linux_dsm_epyc7002/drivers/ide/pci/pdc202xx_new.c
Bartlomiej Zolnierkiewicz 01cc643ae3 pdc202xx_new: add missing ->dma_base check
If ->dma_base is not set (== PCI BAR4 cannot be reserved) then DMA hooks
shouldn't be initialized or bad things will happen.

Also this host driver requires valid PCI BAR4 for normal operation so
check it in ->init_chipset and fail initialization if not set.

Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
2007-08-20 22:42:56 +02:00

680 lines
17 KiB
C

/*
* Promise TX2/TX4/TX2000/133 IDE driver
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Split from:
* linux/drivers/ide/pdc202xx.c Version 0.35 Mar. 30, 2002
* Copyright (C) 1998-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2005-2006 MontaVista Software, Inc.
* Portions Copyright (C) 1999 Promise Technology, Inc.
* Author: Frank Tiernan (frankt@promise.com)
* Released under terms of General Public License
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ide.h>
#include <asm/io.h>
#include <asm/irq.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#endif
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt, args...) printk("%s: " fmt, __FUNCTION__, ## args)
#else
#define DBG(fmt, args...)
#endif
static const char *pdc_quirk_drives[] = {
"QUANTUM FIREBALLlct08 08",
"QUANTUM FIREBALLP KA6.4",
"QUANTUM FIREBALLP KA9.1",
"QUANTUM FIREBALLP LM20.4",
"QUANTUM FIREBALLP KX13.6",
"QUANTUM FIREBALLP KX20.5",
"QUANTUM FIREBALLP KX27.3",
"QUANTUM FIREBALLP LM20.5",
NULL
};
static u8 max_dma_rate(struct pci_dev *pdev)
{
u8 mode;
switch(pdev->device) {
case PCI_DEVICE_ID_PROMISE_20277:
case PCI_DEVICE_ID_PROMISE_20276:
case PCI_DEVICE_ID_PROMISE_20275:
case PCI_DEVICE_ID_PROMISE_20271:
case PCI_DEVICE_ID_PROMISE_20269:
mode = 4;
break;
case PCI_DEVICE_ID_PROMISE_20270:
case PCI_DEVICE_ID_PROMISE_20268:
mode = 3;
break;
default:
return 0;
}
return mode;
}
/**
* get_indexed_reg - Get indexed register
* @hwif: for the port address
* @index: index of the indexed register
*/
static u8 get_indexed_reg(ide_hwif_t *hwif, u8 index)
{
u8 value;
outb(index, hwif->dma_vendor1);
value = inb(hwif->dma_vendor3);
DBG("index[%02X] value[%02X]\n", index, value);
return value;
}
/**
* set_indexed_reg - Set indexed register
* @hwif: for the port address
* @index: index of the indexed register
*/
static void set_indexed_reg(ide_hwif_t *hwif, u8 index, u8 value)
{
outb(index, hwif->dma_vendor1);
outb(value, hwif->dma_vendor3);
DBG("index[%02X] value[%02X]\n", index, value);
}
/*
* ATA Timing Tables based on 133 MHz PLL output clock.
*
* If the PLL outputs 100 MHz clock, the ASIC hardware will set
* the timing registers automatically when "set features" command is
* issued to the device. However, if the PLL output clock is 133 MHz,
* the following tables must be used.
