mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 01:56:57 +07:00
4914d7b458
QEMU provides a high-resolution timer and alarm; use this for a clock source and clock event source when available. Signed-off-by: Richard Henderson <rth@twiddle.net>
466 lines
12 KiB
C
466 lines
12 KiB
C
/*
|
||
* linux/arch/alpha/kernel/time.c
|
||
*
|
||
* Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
|
||
*
|
||
* This file contains the clocksource time handling.
|
||
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
||
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
||
* 1997-01-09 Adrian Sun
|
||
* use interval timer if CONFIG_RTC=y
|
||
* 1997-10-29 John Bowman (bowman@math.ualberta.ca)
|
||
* fixed tick loss calculation in timer_interrupt
|
||
* (round system clock to nearest tick instead of truncating)
|
||
* fixed algorithm in time_init for getting time from CMOS clock
|
||
* 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
|
||
* fixed algorithm in do_gettimeofday() for calculating the precise time
|
||
* from processor cycle counter (now taking lost_ticks into account)
|
||
* 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
|
||
* Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
|
||
*/
|
||
#include <linux/errno.h>
|
||
#include <linux/module.h>
|
||
#include <linux/sched.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/param.h>
|
||
#include <linux/string.h>
|
||
#include <linux/mm.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/ioport.h>
|
||
#include <linux/irq.h>
|
||
#include <linux/interrupt.h>
|
||
#include <linux/init.h>
|
||
#include <linux/bcd.h>
|
||
#include <linux/profile.h>
|
||
#include <linux/irq_work.h>
|
||
|
||
#include <asm/uaccess.h>
|
||
#include <asm/io.h>
|
||
#include <asm/hwrpb.h>
|
||
|
||
#include <linux/mc146818rtc.h>
|
||
#include <linux/time.h>
|
||
#include <linux/timex.h>
|
||
#include <linux/clocksource.h>
|
||
#include <linux/clockchips.h>
|
||
|
||
#include "proto.h"
|
||
#include "irq_impl.h"
|
||
|
||
DEFINE_SPINLOCK(rtc_lock);
|
||
EXPORT_SYMBOL(rtc_lock);
|
||
|
||
unsigned long est_cycle_freq;
|
||
|
||
#ifdef CONFIG_IRQ_WORK
|
||
|
||
DEFINE_PER_CPU(u8, irq_work_pending);
|
||
|
||
#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
|
||
#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
|
||
#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
|
||
|
||
void arch_irq_work_raise(void)
|
||
{
|
||
set_irq_work_pending_flag();
|
||
}
|
||
|
||
#else /* CONFIG_IRQ_WORK */
|
||
|
||
#define test_irq_work_pending() 0
|
||
#define clear_irq_work_pending()
|
||
|
||
#endif /* CONFIG_IRQ_WORK */
|
||
|
||
|
||
static inline __u32 rpcc(void)
|
||
{
|
||
return __builtin_alpha_rpcc();
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
* The RTC as a clock_event_device primitive.
|
||
*/
|
||
|
||
static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
|
||
|
||
irqreturn_t
|
||
rtc_timer_interrupt(int irq, void *dev)
|
||
{
|
||
int cpu = smp_processor_id();
|
||
struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
|
||
|
||
/* Don't run the hook for UNUSED or SHUTDOWN. */
|
||
if (likely(ce->mode == CLOCK_EVT_MODE_PERIODIC))
|
||
ce->event_handler(ce);
|
||
|
||
if (test_irq_work_pending()) {
|
||
clear_irq_work_pending();
|
||
irq_work_run();
|
||
}
|
||
|
||
return IRQ_HANDLED;
|
||
}
|
||
|
||
static void
|
||
rtc_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce)
|
||
{
|
||
/* The mode member of CE is updated in generic code.
