mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 08:45:12 +07:00
bb208f144c
As described in 'can: m_can: tag current CAN FD controllers as non-ISO'
(6cfda7fbeb
) it is possible to define fixed configuration options by
setting the according bit in 'ctrlmode' and clear it in 'ctrlmode_supported'.
This leads to the incovenience that the fixed configuration bits can not be
passed by netlink even when they have the correct values (e.g. non-ISO, FD).
This patch fixes that issue and not only allows fixed set bit values to be set
again but now requires(!) to provide these fixed values at configuration time.
A valid CAN FD configuration consists of a nominal/arbitration bittiming, a
data bittiming and a control mode with CAN_CTRLMODE_FD set - which is now
enforced by a new can_validate() function. This fix additionally removed the
inconsistency that was prohibiting the support of 'CANFD-only' controller
drivers, like the RCar CAN FD.
For this reason a new helper can_set_static_ctrlmode() has been introduced to
provide a proper interface to handle static enabled CAN controller options.
Reported-by: Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Reviewed-by: Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>
Cc: <stable@vger.kernel.org> # >= 3.18
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
1319 lines
31 KiB
C
1319 lines
31 KiB
C
/*
|
|
* CAN bus driver for Bosch M_CAN controller
|
|
*
|
|
* Copyright (C) 2014 Freescale Semiconductor, Inc.
|
|
* Dong Aisheng <b29396@freescale.com>
|
|
*
|
|
* Bosch M_CAN user manual can be obtained from:
|
|
* http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
|
|
* mcan_users_manual_v302.pdf
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public
|
|
* License version 2. This program is licensed "as is" without any
|
|
* warranty of any kind, whether express or implied.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/can/dev.h>
|
|
|
|
/* napi related */
|
|
#define M_CAN_NAPI_WEIGHT 64
|
|
|
|
/* message ram configuration data length */
|
|
#define MRAM_CFG_LEN 8
|
|
|
|
/* registers definition */
|
|
enum m_can_reg {
|
|
M_CAN_CREL = 0x0,
|
|
M_CAN_ENDN = 0x4,
|
|
M_CAN_CUST = 0x8,
|
|
M_CAN_FBTP = 0xc,
|
|
M_CAN_TEST = 0x10,
|
|
M_CAN_RWD = 0x14,
|
|
M_CAN_CCCR = 0x18,
|
|
M_CAN_BTP = 0x1c,
|
|
M_CAN_TSCC = 0x20,
|
|
M_CAN_TSCV = 0x24,
|
|
M_CAN_TOCC = 0x28,
|
|
M_CAN_TOCV = 0x2c,
|
|
M_CAN_ECR = 0x40,
|
|
M_CAN_PSR = 0x44,
|
|
M_CAN_IR = 0x50,
|
|
M_CAN_IE = 0x54,
|
|
M_CAN_ILS = 0x58,
|
|
M_CAN_ILE = 0x5c,
|
|
M_CAN_GFC = 0x80,
|
|
M_CAN_SIDFC = 0x84,
|
|
M_CAN_XIDFC = 0x88,
|
|
M_CAN_XIDAM = 0x90,
|
|
M_CAN_HPMS = 0x94,
|
|
M_CAN_NDAT1 = 0x98,
|
|
M_CAN_NDAT2 = 0x9c,
|
|
M_CAN_RXF0C = 0xa0,
|
|
M_CAN_RXF0S = 0xa4,
|
|
M_CAN_RXF0A = 0xa8,
|
|
M_CAN_RXBC = 0xac,
|
|
M_CAN_RXF1C = 0xb0,
|
|
M_CAN_RXF1S = 0xb4,
|
|
M_CAN_RXF1A = 0xb8,
|
|
M_CAN_RXESC = 0xbc,
|
|
M_CAN_TXBC = 0xc0,
|
|
M_CAN_TXFQS = 0xc4,
|
|
M_CAN_TXESC = 0xc8,
|
|
M_CAN_TXBRP = 0xcc,
|
|
M_CAN_TXBAR = 0xd0,
|
|
M_CAN_TXBCR = 0xd4,
|
|
M_CAN_TXBTO = 0xd8,
|
|
M_CAN_TXBCF = 0xdc,
|
|
M_CAN_TXBTIE = 0xe0,
|
|
M_CAN_TXBCIE = 0xe4,
|
|
M_CAN_TXEFC = 0xf0,
|
|
M_CAN_TXEFS = 0xf4,
|
|
M_CAN_TXEFA = 0xf8,
|
|
};
|
|
|
|
/* m_can lec values */
|
|
enum m_can_lec_type {
|
|
LEC_NO_ERROR = 0,
|
|
LEC_STUFF_ERROR,
|
|
LEC_FORM_ERROR,
|
|
LEC_ACK_ERROR,
|
|
LEC_BIT1_ERROR,
|
|
LEC_BIT0_ERROR,
|
|
LEC_CRC_ERROR,
|
|
LEC_UNUSED,
|
|
};
|
|
|
|
enum m_can_mram_cfg {
|
|
MRAM_SIDF = 0,
|
|
MRAM_XIDF,
|
|
MRAM_RXF0,
|
|
MRAM_RXF1,
|
|
MRAM_RXB,
|
|
MRAM_TXE,
|
|
MRAM_TXB,
|
|
MRAM_CFG_NUM,
|
|
};
|
|
|
|
/* Fast Bit Timing & Prescaler Register (FBTP) */
|
|
#define FBTR_FBRP_MASK 0x1f
|
|
#define FBTR_FBRP_SHIFT 16
|
|
#define FBTR_FTSEG1_SHIFT 8
|
|
#define FBTR_FTSEG1_MASK (0xf << FBTR_FTSEG1_SHIFT)
|
|
#define FBTR_FTSEG2_SHIFT 4
|
|
#define FBTR_FTSEG2_MASK (0x7 << FBTR_FTSEG2_SHIFT)
|
|
#define FBTR_FSJW_SHIFT 0
|
|
#define FBTR_FSJW_MASK 0x3
|
|
|
|
/* Test Register (TEST) */
|
|
#define TEST_LBCK BIT(4)
|
|
|
|
/* CC Control Register(CCCR) */
|
|
#define CCCR_TEST BIT(7)
|
|
#define CCCR_CMR_MASK 0x3
|
|
#define CCCR_CMR_SHIFT 10
|
|
#define CCCR_CMR_CANFD 0x1
|
|
#define CCCR_CMR_CANFD_BRS 0x2
|
|
#define CCCR_CMR_CAN 0x3
|
|
#define CCCR_CME_MASK 0x3
|
|
#define CCCR_CME_SHIFT 8
