mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 08:26:15 +07:00
bca031e2c8
We use "pmc->idx" and the "chained" bitmap to determine if the pmc is
chained, in kvm_pmu_pmc_is_chained(). But idx might be uninitialized
(and random) when we doing this decision, through a KVM_ARM_VCPU_INIT
ioctl -> kvm_pmu_vcpu_reset(). And the test_bit() against this random
idx will potentially hit a KASAN BUG [1].
In general, idx is the static property of a PMU counter that is not
expected to be modified across resets, as suggested by Julien. It
looks more reasonable if we can setup the PMU counter idx for a vcpu
in its creation time. Introduce a new function - kvm_pmu_vcpu_init()
for this basic setup. Oh, and the KASAN BUG will get fixed this way.
[1] https://www.spinics.net/lists/kvm-arm/msg36700.html
Fixes: 80f393a23b
("KVM: arm/arm64: Support chained PMU counters")
Suggested-by: Andrew Murray <andrew.murray@arm.com>
Suggested-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
824 lines
20 KiB
C
824 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 Linaro Ltd.
|
|
* Author: Shannon Zhao <shannon.zhao@linaro.org>
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <kvm/arm_pmu.h>
|
|
#include <kvm/arm_vgic.h>
|
|
|
|
static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
|
|
|
|
#define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
|
|
|
|
/**
|
|
* kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
*/
|
|
static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
return (select_idx == ARMV8_PMU_CYCLE_IDX &&
|
|
__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
|
|
}
|
|
|
|
static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_pmu *pmu;
|
|
struct kvm_vcpu_arch *vcpu_arch;
|
|
|
|
pmc -= pmc->idx;
|
|
pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
|
|
vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
|
|
return container_of(vcpu_arch, struct kvm_vcpu, arch);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_pmc_is_chained - determine if the pmc is chained
|
|
* @pmc: The PMU counter pointer
|
|
*/
|
|
static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
|
|
return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
|
|
* @select_idx: The counter index
|
|
*/
|
|
static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
|
|
{
|
|
return select_idx & 0x1;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_get_canonical_pmc - obtain the canonical pmc
|
|
* @pmc: The PMU counter pointer
|
|
*
|
|
* When a pair of PMCs are chained together we use the low counter (canonical)
|
|
* to hold the underlying perf event.
|
|
*/
|
|
static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
|
|
{
|
|
if (kvm_pmu_pmc_is_chained(pmc) &&
|
|
kvm_pmu_idx_is_high_counter(pmc->idx))
|
|
return pmc - 1;
|
|
|
|
return pmc;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
*/
|
|
static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
u64 eventsel, reg;
|
|
|
|
select_idx |= 0x1;
|
|
|
|
if (select_idx == ARMV8_PMU_CYCLE_IDX)
|
|
return false;
|
|
|
|
reg = PMEVTYPER0_EL0 + select_idx;
|
|
eventsel = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_EVENT;
|
|
|
|
return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_get_pair_counter_value - get PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @pmc: The PMU counter pointer
|
|
*/
|
|
static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
|
|
struct kvm_pmc *pmc)
|
|
{
|
|
u64 counter, counter_high, reg, enabled, running;
|
|
|
|
if (kvm_pmu_pmc_is_chained(pmc)) {
|
|
pmc = kvm_pmu_get_canonical_pmc(pmc);
|
|
reg = PMEVCNTR0_EL0 + pmc->idx;
|
|
|
|
counter = __vcpu_sys_reg(vcpu, reg);
|
|
counter_high = __vcpu_sys_reg(vcpu, reg + 1);
|
|
|
|
counter = lower_32_bits(counter) | (counter_high << 32);
|
|
} else {
|
|
reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
|
|
? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
|
|
counter = __vcpu_sys_reg(vcpu, reg);
|
|
}
|
|
|
|
/*
|
|
* The real counter value is equal to the value of counter register plus
|
|
* the value perf event counts.
|
|
*/
|
|
if (pmc->perf_event)
|
|
counter += perf_event_read_value(pmc->perf_event, &enabled,
|
|
&running);
|
|
|
|
return counter;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_get_counter_value - get PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
*/
|
|
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
u64 counter;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_pmc *pmc = &pmu->pmc[select_idx];
|
|
|
|
counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
|
|
|
|
if (kvm_pmu_pmc_is_chained(pmc) &&
|
|
kvm_pmu_idx_is_high_counter(select_idx))
|
|
counter = upper_32_bits(counter);
|
|
|
|
else if (!kvm_pmu_idx_is_64bit(vcpu, select_idx))
|
|
counter = lower_32_bits(counter);
|
|
|
|
return counter;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_set_counter_value - set PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
* @val: The counter value
|
|
*/
|
|
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
|
|
? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
|
|
__vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
|
|
|
|
/* Recreate the perf event to reflect the updated sample_period */
|
|
kvm_pmu_create_perf_event(vcpu, select_idx);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_release_perf_event - remove the perf event
|
|
* @pmc: The PMU counter pointer
|
|
*/
|
|
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
|
|
{
|
|
pmc = kvm_pmu_get_canonical_pmc(pmc);
|
|
if (pmc->perf_event) {
|
|
perf_event_disable(pmc->perf_event);
|
|
perf_event_release_kernel(pmc->perf_event);
|
|
pmc->perf_event = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_stop_counter - stop PMU counter
|
|
* @pmc: The PMU counter pointer
|
|
*
|
|
* If this counter has been configured to monitor some event, release it here.