|
||
Since we only support periodic events, nothing to do. */
|
||
}
|
||
|
||
static int
|
||
rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
|
||
{
|
||
/* This hook is for oneshot mode, which we don't support. */
|
||
return -EINVAL;
|
||
}
|
||
|
||
static void __init
|
||
init_rtc_clockevent(void)
|
||
{
|
||
int cpu = smp_processor_id();
|
||
struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
|
||
|
||
*ce = (struct clock_event_device){
|
||
.name = "rtc",
|
||
.features = CLOCK_EVT_FEAT_PERIODIC,
|
||
.rating = 100,
|
||
.cpumask = cpumask_of(cpu),
|
||
.set_mode = rtc_ce_set_mode,
|
||
.set_next_event = rtc_ce_set_next_event,
|
||
};
|
||
|
||
clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
* The QEMU clock as a clocksource primitive.
|
||
*/
|
||
|
||
static cycle_t
|
||
qemu_cs_read(struct clocksource *cs)
|
||
{
|
||
return qemu_get_vmtime();
|
||
}
|
||
|
||
static struct clocksource qemu_cs = {
|
||
.name = "qemu",
|
||
.rating = 400,
|
||
.read = qemu_cs_read,
|
||
.mask = CLOCKSOURCE_MASK(64),
|
||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||
.max_idle_ns = LONG_MAX
|
||
};
|
||
|
||
|
||
/*
|
||
* The QEMU alarm as a clock_event_device primitive.
|
||
*/
|
||
|
||
static void
|
||
qemu_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce)
|
||
{
|
||
/* The mode member of CE is updated for us in generic code.
|
||
Just make sure that the event is disabled. */
|
||
qemu_set_alarm_abs(0);
|
||
}
|
||
|
||
static int
|
||
qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
|
||
{
|
||
qemu_set_alarm_rel(evt);
|
||
return 0;
|
||
}
|
||
|
||
static irqreturn_t
|
||
qemu_timer_interrupt(int irq, void *dev)
|
||
{
|
||
int cpu = smp_processor_id();
|
||
struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
|
||
|
||
ce->event_handler(ce);
|
||
return IRQ_HANDLED;
|
||
}
|
||
|
||
static void __init
|
||
init_qemu_clockevent(void)
|
||
{
|
||
int cpu = smp_processor_id();
|
||
struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
|
||
|
||
*ce = (struct clock_event_device){
|
||
.name = "qemu",
|
||
.features = CLOCK_EVT_FEAT_ONESHOT,
|
||
.rating = 400,
|
||
.cpumask = cpumask_of(cpu),
|
||
.set_mode = qemu_ce_set_mode,
|
||
.set_next_event = qemu_ce_set_next_event,
|
||
};
|
||
|
||
clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
|
||
}
|
||
|
||
|
||
void __init
|
||
common_init_rtc(void)
|
||
{
|
||
unsigned char x, sel = 0;
|
||
|
||
/* Reset periodic interrupt frequency. */
|
||
#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
|
||
x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
|
||
/* Test includes known working values on various platforms
|
||
where 0x26 is wrong; we refuse to change those. */
|
||
if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
|
||
sel = RTC_REF_CLCK_32KHZ + 6;
|
||
}
|
||
#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
|
||
sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
|
||
#else
|
||
# error "Unknown HZ from arch/alpha/Kconfig"
|
||
#endif
|
||
if (sel) {
|
||
printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
|
||
CONFIG_HZ, sel);
|
||
CMOS_WRITE(sel, RTC_FREQ_SELECT);
|
||
}
|
||
|
||
/* Turn on periodic interrupts. */
|
||
x = CMOS_READ(RTC_CONTROL);
|
||
if (!(x & RTC_PIE)) {
|
||
printk("Turning on RTC interrupts.\n");
|
||
x |= RTC_PIE;
|
||
x &= ~(RTC_AIE | RTC_UIE);
|
||
CMOS_WRITE(x, RTC_CONTROL);
|
||
}
|
||
(void) CMOS_READ(RTC_INTR_FLAGS);
|
||
|
||
outb(0x36, 0x43); /* pit counter 0: system timer */
|
||
outb(0x00, 0x40);
|
||
outb(0x00, 0x40);
|
||
|
||
outb(0xb6, 0x43); /* pit counter 2: speaker */
|
||
outb(0x31, 0x42);
|
||
outb(0x13, 0x42);
|
||
|
||
init_rtc_irq();
|
||
}
|
||
|
||
|
||
#ifndef CONFIG_ALPHA_WTINT
|
||
/*
|
||
* The RPCC as a clocksource primitive.
