linux_dsm_epyc7002/fs/xfs/xfs_reflink.c
Christoph Hellwig 6552321831 xfs: remove i_iolock and use i_rwsem in the VFS inode instead
This patch drops the XFS-own i_iolock and uses the VFS i_rwsem which
recently replaced i_mutex instead.  This means we only have to take
one lock instead of two in many fast path operations, and we can
also shrink the xfs_inode structure.  Thanks to the xfs_ilock family
there is very little churn, the only thing of note is that we need
to switch to use the lock_two_directory helper for taking the i_rwsem
on two inodes in a few places to make sure our lock order matches
the one used in the VFS.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-11-30 14:33:25 +11:00

1651 lines
43 KiB
C

/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
*
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
#include "xfs_iomap.h"
#include "xfs_rmap_btree.h"
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
/*
* Copy on Write of Shared Blocks
*
* XFS must preserve "the usual" file semantics even when two files share
* the same physical blocks. This means that a write to one file must not
* alter the blocks in a different file; the way that we'll do that is
* through the use of a copy-on-write mechanism. At a high level, that
* means that when we want to write to a shared block, we allocate a new
* block, write the data to the new block, and if that succeeds we map the
* new block into the file.
*
* XFS provides a "delayed allocation" mechanism that defers the allocation
* of disk blocks to dirty-but-not-yet-mapped file blocks as long as
* possible. This reduces fragmentation by enabling the filesystem to ask
* for bigger chunks less often, which is exactly what we want for CoW.
*
* The delalloc mechanism begins when the kernel wants to make a block
* writable (write_begin or page_mkwrite). If the offset is not mapped, we
* create a delalloc mapping, which is a regular in-core extent, but without
* a real startblock. (For delalloc mappings, the startblock encodes both
* a flag that this is a delalloc mapping, and a worst-case estimate of how
* many blocks might be required to put the mapping into the BMBT.) delalloc
* mappings are a reservation against the free space in the filesystem;
* adjacent mappings can also be combined into fewer larger mappings.
*
* When dirty pages are being written out (typically in writepage), the
* delalloc reservations are converted into real mappings by allocating
* blocks and replacing the delalloc mapping with real ones. A delalloc
* mapping can be replaced by several real ones if the free space is
* fragmented.
*
* We want to adapt the delalloc mechanism for copy-on-write, since the
* write paths are similar. The first two steps (creating the reservation
* and allocating the blocks) are exactly the same as delalloc except that
* the mappings must be stored in a separate CoW fork because we do not want
* to disturb the mapping in the data fork until we're sure that the write
* succeeded. IO completion in this case is the process of removing the old
* mapping from the data fork and moving the new mapping from the CoW fork to
* the data fork. This will be discussed shortly.
*
* For now, unaligned directio writes will be bounced back to the page cache.
* Block-aligned directio writes will use the same mechanism as buffered
* writes.
*
* CoW remapping must be done after the data block write completes,
* because we don't want to destroy the old data fork map until we're sure
* the new block has been written. Since the new mappings are kept in a
* separate fork, we can simply iterate these mappings to find the ones
* that cover the file blocks that we just CoW'd. For each extent, simply
* unmap the corresponding range in the data fork, map the new range into
* the data fork, and remove the extent from the CoW fork.
*
* Since the remapping operation can be applied to an arbitrary file
* range, we record the need for the remap step as a flag in the ioend
* instead of declaring a new IO type. This is required for direct io
* because we only have ioend for the whole dio, and we have to be able to
* remember the presence of unwritten blocks and CoW blocks with a single
* ioend structure. Better yet, the more ground we can cover with one
* ioend, the better.
*/
/*
* Given an AG extent, find the lowest-numbered run of shared blocks
* within that range and return the range in fbno/flen. If
* find_end_of_shared is true, return the longest contiguous extent of
* shared blocks. If there are no shared extents, fbno and flen will
* be set to NULLAGBLOCK and 0, respectively.
