linux_dsm_epyc7002/fs/jffs2/build.c
Artem B. Bityuckiy b62205986a [JFFS2] Init locks early during mount
In case of a mount error locks might be uninitialized but
accessed by the resulting call to jffs2_kill_sb().

Signed-off-by: Artem B. Bityuckiy <dedekind@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2005-07-13 00:02:33 +02:00

368 lines
11 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001-2003 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: build.c,v 1.71 2005/07/12 16:37:08 dedekind Exp $
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mtd/mtd.h>
#include "nodelist.h"
static void jffs2_build_remove_unlinked_inode(struct jffs2_sb_info *, struct jffs2_inode_cache *, struct jffs2_full_dirent **);
static inline struct jffs2_inode_cache *
first_inode_chain(int *i, struct jffs2_sb_info *c)
{
for (; *i < INOCACHE_HASHSIZE; (*i)++) {
if (c->inocache_list[*i])
return c->inocache_list[*i];
}
return NULL;
}
static inline struct jffs2_inode_cache *
next_inode(int *i, struct jffs2_inode_cache *ic, struct jffs2_sb_info *c)
{
/* More in this chain? */
if (ic->next)
return ic->next;
(*i)++;
return first_inode_chain(i, c);
}
#define for_each_inode(i, c, ic) \
for (i = 0, ic = first_inode_chain(&i, (c)); \
ic; \
ic = next_inode(&i, ic, (c)))
static inline void jffs2_build_inode_pass1(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
{
struct jffs2_full_dirent *fd;
D1(printk(KERN_DEBUG "jffs2_build_inode building directory inode #%u\n", ic->ino));
/* For each child, increase nlink */
for(fd = ic->scan_dents; fd; fd = fd->next) {
struct jffs2_inode_cache *child_ic;
if (!fd->ino)
continue;
/* XXX: Can get high latency here with huge directories */
child_ic = jffs2_get_ino_cache(c, fd->ino);
if (!child_ic) {
printk(KERN_NOTICE "Eep. Child \"%s\" (ino #%u) of dir ino #%u doesn't exist!\n",
fd->name, fd->ino, ic->ino);
jffs2_mark_node_obsolete(c, fd->raw);
continue;
}
if (child_ic->nlink++ && fd->type == DT_DIR) {
printk(KERN_NOTICE "Child dir \"%s\" (ino #%u) of dir ino #%u appears to be a hard link\n", fd->name, fd->ino, ic->ino);
if (fd->ino == 1 && ic->ino == 1) {
printk(KERN_NOTICE "This is mostly harmless, and probably caused by creating a JFFS2 image\n");
printk(KERN_NOTICE "using a buggy version of mkfs.jffs2. Use at least v1.17.\n");
}
/* What do we do about it? */
}
D1(printk(KERN_DEBUG "Increased nlink for child \"%s\" (ino #%u)\n", fd->name, fd->ino));
/* Can't free them. We might need them in pass 2 */
}
}
/* Scan plan:
- Scan physical nodes. Build map of inodes/dirents. Allocate inocaches as we go
- Scan directory tree from top down, setting nlink in inocaches
- Scan inocaches for inodes with nlink==0
*/
static int jffs2_build_filesystem(struct jffs2_sb_info *c)
{
int ret;
int i;
struct jffs2_inode_cache *ic;
struct jffs2_full_dirent *fd;
struct jffs2_full_dirent *dead_fds = NULL;
/* First, scan the medium and build all the inode caches with
lists of physical nodes */
c->flags |= JFFS2_SB_FLAG_SCANNING;
ret = jffs2_scan_medium(c);
c->flags &= ~JFFS2_SB_FLAG_SCANNING;
if (ret)
goto exit;
D1(printk(KERN_DEBUG "Scanned flash completely\n"));
D2(jffs2_dump_block_lists(c));
c->flags |= JFFS2_SB_FLAG_BUILDING;
/* Now scan the directory tree, increasing nlink according to every dirent found. */
for_each_inode(i, c, ic) {
D1(printk(KERN_DEBUG "Pass 1: ino #%u\n", ic->ino));
D1(BUG_ON(ic->ino > c->highest_ino));
if (ic->scan_dents) {
jffs2_build_inode_pass1(c, ic);
cond_resched();
}
}
D1(printk(KERN_DEBUG "Pass 1 complete\n"));
/* Next, scan for inodes with nlink == 0 and remove them. If
they were directories, then decrement the nlink of their
children too, and repeat the scan. As that's going to be