|
|
#define CCCR_CME_CAN 0
|
|
#define CCCR_CME_CANFD 0x1
|
|
#define CCCR_CME_CANFD_BRS 0x2
|
|
#define CCCR_TEST BIT(7)
|
|
#define CCCR_MON BIT(5)
|
|
#define CCCR_CCE BIT(1)
|
|
#define CCCR_INIT BIT(0)
|
|
#define CCCR_CANFD 0x10
|
|
|
|
/* Bit Timing & Prescaler Register (BTP) */
|
|
#define BTR_BRP_MASK 0x3ff
|
|
#define BTR_BRP_SHIFT 16
|
|
#define BTR_TSEG1_SHIFT 8
|
|
#define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT)
|
|
#define BTR_TSEG2_SHIFT 4
|
|
#define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT)
|
|
#define BTR_SJW_SHIFT 0
|
|
#define BTR_SJW_MASK 0xf
|
|
|
|
/* Error Counter Register(ECR) */
|
|
#define ECR_RP BIT(15)
|
|
#define ECR_REC_SHIFT 8
|
|
#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
|
|
#define ECR_TEC_SHIFT 0
|
|
#define ECR_TEC_MASK 0xff
|
|
|
|
/* Protocol Status Register(PSR) */
|
|
#define PSR_BO BIT(7)
|
|
#define PSR_EW BIT(6)
|
|
#define PSR_EP BIT(5)
|
|
#define PSR_LEC_MASK 0x7
|
|
|
|
/* Interrupt Register(IR) */
|
|
#define IR_ALL_INT 0xffffffff
|
|
#define IR_STE BIT(31)
|
|
#define IR_FOE BIT(30)
|
|
#define IR_ACKE BIT(29)
|
|
#define IR_BE BIT(28)
|
|
#define IR_CRCE BIT(27)
|
|
#define IR_WDI BIT(26)
|
|
#define IR_BO BIT(25)
|
|
#define IR_EW BIT(24)
|
|
#define IR_EP BIT(23)
|
|
#define IR_ELO BIT(22)
|
|
#define IR_BEU BIT(21)
|
|
#define IR_BEC BIT(20)
|
|
#define IR_DRX BIT(19)
|
|
#define IR_TOO BIT(18)
|
|
#define IR_MRAF BIT(17)
|
|
#define IR_TSW BIT(16)
|
|
#define IR_TEFL BIT(15)
|
|
#define IR_TEFF BIT(14)
|
|
#define IR_TEFW BIT(13)
|
|
#define IR_TEFN BIT(12)
|
|
#define IR_TFE BIT(11)
|
|
#define IR_TCF BIT(10)
|
|
#define IR_TC BIT(9)
|
|
#define IR_HPM BIT(8)
|
|
#define IR_RF1L BIT(7)
|
|
#define IR_RF1F BIT(6)
|
|
#define IR_RF1W BIT(5)
|
|
#define IR_RF1N BIT(4)
|
|
#define IR_RF0L BIT(3)
|
|
#define IR_RF0F BIT(2)
|
|
#define IR_RF0W BIT(1)
|
|
#define IR_RF0N BIT(0)
|
|
#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
|
|
#define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
|
|
#define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
|
|
IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
|
|
IR_RF1L | IR_RF0L)
|
|
#define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS)
|
|
|
|
/* Interrupt Line Select (ILS) */
|
|
#define ILS_ALL_INT0 0x0
|
|
#define ILS_ALL_INT1 0xFFFFFFFF
|
|
|
|
/* Interrupt Line Enable (ILE) */
|
|
#define ILE_EINT0 BIT(0)
|
|
#define ILE_EINT1 BIT(1)
|
|
|
|
/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
|
|
#define RXFC_FWM_OFF 24
|
|
#define RXFC_FWM_MASK 0x7f
|
|
#define RXFC_FWM_1 (1 << RXFC_FWM_OFF)
|
|
#define RXFC_FS_OFF 16
|
|
#define RXFC_FS_MASK 0x7f
|
|
|
|
/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
|
|
#define RXFS_RFL BIT(25)
|
|
#define RXFS_FF BIT(24)
|
|
#define RXFS_FPI_OFF 16
|
|
#define RXFS_FPI_MASK 0x3f0000
|
|
#define RXFS_FGI_OFF 8
|
|
#define RXFS_FGI_MASK 0x3f00
|
|
#define RXFS_FFL_MASK 0x7f
|
|
|
|
/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
|
|
#define M_CAN_RXESC_8BYTES 0x0
|
|
#define M_CAN_RXESC_64BYTES 0x777
|
|
|
|
/* Tx Buffer Configuration(TXBC) */
|
|
#define TXBC_NDTB_OFF 16
|
|
#define TXBC_NDTB_MASK 0x3f
|
|
|
|
/* Tx Buffer Element Size Configuration(TXESC) */
|
|
#define TXESC_TBDS_8BYTES 0x0
|
|
#define TXESC_TBDS_64BYTES 0x7
|
|
|
|
/* Tx Event FIFO Con.guration (TXEFC) */
|
|
#define TXEFC_EFS_OFF 16
|
|
#define TXEFC_EFS_MASK 0x3f
|
|
|
|
/* Message RAM Configuration (in bytes) */
|
|
#define SIDF_ELEMENT_SIZE 4
|
|
#define XIDF_ELEMENT_SIZE 8
|
|
#define RXF0_ELEMENT_SIZE 72
|
|
#define RXF1_ELEMENT_SIZE 72
|
|
#define RXB_ELEMENT_SIZE 16
|
|
#define TXE_ELEMENT_SIZE 8
|
|
#define TXB_ELEMENT_SIZE 72
|
|
|
|
/* Message RAM Elements */
|
|
#define M_CAN_FIFO_ID 0x0
|
|
#define M_CAN_FIFO_DLC 0x4
|
|
#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
|
|
|
|
/* Rx Buffer Element */
|
|
/* R0 */
|
|
#define RX_BUF_ESI BIT(31)
|
|
#define RX_BUF_XTD BIT(30)
|
|
#define RX_BUF_RTR BIT(29)
|
|
/* R1 */
|
|
#define RX_BUF_ANMF BIT(31)
|
|
#define RX_BUF_EDL BIT(21)
|
|
#define RX_BUF_BRS BIT(20)
|
|
|
|
/* Tx Buffer Element */
|
|
/* R0 */
|
|
#define TX_BUF_XTD BIT(30)
|
|
#define TX_BUF_RTR BIT(29)
|
|
|
|
/* address offset and element number for each FIFO/Buffer in the Message RAM */
