
if (p->opcode.word == breakpoint_insn.word ||
|
|
p->opcode.word == breakpoint2_insn.word)
|
|
regs->cp0_epc = (unsigned long)p->addr;
|
|
else if (insn_has_delayslot(p->opcode)) {
|
|
ret = evaluate_branch_instruction(p, regs, kcb);
|
|
if (ret < 0) {
|
|
pr_notice("Kprobes: Error in evaluating branch\n");
|
|
return;
|
|
}
|
|
}
|
|
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
|
}
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "break 0"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*
|
|
* This function prepares to return from the post-single-step
|
|
* breakpoint trap. In case of branch instructions, the target
|
|
* epc to be restored.
|
|
*/
|
|
static void __kprobes resume_execution(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
if (insn_has_delayslot(p->opcode))
|
|
regs->cp0_epc = kcb->target_epc;
|
|
else {
|
|
unsigned long orig_epc = kcb->kprobe_saved_epc;
|
|
regs->cp0_epc = orig_epc + 4;
|
|
}
|
|
}
|
|
|
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
int ret = 0;
|
|
kprobe_opcode_t *addr;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
addr = (kprobe_opcode_t *) regs->cp0_epc;
|
|
|
|
/*
|
|
* We don't want to be preempted for the entire
|
|
* duration of kprobe processing
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
|
|
/* Check we're not actually recursing */
|
|
if (kprobe_running()) {
|
|
p = get_kprobe(addr);
|
|
if (p) {
|
|
if (kcb->kprobe_status == KPROBE_HIT_SS &&
|
|
p->ainsn.insn->word == breakpoint_insn.word) {
|
|
regs->cp0_status &= ~ST0_IE;
|
|
regs->cp0_status |= kcb->kprobe_saved_SR;
|
|
goto no_kprobe;
|
|
}
|
|
/*
|
|
* We have reentered the kprobe_handler(), since
|
|
* another probe was hit while within the handler.
|
|
* We here save the original kprobes variables and
|
|
* just single step on the instruction of the new probe
|
|
* without calling any user handlers.
|
|
*/
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kprobes_inc_nmissed_count(p);
|
|
prepare_singlestep(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
if (kcb->flags & SKIP_DELAYSLOT) {
|
|
resume_execution(p, regs, kcb);
|
|
restore_previous_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
}
|
|
return 1;
|
|
} else if (addr->word != breakpoint_insn.word) {
|
|
/*
|
|
* The breakpoint instruction was removed by
|
|
* another cpu right after we hit, no further
|
|
* handling of this interrupt is appropriate
|
|
*/
|
|
ret = 1;
|
|
}
|
|
goto no_kprobe;
|
|
}
|
|
|
|
p = get_kprobe(addr);
|
|
if (!p) {
|
|
if (addr->word != breakpoint_insn.word) {
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
*/
|
|
ret = 1;
|
|
}
|
|
/* Not one of ours: let kernel handle it */
|
|
goto no_kprobe;
|
|
}
|
|
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
/* handler has already set things up, so skip ss setup */
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
prepare_singlestep(p, regs, kcb);
|
|
if (kcb->flags & SKIP_DELAYSLOT) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (p->post_handler)
|
|
p->post_handler(p, regs, 0);
|
|
resume_execution(p, regs, kcb);
|
|
preempt_enable_no_resched();
|
|
} else
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
|
return 1;
|
|
|
|
no_kprobe:
|
|
preempt_enable_no_resched();
|
|
return ret;
|
|
|
|
}
|
|
|
|
static inline int post_kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur)
|
|
return 0;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
resume_execution(cur, regs, kcb);
|
|
|
|
regs->cp0_status |= kcb->kprobe_saved_SR;
|
|
|
|
/* Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
reset_current_kprobe();
|
|
out:
|
|
preempt_enable_no_resched();
|
|
|
|
return 1;
|
|
}
|
|
|
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
return 1;
|
|
|
|
if (kcb->kprobe_status & KPROBE_HIT_SS) {
|
|
resume_execution(cur, regs, kcb);
|
|
regs->cp0_status |= kcb->kprobe_old_SR;
|
|
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper routine for handling exceptions.
|
|
*/
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
|
|
struct die_args *args = (struct die_args *)data;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_BREAK:
|
|
if (kprobe_handler(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
case DIE_SSTEPBP:
|
|
if (post_kprobe_handler(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
|
|
case DIE_PAGE_FAULT:
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
preempt_disable();
|
|
|
|
if (kprobe_running()
|
|
&& kprobe_fault_handler(args->regs, args->trapnr))
|
|
ret = NOTIFY_STOP;
|
|
preempt_enable();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function return probe trampoline:
|
|
* - init_kprobes() establishes a probepoint here
|
|
* - When the probed function returns, this probe causes the
|
|
* handlers to fire
|
|
*/
|
|
static void __used kretprobe_trampoline_holder(void)
|
|
{
|
|
asm volatile(
|
|
".set push\n\t"
|
|
/* Keep the assembler from reordering and placing JR here. */
|
|
".set noreorder\n\t"
|
|
"nop\n\t"
|
|
".global kretprobe_trampoline\n"
|
|
"kretprobe_trampoline:\n\t"
|
|
"nop\n\t"
|
|
".set pop"
|
|
: : : "memory");
|
|
}
|
|
|
|
void kretprobe_trampoline(void);
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->regs[31] = (unsigned long)kretprobe_trampoline;
|
|
}
|
|
|
|
/*
|
|
* Called when the probe at kretprobe trampoline is hit
|
|
*/
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *tmp;
|
|
unsigned long flags, orig_ret_address = 0;
|
|
unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because an multiple functions in the call path
|
|
* have a return probe installed on them, and/or more than one return
|
|
* return probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always inserted at the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the first instance's ret_addr will point to the
|
|
* real return address, and all the rest will point to
|
|
* kretprobe_trampoline
|
|
*/
|
|
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
if (ri->rp && ri->rp->handler)
|
|
ri->rp->handler(ri, regs);
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
instruction_pointer(regs) = orig_ret_address;
|
|
|
|
kretprobe_hash_unlock(current, &flags);
|
|
|
|
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
/*
|
|
* By returning a non-zero value, we are telling
|
|
* kprobe_handler() that we don't want the post_handler
|
|
* to run (and have re-enabled preemption)
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *)kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return register_kprobe(&trampoline_p);
|
|
}
|