|
|
*/
|
|
static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
|
|
{
|
|
u64 counter, reg;
|
|
|
|
pmc = kvm_pmu_get_canonical_pmc(pmc);
|
|
if (!pmc->perf_event)
|
|
return;
|
|
|
|
counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
|
|
|
|
if (kvm_pmu_pmc_is_chained(pmc)) {
|
|
reg = PMEVCNTR0_EL0 + pmc->idx;
|
|
__vcpu_sys_reg(vcpu, reg) = lower_32_bits(counter);
|
|
__vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
|
|
} else {
|
|
reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
|
|
? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
|
|
__vcpu_sys_reg(vcpu, reg) = lower_32_bits(counter);
|
|
}
|
|
|
|
kvm_pmu_release_perf_event(pmc);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_init - assign pmu counter idx for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
|
|
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
|
|
pmu->pmc[i].idx = i;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_reset - reset pmu state for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
|
|
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
|
|
kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
|
|
|
|
bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
|
|
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
|
|
kvm_pmu_release_perf_event(&pmu->pmc[i]);
|
|
}
|
|
|
|
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
|
|
|
|
val &= ARMV8_PMU_PMCR_N_MASK;
|
|
if (val == 0)
|
|
return BIT(ARMV8_PMU_CYCLE_IDX);
|
|
else
|
|
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_enable_counter_mask - enable selected PMU counters
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCNTENSET register
|
|
*
|
|
* Call perf_event_enable to start counting the perf event
|
|
*/
|
|
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_pmc *pmc;
|
|
|
|
if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
|
|
return;
|
|
|
|
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
|
|
pmc = &pmu->pmc[i];
|
|
|
|
/*
|
|
* For high counters of chained events we must recreate the
|
|
* perf event with the long (64bit) attribute set.
|
|
*/
|
|
if (kvm_pmu_pmc_is_chained(pmc) &&
|
|
kvm_pmu_idx_is_high_counter(i)) {
|
|
kvm_pmu_create_perf_event(vcpu, i);
|
|
continue;
|
|
}
|
|
|
|
/* At this point, pmc must be the canonical */
|
|
if (pmc->perf_event) {
|
|
perf_event_enable(pmc->perf_event);
|
|
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
|
|
kvm_debug("fail to enable perf event\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_disable_counter_mask - disable selected PMU counters
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCNTENCLR register
|
|
*
|
|
* Call perf_event_disable to stop counting the perf event
|
|
*/
|
|
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_pmc *pmc;
|
|
|
|
if (!val)
|
|
return;
|
|
|
|
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
|
|
pmc = &pmu->pmc[i];
|
|
|
|
/*
|
|
* For high counters of chained events we must recreate the
|
|
* perf event with the long (64bit) attribute unset.
|
|
*/
|
|
if (kvm_pmu_pmc_is_chained(pmc) &&
|
|
kvm_pmu_idx_is_high_counter(i)) {
|
|
kvm_pmu_create_perf_event(vcpu, i);
|
|
continue;
|
|
}
|
|
|
|
/* At this point, pmc must be the canonical */
|
|
if (pmc->perf_event)
|
|
perf_event_disable(pmc->perf_event);
|
|
}
|
|
}
|
|
|
|
static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 reg = 0;
|
|
|
|
if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
|
|
reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
|
|
reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
|
|
reg &= kvm_pmu_valid_counter_mask(vcpu);
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
bool overflow;
|
|
|
|
if (!kvm_arm_pmu_v3_ready(vcpu))
|
|
return;
|
|
|
|
overflow = !!kvm_pmu_overflow_status(vcpu);
|
|
if (pmu->irq_level == overflow)
|
|
return;
|
|
|
|
pmu->irq_level = overflow;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm))) {
|
|
int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
|
|
pmu->irq_num, overflow, pmu);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
|
|
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
|
|
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm)))
|
|
return false;
|
|
|
|
return pmu->irq_level != run_level;
|
|
}
|
|
|
|
/*
|
|
* Reflect the PMU overflow interrupt output level into the kvm_run structure
|
|
*/
|
|
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
|
|
|
|
/* Populate the timer bitmap for user space */
|
|
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
|
|
if (vcpu->arch.pmu.irq_level)
|
|
regs->device_irq_level |= KVM_ARM_DEV_PMU;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_flush_hwstate - flush pmu state to cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
* Check if the PMU has overflowed while we were running in the host, and inject
|
|
* an interrupt if that was the case.