*/
static struct pio_timing {
u8 reg0c, reg0d, reg13;
} pio_timings [] = {
{ 0xfb, 0x2b, 0xac }, /* PIO mode 0, IORDY off, Prefetch off */
{ 0x46, 0x29, 0xa4 }, /* PIO mode 1, IORDY off, Prefetch off */
{ 0x23, 0x26, 0x64 }, /* PIO mode 2, IORDY off, Prefetch off */
{ 0x27, 0x0d, 0x35 }, /* PIO mode 3, IORDY on, Prefetch off */
{ 0x23, 0x09, 0x25 }, /* PIO mode 4, IORDY on, Prefetch off */
};
static struct mwdma_timing {
u8 reg0e, reg0f;
} mwdma_timings [] = {
{ 0xdf, 0x5f }, /* MWDMA mode 0 */
{ 0x6b, 0x27 }, /* MWDMA mode 1 */
{ 0x69, 0x25 }, /* MWDMA mode 2 */
};
static struct udma_timing {
u8 reg10, reg11, reg12;
} udma_timings [] = {
{ 0x4a, 0x0f, 0xd5 }, /* UDMA mode 0 */
{ 0x3a, 0x0a, 0xd0 }, /* UDMA mode 1 */
{ 0x2a, 0x07, 0xcd }, /* UDMA mode 2 */
{ 0x1a, 0x05, 0xcd }, /* UDMA mode 3 */
{ 0x1a, 0x03, 0xcd }, /* UDMA mode 4 */
{ 0x1a, 0x02, 0xcb }, /* UDMA mode 5 */
{ 0x1a, 0x01, 0xcb }, /* UDMA mode 6 */
};
static int pdcnew_tune_chipset(ide_drive_t *drive, u8 speed)
{
ide_hwif_t *hwif = HWIF(drive);
u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
int err;
speed = ide_rate_filter(drive, speed);
/*
* Issue SETFEATURES_XFER to the drive first. PDC202xx hardware will
* automatically set the timing registers based on 100 MHz PLL output.
*/
err = ide_config_drive_speed(drive, speed);
/*
* As we set up the PLL to output 133 MHz for UltraDMA/133 capable
* chips, we must override the default register settings...
*/
if (max_dma_rate(hwif->pci_dev) == 4) {
u8 mode = speed & 0x07;
switch (speed) {
case XFER_UDMA_6:
case XFER_UDMA_5:
case XFER_UDMA_4:
case XFER_UDMA_3:
case XFER_UDMA_2:
case XFER_UDMA_1:
case XFER_UDMA_0:
set_indexed_reg(hwif, 0x10 + adj,
udma_timings[mode].reg10);
set_indexed_reg(hwif, 0x11 + adj,
udma_timings[mode].reg11);
set_indexed_reg(hwif, 0x12 + adj,
udma_timings[mode].reg12);
break;
case XFER_MW_DMA_2:
case XFER_MW_DMA_1:
case XFER_MW_DMA_0:
set_indexed_reg(hwif, 0x0e + adj,
mwdma_timings[mode].reg0e);
set_indexed_reg(hwif, 0x0f + adj,
mwdma_timings[mode].reg0f);
break;
case XFER_PIO_4:
case XFER_PIO_3:
case XFER_PIO_2:
case XFER_PIO_1:
case XFER_PIO_0:
set_indexed_reg(hwif, 0x0c + adj,
pio_timings[mode].reg0c);
set_indexed_reg(hwif, 0x0d + adj,
pio_timings[mode].reg0d);
set_indexed_reg(hwif, 0x13 + adj,
pio_timings[mode].reg13);
break;
default:
printk(KERN_ERR "pdc202xx_new: "
"Unknown speed %d ignored\n", speed);
}
} else if (speed == XFER_UDMA_2) {
/* Set tHOLD bit to 0 if using UDMA mode 2 */
u8 tmp = get_indexed_reg(hwif, 0x10 + adj);
set_indexed_reg(hwif, 0x10 + adj, tmp & 0x7f);
}
return err;
}
static void pdcnew_tune_drive(ide_drive_t *drive, u8 pio)
{
pio = ide_get_best_pio_mode(drive, pio, 4);
(void)pdcnew_tune_chipset(drive, XFER_PIO_0 + pio);
}
static u8 pdcnew_cable_detect(ide_hwif_t *hwif)
{
if (get_indexed_reg(hwif, 0x0b) & 0x04)
return ATA_CBL_PATA40;
else
return ATA_CBL_PATA80;
}
static int pdcnew_config_drive_xfer_rate(ide_drive_t *drive)
{
drive->init_speed = 0;
if (ide_tune_dma(drive))
return 0;
if (ide_use_fast_pio(drive))
pdcnew_tune_drive(drive, 255);
return -1;
}
static int pdcnew_quirkproc(ide_drive_t *drive)
{
const char **list, *model = drive->id->model;
for (list = pdc_quirk_drives; *list != NULL; list++)
if (strstr(model, *list) != NULL)
return 2;
return 0;
}
static void pdcnew_reset(ide_drive_t *drive)
{
/*
* Deleted this because it is redundant from the caller.