|
|
struct mram_cfg {
|
|
u16 off;
|
|
u8 num;
|
|
};
|
|
|
|
/* m_can private data structure */
|
|
struct m_can_priv {
|
|
struct can_priv can; /* must be the first member */
|
|
struct napi_struct napi;
|
|
struct net_device *dev;
|
|
struct device *device;
|
|
struct clk *hclk;
|
|
struct clk *cclk;
|
|
void __iomem *base;
|
|
u32 irqstatus;
|
|
|
|
/* message ram configuration */
|
|
void __iomem *mram_base;
|
|
struct mram_cfg mcfg[MRAM_CFG_NUM];
|
|
};
|
|
|
|
static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
|
|
{
|
|
return readl(priv->base + reg);
|
|
}
|
|
|
|
static inline void m_can_write(const struct m_can_priv *priv,
|
|
enum m_can_reg reg, u32 val)
|
|
{
|
|
writel(val, priv->base + reg);
|
|
}
|
|
|
|
static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
|
|
u32 fgi, unsigned int offset)
|
|
{
|
|
return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
|
|
fgi * RXF0_ELEMENT_SIZE + offset);
|
|
}
|
|
|
|
static inline void m_can_fifo_write(const struct m_can_priv *priv,
|
|
u32 fpi, unsigned int offset, u32 val)
|
|
{
|
|
writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
|
|
fpi * TXB_ELEMENT_SIZE + offset);
|
|
}
|
|
|
|
static inline void m_can_config_endisable(const struct m_can_priv *priv,
|
|
bool enable)
|
|
{
|
|
u32 cccr = m_can_read(priv, M_CAN_CCCR);
|
|
u32 timeout = 10;
|
|
u32 val = 0;
|
|
|
|
if (enable) {
|
|
/* enable m_can configuration */
|
|
m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
|
|
udelay(5);
|
|
/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
|
|
m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
|
|
} else {
|
|
m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
|
|
}
|
|
|
|
/* there's a delay for module initialization */
|
|
if (enable)
|
|
val = CCCR_INIT | CCCR_CCE;
|
|
|
|
while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
|
|
if (timeout == 0) {
|
|
netdev_warn(priv->dev, "Failed to init module\n");
|
|
return;
|
|
}
|
|
timeout--;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
|
|
{
|
|
m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
|
|
}
|
|
|
|
static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
|
|
{
|
|
m_can_write(priv, M_CAN_ILE, 0x0);
|
|
}
|
|
|
|
static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
|
|
{
|
|
struct net_device_stats *stats = &dev->stats;
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
struct canfd_frame *cf;
|
|
struct sk_buff *skb;
|
|
u32 id, fgi, dlc;
|
|
int i;
|
|
|
|
/* calculate the fifo get index for where to read data */
|
|
fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
|
|
dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
|
|
if (dlc & RX_BUF_EDL)
|
|
skb = alloc_canfd_skb(dev, &cf);
|
|
else
|
|
skb = alloc_can_skb(dev, (struct can_frame **)&cf);
|
|
if (!skb) {
|
|
stats->rx_dropped++;
|
|
return;
|
|
}
|
|
|
|
if (dlc & RX_BUF_EDL)
|
|
cf->len = can_dlc2len((dlc >> 16) & 0x0F);
|
|
else
|
|
cf->len = get_can_dlc((dlc >> 16) & 0x0F);
|
|
|
|
id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
|
|
if (id & RX_BUF_XTD)
|
|
cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
|
|
else
|
|
cf->can_id = (id >> 18) & CAN_SFF_MASK;
|
|
|
|
if (id & RX_BUF_ESI) {
|
|
cf->flags |= CANFD_ESI;
|
|
netdev_dbg(dev, "ESI Error\n");
|
|
}
|
|
|
|
if (!(dlc & RX_BUF_EDL) && (id & RX_BUF_RTR)) {
|
|
cf->can_id |= CAN_RTR_FLAG;
|
|
} else {
|
|
if (dlc & RX_BUF_BRS)
|
|
cf->flags |= CANFD_BRS;
|
|
|
|
for (i = 0; i < cf->len; i += 4)
|
|
*(u32 *)(cf->data + i) =
|
|
m_can_fifo_read(priv, fgi,
|
|
M_CAN_FIFO_DATA(i / 4));
|
|
}
|
|
|
|
/* acknowledge rx fifo 0 */
|
|
m_can_write(priv, M_CAN_RXF0A, fgi);
|
|
|
|
stats->rx_packets++;
|
|
stats->rx_bytes += cf->len;
|
|
|
|
netif_receive_skb(skb);
|
|
}
|
|
|
|
static int m_can_do_rx_poll(struct net_device *dev, int quota)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
u32 pkts = 0;
|
|
u32 rxfs;
|
|
|
|
rxfs = m_can_read(priv, M_CAN_RXF0S);
|
|
if (!(rxfs & RXFS_FFL_MASK)) {
|
|
netdev_dbg(dev, "no messages in fifo0\n");
|
|
return 0;
|
|
}
|
|
|
|
while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
|
|
if (rxfs & RXFS_RFL)
|
|
netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
|
|
|
|
m_can_read_fifo(dev, rxfs);
|
|
|
|