|
||
*
|
||
* While we have free-running timecounters running on all CPUs, and we make
|
||
* a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
|
||
* with the wall clock, that initialization isn't kept up-to-date across
|
||
* different time counters in SMP mode. Therefore we can only use this
|
||
* method when there's only one CPU enabled.
|
||
*
|
||
* When using the WTINT PALcall, the RPCC may shift to a lower frequency,
|
||
* or stop altogether, while waiting for the interrupt. Therefore we cannot
|
||
* use this method when WTINT is in use.
|
||
*/
|
||
|
||
static cycle_t read_rpcc(struct clocksource *cs)
|
||
{
|
||
return rpcc();
|
||
}
|
||
|
||
static struct clocksource clocksource_rpcc = {
|
||
.name = "rpcc",
|
||
.rating = 300,
|
||
.read = read_rpcc,
|
||
.mask = CLOCKSOURCE_MASK(32),
|
||
.flags = CLOCK_SOURCE_IS_CONTINUOUS
|
||
};
|
||
#endif /* ALPHA_WTINT */
|
||
|
||
|
||
/* Validate a computed cycle counter result against the known bounds for
|
||
the given processor core. There's too much brokenness in the way of
|
||
timing hardware for any one method to work everywhere. :-(
|
||
|
||
Return 0 if the result cannot be trusted, otherwise return the argument. */
|
||
|
||
static unsigned long __init
|
||
validate_cc_value(unsigned long cc)
|
||
{
|
||
static struct bounds {
|
||
unsigned int min, max;
|
||
} cpu_hz[] __initdata = {
|
||
[EV3_CPU] = { 50000000, 200000000 }, /* guess */
|
||
[EV4_CPU] = { 100000000, 300000000 },
|
||
[LCA4_CPU] = { 100000000, 300000000 }, /* guess */
|
||
[EV45_CPU] = { 200000000, 300000000 },
|
||
[EV5_CPU] = { 250000000, 433000000 },
|
||
[EV56_CPU] = { 333000000, 667000000 },
|
||
[PCA56_CPU] = { 400000000, 600000000 }, /* guess */
|
||
[PCA57_CPU] = { 500000000, 600000000 }, /* guess */
|
||
[EV6_CPU] = { 466000000, 600000000 },
|
||
[EV67_CPU] = { 600000000, 750000000 },
|
||
[EV68AL_CPU] = { 750000000, 940000000 },
|
||
[EV68CB_CPU] = { 1000000000, 1333333333 },
|
||
/* None of the following are shipping as of 2001-11-01. */
|
||
[EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
|
||
[EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
|
||
[EV7_CPU] = { 800000000, 1400000000 }, /* guess */
|
||
[EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
|
||
};
|
||
|
||
/* Allow for some drift in the crystal. 10MHz is more than enough. */
|
||
const unsigned int deviation = 10000000;
|
||
|
||
struct percpu_struct *cpu;
|
||
unsigned int index;
|
||
|
||
cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
|
||
index = cpu->type & 0xffffffff;
|
||
|
||
/* If index out of bounds, no way to validate. */
|
||
if (index >= ARRAY_SIZE(cpu_hz))
|
||
return cc;
|
||
|
||
/* If index contains no data, no way to validate. */
|
||
if (cpu_hz[index].max == 0)
|
||
return cc;
|
||
|
||
if (cc < cpu_hz[index].min - deviation
|
||
|| cc > cpu_hz[index].max + deviation)
|
||
return 0;
|
||
|
||
return cc;
|
||
}
|
||
|
||
|
||
/*
|
||
* Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
|
||
* arch/i386/time.c.
