Go to file
David S. Miller 5cfe6d8adb Merge branch 'sock-diag-destroy'
Lorenzo Colitti says:

====================
Support administratively closing application sockets

This patchset adds the ability to administratively close a socket
without any action from the process owning the socket or the
socket protocol.

It implements this by adding a new diag_destroy function pointer
to struct proto. In-kernel callers can access this functionality
directly by calling sk->sk_prot->diag_destroy(sk, err).

It also exposes this functionality to userspace via a new
SOCK_DESTROY operation in the NETLINK_SOCK_DIAG sockets. This
allows a privileged userspace process, such as a connection
manager or system administration tool, to close sockets belonging
to other apps when the network they were established on has
disconnected. It is needed on laptops and mobile hosts to ensure
that network switches / disconnects do not result in applications
being blocked for long periods of time (minutes) in read or
connect calls on TCP sockets that will never succeed because the
IP address they are bound to is no longer on the system. Closing
the sockets causes these calls to fail fast and allows the apps
to reconnect on another network.

Userspace intervention is necessary because in many cases the
kernel does not have enough information to know that a connection
is now inoperable. The kernel can know if a packet can't be
routed, but in general it won't know if a TCP connection is stuck
because it is now routed to a network where its source address is
no longer valid [5][6].

Many other operating systems offer similar functionality:

 - FreeBSD has had this since 5.4 in 2005 [2]. It is available
   to privileged userspace and there is a tool to use it [3].
 - The FreeBSD commit description states that the idea came
   from OpenBSD.
 - iOS has been administratively closing app sockets since
   iOS 4 - see [4], which states that a socket "might get
   reclaimed by the kernel" and after that will return EBADF].
   For many years Android kernels have supported this via an
   out-of-tree SIOCKILLADDR ioctl that is called on every
   RTM_DELADDR event, but this solution is cleaner, more robust
   and more flexible: the connection manager can iterate over all
   connections on the deleted IP address and close all of them.
   It can also be used to close all sockets opened by a given app
   process, for example if the user has restricted that app from
   using the network, if a secure network such as a VPN has
   connected and security policy requires all of an application's
   connections to be routed via the VPN, etc.
 - For many years Android kernels have supported an out-of-tree
   SIOCKILLADDR ioctl that is called when a network disconnects
   or an RTM_DELADDR event is received. This solution is cleaner,
   more robust and more flexible. The connection manager can
   implement SIOCKILLADDR by iterating over all connections on
   the deleted IP address and close all of them, but it can also
   close all sockets opened by a given app process (for example
   if the user has restricted that app from), close all of a
   user's TCP connections if a user has connected a secure
   network such as a VPN and expects all of an application's
   connections to be routed via the VPN, etc.

Alternative schemes such as TCP keepalives in combination with
"iptables -j REJECT --reject-with tcp-reset", could be used to
achieve similar results, but on mobile devices TCP keepalives are
very expensive, and in such a scheme detecting stuck connections
has to wait for a keepalive to be sent or the application to
perform a write. An explicit notification from userspace is
cheaper and faster in the common case where an application is
blocked on read.

SOCK_DESTROY is placed behind an INET_DIAG_DESTROY configuration
option, which is currently off by default.

The TCP implementation of diag_destroy causes a TCP ABORT as
specified by RFC 793 [1]: immediately send a RST and clear local
connection state. This is what happens today if an application
enables SO_LINGER with a timeout of 0 and then calls close.

The first versions of the patchset did not send a RST, but that
is not graceful/correct TCP behaviour. tcp_abort now does a
proper RFC 793 ABORT and sends a RST to the peer. This is
consistent with BSD's tcpdrop, and is more correct in general,
even though in many use cases tcp_abort will only be called when
sending a RST is no longer possible (e.g., the network has
disconnected).

The original patchset also behaved like SIOCKILADDR and closed
TCP sockets with ETIMEDOUT. Tom Herbert pointed out that it would
be better if applications could distinguish between a timeout and
an administrative close. ECONNABORTED was chosen because it is
consistent with BSD.

[1] http://tools.ietf.org/html/rfc793#page-50
[2] http://svnweb.freebsd.org/base?view=revision&revision=141381
[3] https://www.freebsd.org/cgi/man.cgi?query=tcpdrop&sektion=8&manpath=FreeBSD+5.4-RELEASE
[4] https://developer.apple.com/library/ios/technotes/tn2277/_index.html#//apple_ref/doc/uid/DTS40010841-CH1-SUBSECTION3
[5] http://www.spinics.net/lists/netdev/msg352775.html
[6] http://www.spinics.net/lists/netdev/msg352952.html
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-15 23:26:52 -05:00
arch Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2015-12-03 16:02:46 -08:00
block blk-merge: fix computing bio->bi_seg_front_size in case of single segment 2015-11-30 13:02:36 -07:00
certs
crypto Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2015-12-03 21:09:12 -05:00
Documentation stmmac: socfpga: Provide dt node to config ptp clk source. 2015-12-15 23:20:56 -05:00
drivers stmmac: socfpga: Provide dt node to config ptp clk source. 2015-12-15 23:20:56 -05:00
firmware
fs Merge branch 'for-4.5-ancestor-test' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup 2015-12-08 22:01:38 -05:00
include net: diag: Support destroying TCP sockets. 2015-12-15 23:26:52 -05:00
init
ipc
kernel net, cgroup: cgroup_sk_updat_lock was missing initializer 2015-12-14 14:20:33 -05:00
lib rhashtable: Remove unnecessary wmb for future_tbl 2015-12-08 22:46:32 -05:00
mm Merge branch 'akpm' (patches from Andrew) 2015-11-22 15:21:40 -08:00
net net: diag: Support destroying TCP sockets. 2015-12-15 23:26:52 -05:00
samples
scripts
security Merge branch 'upstream' of git://git.infradead.org/users/pcmoore/selinux into for-linus2 2015-11-26 15:04:19 +11:00
sound sound fixes for 4.4-rc3 2015-11-27 11:59:02 -08:00
tools linux-kselftest-4.4-rc3 2015-11-23 13:19:27 -08:00
usr
virt KVM: arm/arm64: vgic: Trust the LR state for HW IRQs 2015-11-24 18:08:37 +01:00
.get_maintainer.ignore
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next 2015-12-14 16:23:10 -05:00
Makefile Linux 4.4-rc3 2015-11-29 18:58:26 -08:00
README
REPORTING-BUGS

        Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

     xz -cd linux-4.X.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 4.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-4.X) and execute:

     xz -cd ../patch-4.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "X" of your current
   source tree, _in_order_, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 4.x kernel.  For example, if your base kernel is 4.0
   and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
   and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
   want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
   patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
   Documentation/applying-patches.txt

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around:

     cd linux
     make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 4.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:

     kernel source code: /usr/src/linux-4.X
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use:

     cd /usr/src/linux-4.X
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used, then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are:

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     X windows (Qt) based configuration tool.

     "make gconfig"     X windows (GTK+) based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make silentoldconfig"
                        Like above, but avoids cluttering the screen
                        with questions already answered.
                        Additionally updates the dependencies.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

 - NOTES on "make config":

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers

    - Compiling the kernel with "Processor type" set higher than 386
      will result in a kernel that does NOT work on a 386.  The
      kernel will detect this on bootup, and give up.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO, which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

     unable to handle kernel paging request at address C0000010
     Oops: 0002
     EIP:   0010:XXXXXXXX
     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
     Pid: xx, process nr: xx
     xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example, it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternatively, you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

     nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.