quota--;
|
|
pkts++;
|
|
rxfs = m_can_read(priv, M_CAN_RXF0S);
|
|
}
|
|
|
|
if (pkts)
|
|
can_led_event(dev, CAN_LED_EVENT_RX);
|
|
|
|
return pkts;
|
|
}
|
|
|
|
static int m_can_handle_lost_msg(struct net_device *dev)
|
|
{
|
|
struct net_device_stats *stats = &dev->stats;
|
|
struct sk_buff *skb;
|
|
struct can_frame *frame;
|
|
|
|
netdev_err(dev, "msg lost in rxf0\n");
|
|
|
|
stats->rx_errors++;
|
|
stats->rx_over_errors++;
|
|
|
|
skb = alloc_can_err_skb(dev, &frame);
|
|
if (unlikely(!skb))
|
|
return 0;
|
|
|
|
frame->can_id |= CAN_ERR_CRTL;
|
|
frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
|
|
|
|
netif_receive_skb(skb);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int m_can_handle_lec_err(struct net_device *dev,
|
|
enum m_can_lec_type lec_type)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
struct net_device_stats *stats = &dev->stats;
|
|
struct can_frame *cf;
|
|
struct sk_buff *skb;
|
|
|
|
priv->can.can_stats.bus_error++;
|
|
stats->rx_errors++;
|
|
|
|
/* propagate the error condition to the CAN stack */
|
|
skb = alloc_can_err_skb(dev, &cf);
|
|
if (unlikely(!skb))
|
|
return 0;
|
|
|
|
/* check for 'last error code' which tells us the
|
|
* type of the last error to occur on the CAN bus
|
|
*/
|
|
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
|
|
|
|
switch (lec_type) {
|
|
case LEC_STUFF_ERROR:
|
|
netdev_dbg(dev, "stuff error\n");
|
|
cf->data[2] |= CAN_ERR_PROT_STUFF;
|
|
break;
|
|
case LEC_FORM_ERROR:
|
|
netdev_dbg(dev, "form error\n");
|
|
cf->data[2] |= CAN_ERR_PROT_FORM;
|
|
break;
|
|
case LEC_ACK_ERROR:
|
|
netdev_dbg(dev, "ack error\n");
|
|
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
|
|
break;
|
|
case LEC_BIT1_ERROR:
|
|
netdev_dbg(dev, "bit1 error\n");
|
|
cf->data[2] |= CAN_ERR_PROT_BIT1;
|
|
break;
|
|
case LEC_BIT0_ERROR:
|
|
netdev_dbg(dev, "bit0 error\n");
|
|
cf->data[2] |= CAN_ERR_PROT_BIT0;
|
|
break;
|
|
case LEC_CRC_ERROR:
|
|
netdev_dbg(dev, "CRC error\n");
|
|
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
stats->rx_packets++;
|
|
stats->rx_bytes += cf->can_dlc;
|
|
netif_receive_skb(skb);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __m_can_get_berr_counter(const struct net_device *dev,
|
|
struct can_berr_counter *bec)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
unsigned int ecr;
|
|
|
|
ecr = m_can_read(priv, M_CAN_ECR);
|
|
bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
|
|
bec->txerr = ecr & ECR_TEC_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int m_can_get_berr_counter(const struct net_device *dev,
|
|
struct can_berr_counter *bec)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
int err;
|
|
|
|
err = clk_prepare_enable(priv->hclk);
|
|
if (err)
|
|
return err;
|
|
|
|
err = clk_prepare_enable(priv->cclk);
|
|
if (err) {
|
|
clk_disable_unprepare(priv->hclk);
|
|
return err;
|
|
}
|
|
|
|
__m_can_get_berr_counter(dev, bec);
|
|
|
|
clk_disable_unprepare(priv->cclk);
|
|
clk_disable_unprepare(priv->hclk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int m_can_handle_state_change(struct net_device *dev,
|
|
enum can_state new_state)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
struct net_device_stats *stats = &dev->stats;
|
|
struct can_frame *cf;
|
|
struct sk_buff *skb;
|
|
struct can_berr_counter bec;
|
|
unsigned int ecr;
|
|
|
|
switch (new_state) {
|
|
case CAN_STATE_ERROR_ACTIVE:
|
|
/* error warning state */
|
|
priv->can.can_stats.error_warning++;
|
|
priv->can.state = CAN_STATE_ERROR_WARNING;
|
|
break;
|
|
case CAN_STATE_ERROR_PASSIVE:
|
|
/* error passive state */
|
|
priv->can.can_stats.error_passive++;
|
|
priv->can.state = CAN_STATE_ERROR_PASSIVE;
|
|
break;
|
|
case CAN_STATE_BUS_OFF:
|
|
/* bus-off state */
|
|
priv->can.state = CAN_STATE_BUS_OFF;
|
|
m_can_disable_all_interrupts(priv);
|
|
priv->can.can_stats.bus_off++;
|
|
can_bus_off(dev);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* propagate the error condition to the CAN stack */
|
|
skb = alloc_can_err_skb(dev, &cf);
|
|
if (unlikely(!skb))
|
|
return 0;
|
|
|
|
__m_can_get_berr_counter(dev, &bec);
|
|
|
|
switch (new_state) {
|
|
case CAN_STATE_ERROR_ACTIVE:
|
|
/* error warning state */
|
|
cf->can_id |= CAN_ERR_CRTL;
|
|
cf->data[1] = (bec.txerr > bec.rxerr) ?