|
|
*/
|
|
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_update_state(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_sync_hwstate - sync pmu state from cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
* Check if the PMU has overflowed while we were running in the guest, and
|
|
* inject an interrupt if that was the case.
|
|
*/
|
|
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_update_state(vcpu);
|
|
}
|
|
|
|
/**
|
|
* When the perf event overflows, set the overflow status and inform the vcpu.
|
|
*/
|
|
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
int idx = pmc->idx;
|
|
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
|
|
|
|
if (kvm_pmu_overflow_status(vcpu)) {
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_software_increment - do software increment
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMSWINC register
|
|
*/
|
|
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
u64 type, enable, reg;
|
|
|
|
if (val == 0)
|
|
return;
|
|
|
|
enable = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i)
|
|
& ARMV8_PMU_EVTYPE_EVENT;
|
|
if ((type == ARMV8_PMUV3_PERFCTR_SW_INCR)
|
|
&& (enable & BIT(i))) {
|
|
reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
|
|
reg = lower_32_bits(reg);
|
|
__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
|
|
if (!reg)
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_handle_pmcr - handle PMCR register
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCR register
|
|
*/
|
|
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
u64 mask;
|
|
int i;
|
|
|
|
mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
if (val & ARMV8_PMU_PMCR_E) {
|
|
kvm_pmu_enable_counter_mask(vcpu,
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
|
|
} else {
|
|
kvm_pmu_disable_counter_mask(vcpu, mask);
|
|
}
|
|
|
|
if (val & ARMV8_PMU_PMCR_C)
|
|
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
|
|
|
|
if (val & ARMV8_PMU_PMCR_P) {
|
|
for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++)
|
|
kvm_pmu_set_counter_value(vcpu, i, 0);
|
|
}
|
|
}
|
|
|
|
static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
|
|
(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_create_perf_event - create a perf event for a counter
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The number of selected counter
|
|
*/
|
|
static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_pmc *pmc;
|
|
struct perf_event *event;
|
|
struct perf_event_attr attr;
|
|
u64 eventsel, counter, reg, data;
|
|
|
|
/*
|
|
* For chained counters the event type and filtering attributes are
|
|
* obtained from the low/even counter. We also use this counter to
|
|
* determine if the event is enabled/disabled.
|
|
*/
|
|
pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
|
|
|
|
reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
|
|
? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
|
|
data = __vcpu_sys_reg(vcpu, reg);
|
|
|
|
kvm_pmu_stop_counter(vcpu, pmc);
|
|
eventsel = data & ARMV8_PMU_EVTYPE_EVENT;
|
|
|
|
/* Software increment event does't need to be backed by a perf event */
|
|
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR &&
|
|
pmc->idx != ARMV8_PMU_CYCLE_IDX)
|
|
return;
|
|
|
|
memset(&attr, 0, sizeof(struct perf_event_attr));
|
|
attr.type = PERF_TYPE_RAW;
|
|
attr.size = sizeof(attr);
|
|
attr.pinned = 1;
|
|
attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
|
|
attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
|
|
attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
|
|
attr.exclude_hv = 1; /* Don't count EL2 events */
|
|
attr.exclude_host = 1; /* Don't count host events */
|
|
attr.config = (pmc->idx == ARMV8_PMU_CYCLE_IDX) ?
|
|
ARMV8_PMUV3_PERFCTR_CPU_CYCLES : eventsel;
|
|
|
|
counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
|
|
|
|
if (kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx)) {
|
|
/**
|
|
* The initial sample period (overflow count) of an event. For
|
|
* chained counters we only support overflow interrupts on the
|
|
* high counter.
|
|
*/
|
|
attr.sample_period = (-counter) & GENMASK(63, 0);
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
kvm_pmu_perf_overflow,
|
|
pmc + 1);
|
|
|
|
if (kvm_pmu_counter_is_enabled(vcpu, pmc->idx + 1))
|
|
attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
|
|
} else {
|
|
/* The initial sample period (overflow count) of an event. */
|
|
if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
|
|
attr.sample_period = (-counter) & GENMASK(63, 0);
|
|
else
|
|
attr.sample_period = (-counter) & GENMASK(31, 0);
|
|
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
kvm_pmu_perf_overflow, pmc);
|
|
}
|
|
|
|
if (IS_ERR(event)) {
|
|
pr_err_once("kvm: pmu event creation failed %ld\n",
|
|
PTR_ERR(event));
|
|
return;
|
|
}
|
|
|
|
pmc->perf_event = event;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_update_pmc_chained - update chained bitmap
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The number of selected counter
|
|
*
|
|
* Update the chained bitmap based on the event type written in the
|
|
* typer register.