*/
printk(KERN_WARNING "pdc202xx_new: %s channel reset.\n",
HWIF(drive)->channel ? "Secondary" : "Primary");
}
/**
* read_counter - Read the byte count registers
* @dma_base: for the port address
*/
static long __devinit read_counter(u32 dma_base)
{
u32 pri_dma_base = dma_base, sec_dma_base = dma_base + 0x08;
u8 cnt0, cnt1, cnt2, cnt3;
long count = 0, last;
int retry = 3;
do {
last = count;
/* Read the current count */
outb(0x20, pri_dma_base + 0x01);
cnt0 = inb(pri_dma_base + 0x03);
outb(0x21, pri_dma_base + 0x01);
cnt1 = inb(pri_dma_base + 0x03);
outb(0x20, sec_dma_base + 0x01);
cnt2 = inb(sec_dma_base + 0x03);
outb(0x21, sec_dma_base + 0x01);
cnt3 = inb(sec_dma_base + 0x03);
count = (cnt3 << 23) | (cnt2 << 15) | (cnt1 << 8) | cnt0;
/*
* The 30-bit decrementing counter is read in 4 pieces.
* Incorrect value may be read when the most significant bytes
* are changing...
*/
} while (retry-- && (((last ^ count) & 0x3fff8000) || last < count));
DBG("cnt0[%02X] cnt1[%02X] cnt2[%02X] cnt3[%02X]\n",
cnt0, cnt1, cnt2, cnt3);
return count;
}
/**
* detect_pll_input_clock - Detect the PLL input clock in Hz.
* @dma_base: for the port address
* E.g. 16949000 on 33 MHz PCI bus, i.e. half of the PCI clock.
*/
static long __devinit detect_pll_input_clock(unsigned long dma_base)
{
struct timeval start_time, end_time;
long start_count, end_count;
long pll_input, usec_elapsed;
u8 scr1;
start_count = read_counter(dma_base);
do_gettimeofday(&start_time);
/* Start the test mode */
outb(0x01, dma_base + 0x01);
scr1 = inb(dma_base + 0x03);
DBG("scr1[%02X]\n", scr1);
outb(scr1 | 0x40, dma_base + 0x03);
/* Let the counter run for 10 ms. */
mdelay(10);
end_count = read_counter(dma_base);
do_gettimeofday(&end_time);
/* Stop the test mode */
outb(0x01, dma_base + 0x01);
scr1 = inb(dma_base + 0x03);
DBG("scr1[%02X]\n", scr1);
outb(scr1 & ~0x40, dma_base + 0x03);
/*
* Calculate the input clock in Hz
* (the clock counter is 30 bit wide and counts down)
*/
usec_elapsed = (end_time.tv_sec - start_time.tv_sec) * 1000000 +
(end_time.tv_usec - start_time.tv_usec);
pll_input = ((start_count - end_count) & 0x3ffffff) / 10 *
(10000000 / usec_elapsed);
DBG("start[%ld] end[%ld]\n", start_count, end_count);
return pll_input;
}
#ifdef CONFIG_PPC_PMAC
static void __devinit apple_kiwi_init(struct pci_dev *pdev)
{
struct device_node *np = pci_device_to_OF_node(pdev);
unsigned int class_rev = 0;
u8 conf;
if (np == NULL || !of_device_is_compatible(np, "kiwi-root"))
return;
pci_read_config_dword(pdev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
if (class_rev >= 0x03) {
/* Setup chip magic config stuff (from darwin) */
pci_read_config_byte (pdev, 0x40, &conf);
pci_write_config_byte(pdev, 0x40, (conf | 0x01));
}
}
#endif /* CONFIG_PPC_PMAC */
static unsigned int __devinit init_chipset_pdcnew(struct pci_dev *dev, const char *name)
{
unsigned long dma_base = pci_resource_start(dev, 4);
unsigned long sec_dma_base = dma_base + 0x08;
long pll_input, pll_output, ratio;
int f, r;
u8 pll_ctl0, pll_ctl1;
if (dma_base == 0)
return -EFAULT;
#ifdef CONFIG_PPC_PMAC
apple_kiwi_init(dev);
#endif
/* Calculate the required PLL output frequency */
switch(max_dma_rate(dev)) {
case 4: /* it's 133 MHz for Ultra133 chips */
pll_output = 133333333;
break;
case 3: /* and 100 MHz for Ultra100 chips */
default:
pll_output = 100000000;
break;
}
/*
* Detect PLL input clock.