|
|
CAN_ERR_CRTL_TX_WARNING :
|
|
CAN_ERR_CRTL_RX_WARNING;
|
|
cf->data[6] = bec.txerr;
|
|
cf->data[7] = bec.rxerr;
|
|
break;
|
|
case CAN_STATE_ERROR_PASSIVE:
|
|
/* error passive state */
|
|
cf->can_id |= CAN_ERR_CRTL;
|
|
ecr = m_can_read(priv, M_CAN_ECR);
|
|
if (ecr & ECR_RP)
|
|
cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
|
|
if (bec.txerr > 127)
|
|
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
|
|
cf->data[6] = bec.txerr;
|
|
cf->data[7] = bec.rxerr;
|
|
break;
|
|
case CAN_STATE_BUS_OFF:
|
|
/* bus-off state */
|
|
cf->can_id |= CAN_ERR_BUSOFF;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
stats->rx_packets++;
|
|
stats->rx_bytes += cf->can_dlc;
|
|
netif_receive_skb(skb);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
int work_done = 0;
|
|
|
|
if ((psr & PSR_EW) &&
|
|
(priv->can.state != CAN_STATE_ERROR_WARNING)) {
|
|
netdev_dbg(dev, "entered error warning state\n");
|
|
work_done += m_can_handle_state_change(dev,
|
|
CAN_STATE_ERROR_WARNING);
|
|
}
|
|
|
|
if ((psr & PSR_EP) &&
|
|
(priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
|
|
netdev_dbg(dev, "entered error passive state\n");
|
|
work_done += m_can_handle_state_change(dev,
|
|
CAN_STATE_ERROR_PASSIVE);
|
|
}
|
|
|
|
if ((psr & PSR_BO) &&
|
|
(priv->can.state != CAN_STATE_BUS_OFF)) {
|
|
netdev_dbg(dev, "entered error bus off state\n");
|
|
work_done += m_can_handle_state_change(dev,
|
|
CAN_STATE_BUS_OFF);
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
|
|
{
|
|
if (irqstatus & IR_WDI)
|
|
netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
|
|
if (irqstatus & IR_ELO)
|
|
netdev_err(dev, "Error Logging Overflow\n");
|
|
if (irqstatus & IR_BEU)
|
|
netdev_err(dev, "Bit Error Uncorrected\n");
|
|
if (irqstatus & IR_BEC)
|
|
netdev_err(dev, "Bit Error Corrected\n");
|
|
if (irqstatus & IR_TOO)
|
|
netdev_err(dev, "Timeout reached\n");
|
|
if (irqstatus & IR_MRAF)
|
|
netdev_err(dev, "Message RAM access failure occurred\n");
|
|
}
|
|
|
|
static inline bool is_lec_err(u32 psr)
|
|
{
|
|
psr &= LEC_UNUSED;
|
|
|
|
return psr && (psr != LEC_UNUSED);
|
|
}
|
|
|
|
static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
|
|
u32 psr)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
int work_done = 0;
|
|
|
|
if (irqstatus & IR_RF0L)
|
|
work_done += m_can_handle_lost_msg(dev);
|
|
|
|
/* handle lec errors on the bus */
|
|
if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
|
|
is_lec_err(psr))
|
|
work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
|
|
|
|
/* other unproccessed error interrupts */
|
|
m_can_handle_other_err(dev, irqstatus);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static int m_can_poll(struct napi_struct *napi, int quota)
|
|
{
|
|
struct net_device *dev = napi->dev;
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
int work_done = 0;
|
|
u32 irqstatus, psr;
|
|
|
|
irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
|
|
if (!irqstatus)
|
|
goto end;
|
|
|
|
psr = m_can_read(priv, M_CAN_PSR);
|
|
if (irqstatus & IR_ERR_STATE)
|
|
work_done += m_can_handle_state_errors(dev, psr);
|
|
|
|
if (irqstatus & IR_ERR_BUS)
|
|
work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
|
|
|
|
if (irqstatus & IR_RF0N)
|
|
work_done += m_can_do_rx_poll(dev, (quota - work_done));
|
|
|
|
if (work_done < quota) {
|
|
napi_complete(napi);
|
|
m_can_enable_all_interrupts(priv);
|
|
}
|
|
|
|
end:
|
|
return work_done;
|
|
}
|
|
|
|
static irqreturn_t m_can_isr(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = (struct net_device *)dev_id;
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
struct net_device_stats *stats = &dev->stats;
|
|
u32 ir;
|
|
|
|
ir = m_can_read(priv, M_CAN_IR);
|
|
if (!ir)
|
|
return IRQ_NONE;
|
|
|
|
/* ACK all irqs */
|
|
if (ir & IR_ALL_INT)
|
|
m_can_write(priv, M_CAN_IR, ir);
|
|
|
|
/* schedule NAPI in case of
|
|
* - rx IRQ
|
|
* - state change IRQ
|
|
* - bus error IRQ and bus error reporting
|
|
*/
|
|
if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
|
|
priv->irqstatus = ir;
|
|
m_can_disable_all_interrupts(priv);
|
|
napi_schedule(&priv->napi);
|
|
}
|
|
|
|
/* transmission complete interrupt */
|
|
if (ir & IR_TC) {
|
|
stats->tx_bytes += can_get_echo_skb(dev, 0);
|
|
stats->tx_packets++;
|
|
can_led_event(dev, CAN_LED_EVENT_TX);
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct can_bittiming_const m_can_bittiming_const = {
|
|
.name = KBUILD_MODNAME,
|
|
.tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
|
|
.tseg1_max = 64,
|
|
.tseg2_min = 1, /* Time segment 2 = phase_seg2 */
|
|
.tseg2_max = 16,
|
|
.sjw_max = 16,
|
|
.brp_min = 1,
|
|
.brp_max = 1024,
|
|
.brp_inc = 1,
|
|
};
|
|
|
|
static const struct can_bittiming_const m_can_data_bittiming_const = {
|
|
.name = KBUILD_MODNAME,
|
|
.tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
|
|
.tseg1_max = 16,
|
|