|
|
*/
|
|
static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_pmc *pmc = &pmu->pmc[select_idx];
|
|
|
|
if (kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx)) {
|
|
/*
|
|
* During promotion from !chained to chained we must ensure
|
|
* the adjacent counter is stopped and its event destroyed
|
|
*/
|
|
if (!kvm_pmu_pmc_is_chained(pmc))
|
|
kvm_pmu_stop_counter(vcpu, pmc);
|
|
|
|
set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
|
|
} else {
|
|
clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_set_counter_event_type - set selected counter to monitor some event
|
|
* @vcpu: The vcpu pointer
|
|
* @data: The data guest writes to PMXEVTYPER_EL0
|
|
* @select_idx: The number of selected counter
|
|
*
|
|
* When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
|
|
* event with given hardware event number. Here we call perf_event API to
|
|
* emulate this action and create a kernel perf event for it.
|
|
*/
|
|
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
|
|
u64 select_idx)
|
|
{
|
|
u64 reg, event_type = data & ARMV8_PMU_EVTYPE_MASK;
|
|
|
|
reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
|
|
? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
|
|
|
|
__vcpu_sys_reg(vcpu, reg) = event_type;
|
|
|
|
kvm_pmu_update_pmc_chained(vcpu, select_idx);
|
|
kvm_pmu_create_perf_event(vcpu, select_idx);
|
|
}
|
|
|
|
bool kvm_arm_support_pmu_v3(void)
|
|
{
|
|
/*
|
|
* Check if HW_PERF_EVENTS are supported by checking the number of
|
|
* hardware performance counters. This could ensure the presence of
|
|
* a physical PMU and CONFIG_PERF_EVENT is selected.
|
|
*/
|
|
return (perf_num_counters() > 0);
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->arch.pmu.created)
|
|
return 0;
|
|
|
|
/*
|
|
* A valid interrupt configuration for the PMU is either to have a
|
|
* properly configured interrupt number and using an in-kernel
|
|
* irqchip, or to not have an in-kernel GIC and not set an IRQ.
|
|
*/
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
int irq = vcpu->arch.pmu.irq_num;
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If we are using an in-kernel vgic, at this point we know
|
|
* the vgic will be initialized, so we can check the PMU irq
|
|
* number against the dimensions of the vgic and make sure
|
|
* it's valid.
|
|
*/
|
|
if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
|
|
return -EINVAL;
|
|
} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
kvm_pmu_vcpu_reset(vcpu);
|
|
vcpu->arch.pmu.ready = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_arm_support_pmu_v3())
|
|
return -ENODEV;
|
|
|
|
if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
|
|
return -ENXIO;
|
|
|
|
if (vcpu->arch.pmu.created)
|
|
return -EBUSY;
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
int ret;
|
|
|
|
/*
|
|
* If using the PMU with an in-kernel virtual GIC
|
|
* implementation, we require the GIC to be already
|
|
* initialized when initializing the PMU.
|
|
*/
|
|
if (!vgic_initialized(vcpu->kvm))
|
|
return -ENODEV;
|
|
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -ENXIO;
|
|
|
|
ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
|
|
&vcpu->arch.pmu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
vcpu->arch.pmu.created = true;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For one VM the interrupt type must be same for each vcpu.
|
|
* As a PPI, the interrupt number is the same for all vcpus,
|
|
* while as an SPI it must be a separate number per vcpu.
|
|
*/
|
|
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
continue;
|
|
|
|
if (irq_is_ppi(irq)) {
|
|
if (vcpu->arch.pmu.irq_num != irq)
|
|
return false;
|
|
} else {
|
|
if (vcpu->arch.pmu.irq_num == irq)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
|
|
return -ENODEV;
|
|
|
|
if (get_user(irq, uaddr))
|
|
return -EFAULT;
|
|
|
|
/* The PMU overflow interrupt can be a PPI or a valid SPI. */
|
|
if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
|
|
return -EINVAL;
|
|
|
|
if (!pmu_irq_is_valid(vcpu->kvm, irq))
|
|
return -EINVAL;
|
|
|
|
if (kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -EBUSY;
|
|
|
|
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
|
|
vcpu->arch.pmu.irq_num = irq;
|
|
return 0;
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_INIT:
|
|
return kvm_arm_pmu_v3_init(vcpu);
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
|
|
return -ENODEV;
|
|
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -ENXIO;
|
|
|
|
irq = vcpu->arch.pmu.irq_num;
|
|
return put_user(irq, uaddr);
|
|
}
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ:
|
|
case KVM_ARM_VCPU_PMU_V3_INIT:
|
|
if (kvm_arm_support_pmu_v3() &&
|
|
test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|