a fairly uncommon occurrence, it's not so evil to do it this
way. Recursion bad. */
D1(printk(KERN_DEBUG "Pass 2 starting\n"));
for_each_inode(i, c, ic) {
D1(printk(KERN_DEBUG "Pass 2: ino #%u, nlink %d, ic %p, nodes %p\n", ic->ino, ic->nlink, ic, ic->nodes));
if (ic->nlink)
continue;
jffs2_build_remove_unlinked_inode(c, ic, &dead_fds);
cond_resched();
}
D1(printk(KERN_DEBUG "Pass 2a starting\n"));
while (dead_fds) {
fd = dead_fds;
dead_fds = fd->next;
ic = jffs2_get_ino_cache(c, fd->ino);
D1(printk(KERN_DEBUG "Removing dead_fd ino #%u (\"%s\"), ic at %p\n", fd->ino, fd->name, ic));
if (ic)
jffs2_build_remove_unlinked_inode(c, ic, &dead_fds);
jffs2_free_full_dirent(fd);
}
D1(printk(KERN_DEBUG "Pass 2 complete\n"));
/* Finally, we can scan again and free the dirent structs */
for_each_inode(i, c, ic) {
D1(printk(KERN_DEBUG "Pass 3: ino #%u, ic %p, nodes %p\n", ic->ino, ic, ic->nodes));
while(ic->scan_dents) {
fd = ic->scan_dents;
ic->scan_dents = fd->next;
jffs2_free_full_dirent(fd);
}
ic->scan_dents = NULL;
cond_resched();
}
c->flags &= ~JFFS2_SB_FLAG_BUILDING;
D1(printk(KERN_DEBUG "Pass 3 complete\n"));
D2(jffs2_dump_block_lists(c));
/* Rotate the lists by some number to ensure wear levelling */
jffs2_rotate_lists(c);
ret = 0;
exit:
if (ret) {
for_each_inode(i, c, ic) {
while(ic->scan_dents) {
fd = ic->scan_dents;
ic->scan_dents = fd->next;
jffs2_free_full_dirent(fd);
}
}
}
return ret;
}
static void jffs2_build_remove_unlinked_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, struct jffs2_full_dirent **dead_fds)
{
struct jffs2_raw_node_ref *raw;
struct jffs2_full_dirent *fd;
D1(printk(KERN_DEBUG "JFFS2: Removing ino #%u with nlink == zero.\n", ic->ino));
raw = ic->nodes;
while (raw != (void *)ic) {
struct jffs2_raw_node_ref *next = raw->next_in_ino;
D1(printk(KERN_DEBUG "obsoleting node at 0x%08x\n", ref_offset(raw)));
jffs2_mark_node_obsolete(c, raw);
raw = next;
}
if (ic->scan_dents) {
int whinged = 0;
D1(printk(KERN_DEBUG "Inode #%u was a directory which may have children...\n", ic->ino));
while(ic->scan_dents) {
struct jffs2_inode_cache *child_ic;
fd = ic->scan_dents;
ic->scan_dents = fd->next;
if (!fd->ino) {
/* It's a deletion dirent. Ignore it */
D1(printk(KERN_DEBUG "Child \"%s\" is a deletion dirent, skipping...\n", fd->name));
jffs2_free_full_dirent(fd);
continue;
}
if (!whinged) {
whinged = 1;
printk(KERN_NOTICE "Inode #%u was a directory with children - removing those too...\n", ic->ino);
}
D1(printk(KERN_DEBUG "Removing child \"%s\", ino #%u\n",
fd->name, fd->ino));
child_ic = jffs2_get_ino_cache(c, fd->ino);
if (!child_ic) {
printk(KERN_NOTICE "Cannot remove child \"%s\", ino #%u, because it doesn't exist\n", fd->name, fd->ino);
jffs2_free_full_dirent(fd);
continue;
}
/* Reduce nlink of the child. If it's now zero, stick it on the
dead_fds list to be cleaned up later. Else just free the fd */
child_ic->nlink--;
if (!child_ic->nlink) {
D1(printk(KERN_DEBUG "Inode #%u (\"%s\") has now got zero nlink. Adding to dead_fds list.\n",
fd->ino, fd->name));
fd->next = *dead_fds;
*dead_fds = fd;
} else {
D1(printk(KERN_DEBUG "Inode #%u (\"%s\") has now got nlink %d. Ignoring.\n",
fd->ino, fd->name, child_ic->nlink));
jffs2_free_full_dirent(fd);
}
}
}
/*
We don't delete the inocache from the hash list and free it yet.
The erase code will do that, when all the nodes are completely gone.
*/
}
static void jffs2_calc_trigger_levels(struct jffs2_sb_info *c)
{
uint32_t size;
/* Deletion should almost _always_ be allowed. We're fairly
buggered once we stop allowing people to delete stuff
because there's not enough free space... */
c->resv_blocks_deletion = 2;
/* Be conservative about how much space we need before we allow writes.