.tseg2_min = 1, /* Time segment 2 = phase_seg2 */
|
|
.tseg2_max = 8,
|
|
.sjw_max = 4,
|
|
.brp_min = 1,
|
|
.brp_max = 32,
|
|
.brp_inc = 1,
|
|
};
|
|
|
|
static int m_can_set_bittiming(struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
const struct can_bittiming *bt = &priv->can.bittiming;
|
|
const struct can_bittiming *dbt = &priv->can.data_bittiming;
|
|
u16 brp, sjw, tseg1, tseg2;
|
|
u32 reg_btp;
|
|
|
|
brp = bt->brp - 1;
|
|
sjw = bt->sjw - 1;
|
|
tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
|
|
tseg2 = bt->phase_seg2 - 1;
|
|
reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
|
|
(tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
|
|
m_can_write(priv, M_CAN_BTP, reg_btp);
|
|
|
|
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
|
|
brp = dbt->brp - 1;
|
|
sjw = dbt->sjw - 1;
|
|
tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
|
|
tseg2 = dbt->phase_seg2 - 1;
|
|
reg_btp = (brp << FBTR_FBRP_SHIFT) | (sjw << FBTR_FSJW_SHIFT) |
|
|
(tseg1 << FBTR_FTSEG1_SHIFT) |
|
|
(tseg2 << FBTR_FTSEG2_SHIFT);
|
|
m_can_write(priv, M_CAN_FBTP, reg_btp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Configure M_CAN chip:
|
|
* - set rx buffer/fifo element size
|
|
* - configure rx fifo
|
|
* - accept non-matching frame into fifo 0
|
|
* - configure tx buffer
|
|
* - configure mode
|
|
* - setup bittiming
|
|
*/
|
|
static void m_can_chip_config(struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
u32 cccr, test;
|
|
|
|
m_can_config_endisable(priv, true);
|
|
|
|
/* RX Buffer/FIFO Element Size 64 bytes data field */
|
|
m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
|
|
|
|
/* Accept Non-matching Frames Into FIFO 0 */
|
|
m_can_write(priv, M_CAN_GFC, 0x0);
|
|
|
|
/* only support one Tx Buffer currently */
|
|
m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
|
|
priv->mcfg[MRAM_TXB].off);
|
|
|
|
/* support 64 bytes payload */
|
|
m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
|
|
|
|
m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
|
|
priv->mcfg[MRAM_TXE].off);
|
|
|
|
/* rx fifo configuration, blocking mode, fifo size 1 */
|
|
m_can_write(priv, M_CAN_RXF0C,
|
|
(priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
|
|
RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
|
|
|
|
m_can_write(priv, M_CAN_RXF1C,
|
|
(priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
|
|
RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
|
|
|
|
cccr = m_can_read(priv, M_CAN_CCCR);
|
|
cccr &= ~(CCCR_TEST | CCCR_MON | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
|
|
(CCCR_CME_MASK << CCCR_CME_SHIFT));
|
|
test = m_can_read(priv, M_CAN_TEST);
|
|
test &= ~TEST_LBCK;
|
|
|
|
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
|
|
cccr |= CCCR_MON;
|
|
|
|
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
|
|
cccr |= CCCR_TEST;
|
|
test |= TEST_LBCK;
|
|
}
|
|
|
|
if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
|
|
cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
|
|
|
|
m_can_write(priv, M_CAN_CCCR, cccr);
|
|
m_can_write(priv, M_CAN_TEST, test);
|
|
|
|
/* enable interrupts */
|
|
m_can_write(priv, M_CAN_IR, IR_ALL_INT);
|
|
if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
|
|
m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
|
|
else
|
|
m_can_write(priv, M_CAN_IE, IR_ALL_INT);
|
|
|
|
/* route all interrupts to INT0 */
|
|
m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
|
|
|
|
/* set bittiming params */
|
|
m_can_set_bittiming(dev);
|
|
|
|
m_can_config_endisable(priv, false);
|
|
}
|
|
|
|
static void m_can_start(struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
|
|
/* basic m_can configuration */
|
|
m_can_chip_config(dev);
|
|
|
|
priv->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
|
|
m_can_enable_all_interrupts(priv);
|
|
}
|
|
|
|
static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case CAN_MODE_START:
|
|
m_can_start(dev);
|
|
netif_wake_queue(dev);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_m_can_dev(struct net_device *dev)
|
|
{
|
|
free_candev(dev);
|
|
}
|
|
|
|
static struct net_device *alloc_m_can_dev(void)
|
|
{
|
|
struct net_device *dev;
|
|
struct m_can_priv *priv;
|
|
|
|
dev = alloc_candev(sizeof(*priv), 1);
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
priv = netdev_priv(dev);
|
|
netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
|
|
|
|
priv->dev = dev;
|
|
priv->can.bittiming_const = &m_can_bittiming_const;
|
|
priv->can.data_bittiming_const = &m_can_data_bittiming_const;
|
|
priv->can.do_set_mode = m_can_set_mode;
|
|
priv->can.do_get_berr_counter = m_can_get_berr_counter;
|
|
|
|
/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.1 */
|
|
can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
|
|
|
|
/* CAN_CTRLMODE_FD_NON_ISO can not be changed with M_CAN IP v3.0.1 */
|
|