|
||
*/
|
||
|
||
#define CALIBRATE_LATCH 0xffff
|
||
#define TIMEOUT_COUNT 0x100000
|
||
|
||
static unsigned long __init
|
||
calibrate_cc_with_pit(void)
|
||
{
|
||
int cc, count = 0;
|
||
|
||
/* Set the Gate high, disable speaker */
|
||
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
||
|
||
/*
|
||
* Now let's take care of CTC channel 2
|
||
*
|
||
* Set the Gate high, program CTC channel 2 for mode 0,
|
||
* (interrupt on terminal count mode), binary count,
|
||
* load 5 * LATCH count, (LSB and MSB) to begin countdown.
|
||
*/
|
||
outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
|
||
outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
|
||
outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
|
||
|
||
cc = rpcc();
|
||
do {
|
||
count++;
|
||
} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
|
||
cc = rpcc() - cc;
|
||
|
||
/* Error: ECTCNEVERSET or ECPUTOOFAST. */
|
||
if (count <= 1 || count == TIMEOUT_COUNT)
|
||
return 0;
|
||
|
||
return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
|
||
}
|
||
|
||
/* The Linux interpretation of the CMOS clock register contents:
|
||
When the Update-In-Progress (UIP) flag goes from 1 to 0, the
|
||
RTC registers show the second which has precisely just started.
|
||
Let's hope other operating systems interpret the RTC the same way. */
|
||
|
||
static unsigned long __init
|
||
rpcc_after_update_in_progress(void)
|
||
{
|
||
do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
|
||
do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
|
||
|
||
return rpcc();
|
||
}
|
||
|
||
void __init
|
||
time_init(void)
|
||
{
|
||
unsigned int cc1, cc2;
|
||
unsigned long cycle_freq, tolerance;
|
||
long diff;
|
||
|
||
if (alpha_using_qemu) {
|
||
clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
|
||
init_qemu_clockevent();
|
||
|
||
timer_irqaction.handler = qemu_timer_interrupt;
|
||
init_rtc_irq();
|
||
return;
|
||
}
|
||
|
||
/* Calibrate CPU clock -- attempt #1. */
|
||
if (!est_cycle_freq)
|
||
est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
|
||
|
||
cc1 = rpcc();
|
||
|
||
/* Calibrate CPU clock -- attempt #2. */
|
||
if (!est_cycle_freq) {
|
||
cc1 = rpcc_after_update_in_progress();
|
||
cc2 = rpcc_after_update_in_progress();
|
||
est_cycle_freq = validate_cc_value(cc2 - cc1);
|
||
cc1 = cc2;
|
||
}
|
||
|
||
cycle_freq = hwrpb->cycle_freq;
|
||
if (est_cycle_freq) {
|
||
/* If the given value is within 250 PPM of what we calculated,
|
||
accept it. Otherwise, use what we found. */
|
||
tolerance = cycle_freq / 4000;
|
||
diff = cycle_freq - est_cycle_freq;
|
||
if (diff < 0)
|
||
diff = -diff;
|
||
if ((unsigned long)diff > tolerance) {
|
||
cycle_freq = est_cycle_freq;
|
||
printk("HWRPB cycle frequency bogus. "
|
||
"Estimated %lu Hz\n", cycle_freq);
|
||
} else {
|
||
est_cycle_freq = 0;
|
||
}
|
||
} else if (! validate_cc_value (cycle_freq)) {
|
||
printk("HWRPB cycle frequency bogus, "
|
||
"and unable to estimate a proper value!\n");
|
||
}
|
||
|
||
/* See above for restrictions on using clocksource_rpcc. */
|
||
#ifndef CONFIG_ALPHA_WTINT
|
||
if (hwrpb->nr_processors == 1)
|
||
clocksource_register_hz(&clocksource_rpcc, cycle_freq);
|
||
#endif
|
||
|
||
/* Startup the timer source. */
|
||
alpha_mv.init_rtc();
|
||
init_rtc_clockevent();
|
||
}
|
||
|
||
/* Initialize the clock_event_device for secondary cpus. */
|
||
#ifdef CONFIG_SMP
|
||
void __init
|
||
init_clockevent(void)
|
||
{
|
||
if (alpha_using_qemu)
|
||
init_qemu_clockevent();
|
||
else
|
||
init_rtc_clockevent();
|
||
}
|
||
#endif
|