* On some systems, where PCI bus is running at non-standard clock rate
* (e.g. 25 or 40 MHz), we have to adjust the cycle time.
* PDC20268 and newer chips employ PLL circuit to help correct timing
* registers setting.
*/
pll_input = detect_pll_input_clock(dma_base);
printk("%s: PLL input clock is %ld kHz\n", name, pll_input / 1000);
/* Sanity check */
if (unlikely(pll_input < 5000000L || pll_input > 70000000L)) {
printk(KERN_ERR "%s: Bad PLL input clock %ld Hz, giving up!\n",
name, pll_input);
goto out;
}
#ifdef DEBUG
DBG("pll_output is %ld Hz\n", pll_output);
/* Show the current clock value of PLL control register
* (maybe already configured by the BIOS)
*/
outb(0x02, sec_dma_base + 0x01);
pll_ctl0 = inb(sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
pll_ctl1 = inb(sec_dma_base + 0x03);
DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
#endif
/*
* Calculate the ratio of F, R and NO
* POUT = (F + 2) / (( R + 2) * NO)
*/
ratio = pll_output / (pll_input / 1000);
if (ratio < 8600L) { /* 8.6x */
/* Using NO = 0x01, R = 0x0d */
r = 0x0d;
} else if (ratio < 12900L) { /* 12.9x */
/* Using NO = 0x01, R = 0x08 */
r = 0x08;
} else if (ratio < 16100L) { /* 16.1x */
/* Using NO = 0x01, R = 0x06 */
r = 0x06;
} else if (ratio < 64000L) { /* 64x */
r = 0x00;
} else {
/* Invalid ratio */
printk(KERN_ERR "%s: Bad ratio %ld, giving up!\n", name, ratio);
goto out;
}
f = (ratio * (r + 2)) / 1000 - 2;
DBG("F[%d] R[%d] ratio*1000[%ld]\n", f, r, ratio);
if (unlikely(f < 0 || f > 127)) {
/* Invalid F */
printk(KERN_ERR "%s: F[%d] invalid!\n", name, f);
goto out;
}
pll_ctl0 = (u8) f;
pll_ctl1 = (u8) r;
DBG("Writing pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
outb(0x02, sec_dma_base + 0x01);
outb(pll_ctl0, sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
outb(pll_ctl1, sec_dma_base + 0x03);
/* Wait the PLL circuit to be stable */
mdelay(30);
#ifdef DEBUG
/*
* Show the current clock value of PLL control register
*/
outb(0x02, sec_dma_base + 0x01);
pll_ctl0 = inb(sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
pll_ctl1 = inb(sec_dma_base + 0x03);
DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
#endif
out:
return dev->irq;
}
static void __devinit init_hwif_pdc202new(ide_hwif_t *hwif)
{
hwif->autodma = 0;
hwif->tuneproc = &pdcnew_tune_drive;
hwif->quirkproc = &pdcnew_quirkproc;
hwif->speedproc = &pdcnew_tune_chipset;
hwif->resetproc = &pdcnew_reset;
hwif->err_stops_fifo = 1;
hwif->drives[0].autotune = hwif->drives[1].autotune = 1;
if (hwif->dma_base == 0)
return;
hwif->atapi_dma = 1;
hwif->ultra_mask = hwif->cds->udma_mask;
hwif->mwdma_mask = 0x07;
hwif->ide_dma_check = &pdcnew_config_drive_xfer_rate;
if (hwif->cbl != ATA_CBL_PATA40_SHORT)
hwif->cbl = pdcnew_cable_detect(hwif);
if (!noautodma)
hwif->autodma = 1;
hwif->drives[0].autodma = hwif->drives[1].autodma = hwif->autodma;
}
static int __devinit init_setup_pdcnew(struct pci_dev *dev, ide_pci_device_t *d)
{
return ide_setup_pci_device(dev, d);
}
static int __devinit init_setup_pdc20270(struct pci_dev *dev,
ide_pci_device_t *d)
{
struct pci_dev *findev = NULL;
int ret;
if ((dev->bus->self &&
dev->bus->self->vendor == PCI_VENDOR_ID_DEC) &&