*/
int
xfs_reflink_find_shared(
struct xfs_mount *mp,
xfs_agnumber_t agno,
xfs_agblock_t agbno,
xfs_extlen_t aglen,
xfs_agblock_t *fbno,
xfs_extlen_t *flen,
bool find_end_of_shared)
{
struct xfs_buf *agbp;
struct xfs_btree_cur *cur;
int error;
error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
if (error)
return error;
cur = xfs_refcountbt_init_cursor(mp, NULL, agbp, agno, NULL);
error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
find_end_of_shared);
xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
xfs_buf_relse(agbp);
return error;
}
/*
* Trim the mapping to the next block where there's a change in the
* shared/unshared status. More specifically, this means that we
* find the lowest-numbered extent of shared blocks that coincides with
* the given block mapping. If the shared extent overlaps the start of
* the mapping, trim the mapping to the end of the shared extent. If
* the shared region intersects the mapping, trim the mapping to the
* start of the shared extent. If there are no shared regions that
* overlap, just return the original extent.
*/
int
xfs_reflink_trim_around_shared(
struct xfs_inode *ip,
struct xfs_bmbt_irec *irec,
bool *shared,
bool *trimmed)
{
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t fbno;
xfs_extlen_t flen;
int error = 0;
/* Holes, unwritten, and delalloc extents cannot be shared */
if (!xfs_is_reflink_inode(ip) ||
ISUNWRITTEN(irec) ||
irec->br_startblock == HOLESTARTBLOCK ||
irec->br_startblock == DELAYSTARTBLOCK ||
isnullstartblock(irec->br_startblock)) {
*shared = false;
return 0;
}
trace_xfs_reflink_trim_around_shared(ip, irec);
agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
aglen = irec->br_blockcount;
error = xfs_reflink_find_shared(ip->i_mount, agno, agbno,
aglen, &fbno, &flen, true);
if (error)
return error;
*shared = *trimmed = false;
if (fbno == NULLAGBLOCK) {
/* No shared blocks at all. */
return 0;
} else if (fbno == agbno) {
/*
* The start of this extent is shared. Truncate the
* mapping at the end of the shared region so that a
* subsequent iteration starts at the start of the
* unshared region.
*/
irec->br_blockcount = flen;
*shared = true;
if (flen != aglen)
*trimmed = true;
return 0;
} else {
/*
* There's a shared extent midway through this extent.
* Truncate the mapping at the start of the shared
* extent so that a subsequent iteration starts at the
* start of the shared region.
*/
irec->br_blockcount = fbno - agbno;
*trimmed = true;
return 0;
}
}
/*
* Trim the passed in imap to the next shared/unshared extent boundary, and
* if imap->br_startoff points to a shared extent reserve space for it in the
* COW fork. In this case *shared is set to true, else to false.
*
* Note that imap will always contain the block numbers for the existing blocks
* in the data fork, as the upper layers need them for read-modify-write
* operations.
*/
int
xfs_reflink_reserve_cow(
struct xfs_inode *ip,
struct xfs_bmbt_irec *imap,
bool *shared)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got;
int error = 0;
bool eof = false, trimmed;
xfs_extnum_t idx;
/*
* Search the COW fork extent list first. This serves two purposes:
* first this implement the speculative preallocation using cowextisze,
* so that we also unshared block adjacent to shared blocks instead
* of just the shared blocks themselves. Second the lookup in the
* extent list is generally faster than going out to the shared extent
* tree.
*/
if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &idx, &got))
eof = true;
if (!eof && got.br_startoff <= imap->br_startoff) {
trace_xfs_reflink_cow_found(ip, imap);
xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
*shared = true;
return 0;
}
/* Trim the mapping to the nearest shared extent boundary. */
error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
if (error)
return error;
/* Not shared? Just report the (potentially capped) extent. */
if (!*shared)
return 0;
/*
* Fork all the shared blocks from our write offset until the end of
* the extent.