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
|
|
CAN_CTRLMODE_LISTENONLY |
|
|
CAN_CTRLMODE_BERR_REPORTING |
|
|
CAN_CTRLMODE_FD;
|
|
|
|
return dev;
|
|
}
|
|
|
|
static int m_can_open(struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
int err;
|
|
|
|
err = clk_prepare_enable(priv->hclk);
|
|
if (err)
|
|
return err;
|
|
|
|
err = clk_prepare_enable(priv->cclk);
|
|
if (err)
|
|
goto exit_disable_hclk;
|
|
|
|
/* open the can device */
|
|
err = open_candev(dev);
|
|
if (err) {
|
|
netdev_err(dev, "failed to open can device\n");
|
|
goto exit_disable_cclk;
|
|
}
|
|
|
|
/* register interrupt handler */
|
|
err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
|
|
dev);
|
|
if (err < 0) {
|
|
netdev_err(dev, "failed to request interrupt\n");
|
|
goto exit_irq_fail;
|
|
}
|
|
|
|
/* start the m_can controller */
|
|
m_can_start(dev);
|
|
|
|
can_led_event(dev, CAN_LED_EVENT_OPEN);
|
|
napi_enable(&priv->napi);
|
|
netif_start_queue(dev);
|
|
|
|
return 0;
|
|
|
|
exit_irq_fail:
|
|
close_candev(dev);
|
|
exit_disable_cclk:
|
|
clk_disable_unprepare(priv->cclk);
|
|
exit_disable_hclk:
|
|
clk_disable_unprepare(priv->hclk);
|
|
return err;
|
|
}
|
|
|
|
static void m_can_stop(struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
|
|
/* disable all interrupts */
|
|
m_can_disable_all_interrupts(priv);
|
|
|
|
clk_disable_unprepare(priv->hclk);
|
|
clk_disable_unprepare(priv->cclk);
|
|
|
|
/* set the state as STOPPED */
|
|
priv->can.state = CAN_STATE_STOPPED;
|
|
}
|
|
|
|
static int m_can_close(struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
|
|
netif_stop_queue(dev);
|
|
napi_disable(&priv->napi);
|
|
m_can_stop(dev);
|
|
free_irq(dev->irq, dev);
|
|
close_candev(dev);
|
|
can_led_event(dev, CAN_LED_EVENT_STOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
|
|
struct net_device *dev)
|
|
{
|
|
struct m_can_priv *priv = netdev_priv(dev);
|
|
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
|
|
u32 id, cccr;
|
|
int i;
|
|
|
|
if (can_dropped_invalid_skb(dev, skb))
|
|
return NETDEV_TX_OK;
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
if (cf->can_id & CAN_EFF_FLAG) {
|
|
id = cf->can_id & CAN_EFF_MASK;
|
|
id |= TX_BUF_XTD;
|
|
} else {
|
|
id = ((cf->can_id & CAN_SFF_MASK) << 18);
|
|
}
|
|
|
|
if (cf->can_id & CAN_RTR_FLAG)
|
|
id |= TX_BUF_RTR;
|
|
|
|
/* message ram configuration */
|
|
m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
|
|
m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16);
|
|
|
|
for (i = 0; i < cf->len; i += 4)
|
|
m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(i / 4),
|
|
*(u32 *)(cf->data + i));
|
|
|
|
can_put_echo_skb(skb, dev, 0);
|
|
|
|
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
|
|
cccr = m_can_read(priv, M_CAN_CCCR);
|
|
cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
|
|
if (can_is_canfd_skb(skb)) {
|
|
if (cf->flags & CANFD_BRS)
|
|
cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT;
|
|
else
|
|
cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT;
|
|
} else {
|
|
cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
|
|
}
|
|
m_can_write(priv, M_CAN_CCCR, cccr);
|
|
}
|
|
|
|
/* enable first TX buffer to start transfer */
|
|
m_can_write(priv, M_CAN_TXBTIE, 0x1);
|
|
m_can_write(priv, M_CAN_TXBAR, 0x1);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static const struct net_device_ops m_can_netdev_ops = {
|
|
.ndo_open = m_can_open,
|
|
.ndo_stop = m_can_close,
|
|
.ndo_start_xmit = m_can_start_xmit,
|
|
.ndo_change_mtu = can_change_mtu,
|
|
};
|
|
|
|
static int register_m_can_dev(struct net_device *dev)
|
|
{
|
|
dev->flags |= IFF_ECHO; /* we support local echo */
|
|
dev->netdev_ops = &m_can_netdev_ops;
|
|
|
|
return register_candev(dev);
|
|
}
|
|
|
|
static int m_can_of_parse_mram(struct platform_device *pdev,
|
|
struct m_can_priv *priv)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct resource *res;
|
|
void __iomem *addr;
|
|
u32 out_val[MRAM_CFG_LEN];
|
|
int i, start, end, ret;
|
|
|
|
/* message ram could be shared */
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
|
|
if (!res)
|
|
return -ENODEV;
|
|
|
|
addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
|
|
if (!addr)
|
|
return -ENOMEM;
|
|
|
|
/* get message ram configuration */
|
|
ret = of_property_read_u32_array(np, "bosch,mram-cfg",
|
|
out_val, sizeof(out_val) / 4);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "can not get message ram configuration\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv->mram_base = addr;
|
|
priv->mcfg[MRAM_SIDF].off = out_val[0];
|
|
priv->mcfg[MRAM_SIDF].num = out_val[1];
|
|
priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
|
|
priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
|
|
priv->mcfg[MRAM_XIDF].num = out_val[2];
|
|
priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
|
|
priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