(dev->bus->self->device == PCI_DEVICE_ID_DEC_21150)) {
if (PCI_SLOT(dev->devfn) & 2)
return -ENODEV;
d->extra = 0;
while ((findev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, findev)) != NULL) {
if ((findev->vendor == dev->vendor) &&
(findev->device == dev->device) &&
(PCI_SLOT(findev->devfn) & 2)) {
if (findev->irq != dev->irq) {
findev->irq = dev->irq;
}
ret = ide_setup_pci_devices(dev, findev, d);
pci_dev_put(findev);
return ret;
}
}
}
return ide_setup_pci_device(dev, d);
}
static int __devinit init_setup_pdc20276(struct pci_dev *dev,
ide_pci_device_t *d)
{
if ((dev->bus->self) &&
(dev->bus->self->vendor == PCI_VENDOR_ID_INTEL) &&
((dev->bus->self->device == PCI_DEVICE_ID_INTEL_I960) ||
(dev->bus->self->device == PCI_DEVICE_ID_INTEL_I960RM))) {
printk(KERN_INFO "ide: Skipping Promise PDC20276 "
"attached to I2O RAID controller.\n");
return -ENODEV;
}
return ide_setup_pci_device(dev, d);
}
static ide_pci_device_t pdcnew_chipsets[] __devinitdata = {
{ /* 0 */
.name = "PDC20268",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x3f, /* udma0-5 */
},{ /* 1 */
.name = "PDC20269",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x7f, /* udma0-6*/
},{ /* 2 */
.name = "PDC20270",
.init_setup = init_setup_pdc20270,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x3f, /* udma0-5 */
},{ /* 3 */
.name = "PDC20271",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x7f, /* udma0-6*/
},{ /* 4 */
.name = "PDC20275",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x7f, /* udma0-6*/
},{ /* 5 */
.name = "PDC20276",
.init_setup = init_setup_pdc20276,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x7f, /* udma0-6*/
},{ /* 6 */
.name = "PDC20277",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
.pio_mask = ATA_PIO4,
.udma_mask = 0x7f, /* udma0-6*/
}
};
/**
* pdc202new_init_one - called when a pdc202xx is found
* @dev: the pdc202new device
* @id: the matching pci id
*
* Called when the PCI registration layer (or the IDE initialization)
* finds a device matching our IDE device tables.
*/
static int __devinit pdc202new_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
ide_pci_device_t *d = &pdcnew_chipsets[id->driver_data];
return d->init_setup(dev, d);
}
static struct pci_device_id pdc202new_pci_tbl[] = {
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20268, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20269, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20270, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20271, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20275, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20276, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20277, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6},
{ 0, },
};
MODULE_DEVICE_TABLE(pci, pdc202new_pci_tbl);
static struct pci_driver driver = {
.name = "Promise_IDE",
.id_table = pdc202new_pci_tbl,
.probe = pdc202new_init_one,
};
static int __init pdc202new_ide_init(void)
{
return ide_pci_register_driver(&driver);
}
module_init(pdc202new_ide_init);
MODULE_AUTHOR("Andre Hedrick, Frank Tiernan");
MODULE_DESCRIPTION("PCI driver module for Promise PDC20268 and higher");
MODULE_LICENSE("GPL");