*/
error = xfs_qm_dqattach_locked(ip, 0);
if (error)
return error;
error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
imap->br_blockcount, 0, &got, &idx, eof);
if (error == -ENOSPC || error == -EDQUOT)
trace_xfs_reflink_cow_enospc(ip, imap);
if (error)
return error;
trace_xfs_reflink_cow_alloc(ip, &got);
return 0;
}
/* Allocate all CoW reservations covering a range of blocks in a file. */
static int
__xfs_reflink_allocate_cow(
struct xfs_inode *ip,
xfs_fileoff_t *offset_fsb,
xfs_fileoff_t end_fsb)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_bmbt_irec imap;
struct xfs_defer_ops dfops;
struct xfs_trans *tp;
xfs_fsblock_t first_block;
int nimaps = 1, error;
bool shared;
xfs_defer_init(&dfops, &first_block);
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0,
XFS_TRANS_RESERVE, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
/* Read extent from the source file. */
nimaps = 1;
error = xfs_bmapi_read(ip, *offset_fsb, end_fsb - *offset_fsb,
&imap, &nimaps, 0);
if (error)
goto out_unlock;
ASSERT(nimaps == 1);
error = xfs_reflink_reserve_cow(ip, &imap, &shared);
if (error)
goto out_trans_cancel;
if (!shared) {
*offset_fsb = imap.br_startoff + imap.br_blockcount;
goto out_trans_cancel;
}
xfs_trans_ijoin(tp, ip, 0);
error = xfs_bmapi_write(tp, ip, imap.br_startoff, imap.br_blockcount,
XFS_BMAPI_COWFORK, &first_block,
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK),
&imap, &nimaps, &dfops);
if (error)
goto out_trans_cancel;
error = xfs_defer_finish(&tp, &dfops, NULL);
if (error)
goto out_trans_cancel;
error = xfs_trans_commit(tp);
*offset_fsb = imap.br_startoff + imap.br_blockcount;
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
out_trans_cancel:
xfs_defer_cancel(&dfops);
xfs_trans_cancel(tp);
goto out_unlock;
}
/* Allocate all CoW reservations covering a part of a file. */
int
xfs_reflink_allocate_cow_range(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
int error;
ASSERT(xfs_is_reflink_inode(ip));
trace_xfs_reflink_allocate_cow_range(ip, offset, count);
/*
* Make sure that the dquots are there.
*/
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
while (offset_fsb < end_fsb) {
error = __xfs_reflink_allocate_cow(ip, &offset_fsb, end_fsb);
if (error) {
trace_xfs_reflink_allocate_cow_range_error(ip, error,
_RET_IP_);
break;
}
}
return error;
}
/*
* Find the CoW reservation for a given byte offset of a file.
*/
bool
xfs_reflink_find_cow_mapping(
struct xfs_inode *ip,
xfs_off_t offset,
struct xfs_bmbt_irec *imap)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
xfs_fileoff_t offset_fsb;
struct xfs_bmbt_irec got;
xfs_extnum_t idx;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
ASSERT(xfs_is_reflink_inode(ip));
offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got))
return false;
if (got.br_startoff > offset_fsb)
return false;
trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
&got);
*imap = got;
return true;
}
/*
* Trim an extent to end at the next CoW reservation past offset_fsb.
*/
void
xfs_reflink_trim_irec_to_next_cow(
struct xfs_inode *ip,
xfs_fileoff_t offset_fsb,
struct xfs_bmbt_irec *imap)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got;
xfs_extnum_t idx;
if (!xfs_is_reflink_inode(ip))
return;
/* Find the extent in the CoW fork. */
if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got))
return;
/* This is the extent before; try sliding up one. */
if (got.br_startoff < offset_fsb) {
if (!xfs_iext_get_extent(ifp, idx + 1, &got))
return;
}
if (got.br_startoff >= imap->br_startoff + imap->br_blockcount)
return;
imap->br_blockcount = got.br_startoff - imap->br_startoff;
trace_xfs_reflink_trim_irec(ip, imap);
}
/*
* Cancel all pending CoW reservations for some block range of an inode.