On top of that which is required for deletia, require an extra 2%
of the medium to be available, for overhead caused by nodes being
split across blocks, etc. */
size = c->flash_size / 50; /* 2% of flash size */
size += c->nr_blocks * 100; /* And 100 bytes per eraseblock */
size += c->sector_size - 1; /* ... and round up */
c->resv_blocks_write = c->resv_blocks_deletion + (size / c->sector_size);
/* When do we let the GC thread run in the background */
c->resv_blocks_gctrigger = c->resv_blocks_write + 1;
/* When do we allow garbage collection to merge nodes to make
long-term progress at the expense of short-term space exhaustion? */
c->resv_blocks_gcmerge = c->resv_blocks_deletion + 1;
/* When do we allow garbage collection to eat from bad blocks rather
than actually making progress? */
c->resv_blocks_gcbad = 0;//c->resv_blocks_deletion + 2;
/* If there's less than this amount of dirty space, don't bother
trying to GC to make more space. It'll be a fruitless task */
c->nospc_dirty_size = c->sector_size + (c->flash_size / 100);
D1(printk(KERN_DEBUG "JFFS2 trigger levels (size %d KiB, block size %d KiB, %d blocks)\n",
c->flash_size / 1024, c->sector_size / 1024, c->nr_blocks));
D1(printk(KERN_DEBUG "Blocks required to allow deletion: %d (%d KiB)\n",
c->resv_blocks_deletion, c->resv_blocks_deletion*c->sector_size/1024));
D1(printk(KERN_DEBUG "Blocks required to allow writes: %d (%d KiB)\n",
c->resv_blocks_write, c->resv_blocks_write*c->sector_size/1024));
D1(printk(KERN_DEBUG "Blocks required to quiesce GC thread: %d (%d KiB)\n",
c->resv_blocks_gctrigger, c->resv_blocks_gctrigger*c->sector_size/1024));
D1(printk(KERN_DEBUG "Blocks required to allow GC merges: %d (%d KiB)\n",
c->resv_blocks_gcmerge, c->resv_blocks_gcmerge*c->sector_size/1024));
D1(printk(KERN_DEBUG "Blocks required to GC bad blocks: %d (%d KiB)\n",
c->resv_blocks_gcbad, c->resv_blocks_gcbad*c->sector_size/1024));
D1(printk(KERN_DEBUG "Amount of dirty space required to GC: %d bytes\n",
c->nospc_dirty_size));
}
int jffs2_do_mount_fs(struct jffs2_sb_info *c)
{
int i;
c->free_size = c->flash_size;
c->nr_blocks = c->flash_size / c->sector_size;
if (c->mtd->flags & MTD_NO_VIRTBLOCKS)
c->blocks = vmalloc(sizeof(struct jffs2_eraseblock) * c->nr_blocks);
else
c->blocks = kmalloc(sizeof(struct jffs2_eraseblock) * c->nr_blocks, GFP_KERNEL);
if (!c->blocks)
return -ENOMEM;
for (i=0; i<c->nr_blocks; i++) {
INIT_LIST_HEAD(&c->blocks[i].list);
c->blocks[i].offset = i * c->sector_size;
c->blocks[i].free_size = c->sector_size;
c->blocks[i].dirty_size = 0;
c->blocks[i].wasted_size = 0;
c->blocks[i].unchecked_size = 0;
c->blocks[i].used_size = 0;
c->blocks[i].first_node = NULL;
c->blocks[i].last_node = NULL;
c->blocks[i].bad_count = 0;
}
INIT_LIST_HEAD(&c->clean_list);
INIT_LIST_HEAD(&c->very_dirty_list);
INIT_LIST_HEAD(&c->dirty_list);
INIT_LIST_HEAD(&c->erasable_list);
INIT_LIST_HEAD(&c->erasing_list);
INIT_LIST_HEAD(&c->erase_pending_list);
INIT_LIST_HEAD(&c->erasable_pending_wbuf_list);
INIT_LIST_HEAD(&c->erase_complete_list);
INIT_LIST_HEAD(&c->free_list);
INIT_LIST_HEAD(&c->bad_list);
INIT_LIST_HEAD(&c->bad_used_list);
c->highest_ino = 1;
if (jffs2_build_filesystem(c)) {
D1(printk(KERN_DEBUG "build_fs failed\n"));
jffs2_free_ino_caches(c);
jffs2_free_raw_node_refs(c);
if (c->mtd->flags & MTD_NO_VIRTBLOCKS) {
vfree(c->blocks);
} else {
kfree(c->blocks);
}
return -EIO;
}
jffs2_calc_trigger_levels(c);
return 0;
}