|
|
priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
|
|
priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
|
|
priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
|
|
priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
|
|
priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
|
|
priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
|
|
priv->mcfg[MRAM_RXB].num = out_val[5];
|
|
priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
|
|
priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
|
|
priv->mcfg[MRAM_TXE].num = out_val[6];
|
|
priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
|
|
priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
|
|
priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
|
|
|
|
dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
|
|
priv->mram_base,
|
|
priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
|
|
priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
|
|
priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
|
|
priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
|
|
priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
|
|
priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
|
|
priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
|
|
|
|
/* initialize the entire Message RAM in use to avoid possible
|
|
* ECC/parity checksum errors when reading an uninitialized buffer
|
|
*/
|
|
start = priv->mcfg[MRAM_SIDF].off;
|
|
end = priv->mcfg[MRAM_TXB].off +
|
|
priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
|
|
for (i = start; i < end; i += 4)
|
|
writel(0x0, priv->mram_base + i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int m_can_plat_probe(struct platform_device *pdev)
|
|
{
|
|
struct net_device *dev;
|
|
struct m_can_priv *priv;
|
|
struct resource *res;
|
|
void __iomem *addr;
|
|
struct clk *hclk, *cclk;
|
|
int irq, ret;
|
|
|
|
hclk = devm_clk_get(&pdev->dev, "hclk");
|
|
cclk = devm_clk_get(&pdev->dev, "cclk");
|
|
if (IS_ERR(hclk) || IS_ERR(cclk)) {
|
|
dev_err(&pdev->dev, "no clock find\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
|
|
addr = devm_ioremap_resource(&pdev->dev, res);
|
|
irq = platform_get_irq_byname(pdev, "int0");
|
|
if (IS_ERR(addr) || irq < 0)
|
|
return -EINVAL;
|
|
|
|
/* allocate the m_can device */
|
|
dev = alloc_m_can_dev();
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
priv = netdev_priv(dev);
|
|
dev->irq = irq;
|
|
priv->base = addr;
|
|
priv->device = &pdev->dev;
|
|
priv->hclk = hclk;
|
|
priv->cclk = cclk;
|
|
priv->can.clock.freq = clk_get_rate(cclk);
|
|
|
|
ret = m_can_of_parse_mram(pdev, priv);
|
|
if (ret)
|
|
goto failed_free_dev;
|
|
|
|
platform_set_drvdata(pdev, dev);
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
ret = register_m_can_dev(dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
|
|
KBUILD_MODNAME, ret);
|
|
goto failed_free_dev;
|
|
}
|
|
|
|
devm_can_led_init(dev);
|
|
|
|
dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
|
|
KBUILD_MODNAME, priv->base, dev->irq);
|
|
|
|
return 0;
|
|
|
|
failed_free_dev:
|
|
free_m_can_dev(dev);
|
|
return ret;
|
|
}
|
|
|
|
static __maybe_unused int m_can_suspend(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct m_can_priv *priv = netdev_priv(ndev);
|
|
|
|
if (netif_running(ndev)) {
|
|
netif_stop_queue(ndev);
|
|
netif_device_detach(ndev);
|
|
}
|
|
|
|
/* TODO: enter low power */
|
|
|
|
priv->can.state = CAN_STATE_SLEEPING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __maybe_unused int m_can_resume(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct m_can_priv *priv = netdev_priv(ndev);
|
|
|
|
/* TODO: exit low power */
|
|
|
|
priv->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
|
|
if (netif_running(ndev)) {
|
|
netif_device_attach(ndev);
|
|
netif_start_queue(ndev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void unregister_m_can_dev(struct net_device *dev)
|
|
{
|
|
unregister_candev(dev);
|
|
}
|
|
|
|
static int m_can_plat_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *dev = platform_get_drvdata(pdev);
|
|
|
|
unregister_m_can_dev(dev);
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
free_m_can_dev(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops m_can_pmops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
|
|
};
|
|
|
|
static const struct of_device_id m_can_of_table[] = {
|
|
{ .compatible = "bosch,m_can", .data = NULL },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, m_can_of_table);
|
|
|
|
static struct platform_driver m_can_plat_driver = {
|
|
.driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.of_match_table = m_can_of_table,
|
|
.pm = &m_can_pmops,
|
|
},
|
|
.probe = m_can_plat_probe,
|
|
.remove = m_can_plat_remove,
|
|
};
|
|
|
|
module_platform_driver(m_can_plat_driver);
|
|
|
|
MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
|