*/
int
xfs_reflink_cancel_cow_blocks(
struct xfs_inode *ip,
struct xfs_trans **tpp,
xfs_fileoff_t offset_fsb,
xfs_fileoff_t end_fsb)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got, del;
xfs_extnum_t idx;
xfs_fsblock_t firstfsb;
struct xfs_defer_ops dfops;
int error = 0;
if (!xfs_is_reflink_inode(ip))
return 0;
if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got))
return 0;
while (got.br_startoff < end_fsb) {
del = got;
xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
trace_xfs_reflink_cancel_cow(ip, &del);
if (isnullstartblock(del.br_startblock)) {
error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
&idx, &got, &del);
if (error)
break;
} else {
xfs_trans_ijoin(*tpp, ip, 0);
xfs_defer_init(&dfops, &firstfsb);
/* Free the CoW orphan record. */
error = xfs_refcount_free_cow_extent(ip->i_mount,
&dfops, del.br_startblock,
del.br_blockcount);
if (error)
break;
xfs_bmap_add_free(ip->i_mount, &dfops,
del.br_startblock, del.br_blockcount,
NULL);
/* Update quota accounting */
xfs_trans_mod_dquot_byino(*tpp, ip, XFS_TRANS_DQ_BCOUNT,
-(long)del.br_blockcount);
/* Roll the transaction */
error = xfs_defer_finish(tpp, &dfops, ip);
if (error) {
xfs_defer_cancel(&dfops);
break;
}
/* Remove the mapping from the CoW fork. */
xfs_bmap_del_extent_cow(ip, &idx, &got, &del);
}
if (!xfs_iext_get_extent(ifp, ++idx, &got))
break;
}
/* clear tag if cow fork is emptied */
if (!ifp->if_bytes)
xfs_inode_clear_cowblocks_tag(ip);
return error;
}
/*
* Cancel all pending CoW reservations for some byte range of an inode.
*/
int
xfs_reflink_cancel_cow_range(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count)
{
struct xfs_trans *tp;
xfs_fileoff_t offset_fsb;
xfs_fileoff_t end_fsb;
int error;
trace_xfs_reflink_cancel_cow_range(ip, offset, count);
ASSERT(xfs_is_reflink_inode(ip));
offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
if (count == NULLFILEOFF)
end_fsb = NULLFILEOFF;
else
end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
/* Start a rolling transaction to remove the mappings */
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
0, 0, 0, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/* Scrape out the old CoW reservations */
error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb);
if (error)
goto out_cancel;
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
out_cancel:
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
return error;
}
/*
* Remap parts of a file's data fork after a successful CoW.
*/
int
xfs_reflink_end_cow(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got, del;
struct xfs_trans *tp;
xfs_fileoff_t offset_fsb;
xfs_fileoff_t end_fsb;
xfs_fsblock_t firstfsb;
struct xfs_defer_ops dfops;
int error;
unsigned int resblks;
xfs_filblks_t rlen;
xfs_extnum_t idx;
trace_xfs_reflink_end_cow(ip, offset, count);
/* No COW extents? That's easy! */
if (ifp->if_bytes == 0)
return 0;
offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
/* Start a rolling transaction to switch the mappings */
resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
resblks, 0, 0, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/* If there is a hole at end_fsb - 1 go to the previous extent */
if (!xfs_iext_lookup_extent(ip, ifp, end_fsb - 1, &idx, &got) ||
got.br_startoff > end_fsb) {
ASSERT(idx > 0);
xfs_iext_get_extent(ifp, --idx, &got);
}
/* Walk backwards until we're out of the I/O range... */
while (got.br_startoff + got.br_blockcount > offset_fsb) {
del = got;
xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
/* Extent delete may have bumped idx forward */
if (!del.br_blockcount) {
idx--;
goto next_extent;
}
ASSERT(!isnullstartblock(got.br_startblock));
/* Unmap the old blocks in the data fork. */
xfs_defer_init(&dfops, &firstfsb);
rlen = del.br_blockcount;
error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
&firstfsb, &dfops);
if (error)
goto out_defer;
/* Trim the extent to whatever got unmapped. */
if (rlen) {
xfs_trim_extent(&del, del.br_startoff + rlen,
del.br_blockcount - rlen);
}
trace_xfs_reflink_cow_remap(ip, &del);
/* Free the CoW orphan record. */
error = xfs_refcount_free_cow_extent(tp->t_mountp, &dfops,
del.br_startblock, del.br_blockcount);
if (error)
goto out_defer;
/* Map the new blocks into the data fork. */
error = xfs_bmap_map_extent(tp->t_mountp, &dfops, ip, &del);
if (error)
goto out_defer;
/* Remove the mapping from the CoW fork. */
xfs_bmap_del_extent_cow(ip, &idx, &got, &del);
error = xfs_defer_finish(&tp, &dfops, ip);
if (error)
goto out_defer;
next_extent:
if (!xfs_iext_get_extent(ifp, idx, &got))
break;
}
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
goto out;
return 0;
out_defer:
xfs_defer_cancel(&dfops);
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
return error;
}
/*
* Free leftover CoW reservations that didn't get cleaned out.
*/
int
xfs_reflink_recover_cow(
struct xfs_mount *mp)
{
xfs_agnumber_t agno;
int error = 0;
if (!xfs_sb_version_hasreflink(&mp->m_sb))
return 0;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
error = xfs_refcount_recover_cow_leftovers(mp, agno);
if (error)
break;
}
return error;
}
/*
* Reflinking (Block) Ranges of Two Files Together
*
* First, ensure that the reflink flag is set on both inodes. The flag is an
* optimization to avoid unnecessary refcount btree lookups in the write path.
*
* Now we can iteratively remap the range of extents (and holes) in src to the
* corresponding ranges in dest. Let drange and srange denote the ranges of
* logical blocks in dest and src touched by the reflink operation.
*
* While the length of drange is greater than zero,
* - Read src's bmbt at the start of srange ("imap")
* - If imap doesn't exist, make imap appear to start at the end of srange
* with zero length.
* - If imap starts before srange, advance imap to start at srange.
* - If imap goes beyond srange, truncate imap to end at the end of srange.
* - Punch (imap start - srange start + imap len) blocks from dest at
* offset (drange start).
* - If imap points to a real range of pblks,
* > Increase the refcount of the imap's pblks
* > Map imap's pblks into dest at the offset
* (drange start + imap start - srange start)
* - Advance drange and srange by (imap start - srange start + imap len)
*
* Finally, if the reflink made dest longer, update both the in-core and
* on-disk file sizes.
*
* ASCII Art Demonstration:
*
* Let's say we want to reflink this source file:
*
* ----SSSSSSS-SSSSS----SSSSSS (src file)
* <-------------------->
*
* into this destination file:
*
* --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
* <-------------------->
* '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
* Observe that the range has different logical offsets in either file.
*
* Consider that the first extent in the source file doesn't line up with our
* reflink range. Unmapping and remapping are separate operations, so we can
* unmap more blocks from the destination file than we remap.
*
* ----SSSSSSS-SSSSS----SSSSSS
* <------->
* --DDDDD---------DDDDD--DDD
* <------->
*
* Now remap the source extent into the destination file:
*
* ----SSSSSSS-SSSSS----SSSSSS
* <------->
* --DDDDD--SSSSSSSDDDDD--DDD
* <------->
*
* Do likewise with the second hole and extent in our range. Holes in the
* unmap range don't affect our operation.
*
* ----SSSSSSS-SSSSS----SSSSSS
* <---->
* --DDDDD--SSSSSSS-SSSSS-DDD
* <---->
*
* Finally, unmap and remap part of the third extent. This will increase the
* size of the destination file.
*
* ----SSSSSSS-SSSSS----SSSSSS
* <----->
* --DDDDD--SSSSSSS-SSSSS----SSS
* <----->
*
* Once we update the destination file's i_size, we're done.
*/
/*
* Ensure the reflink bit is set in both inodes.
*/
STATIC int
xfs_reflink_set_inode_flag(
struct xfs_inode *src,
struct xfs_inode *dest)
{
struct xfs_mount *mp = src->i_mount;
int error;
struct xfs_trans *tp;
if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
return 0;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
if (error)
goto out_error;
/* Lock both files against IO */
if (src->i_ino == dest->i_ino)
xfs_ilock(src, XFS_ILOCK_EXCL);
else
xfs_lock_two_inodes(src, dest, XFS_ILOCK_EXCL);
if (!xfs_is_reflink_inode(src)) {
trace_xfs_reflink_set_inode_flag(src);
xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
xfs_ifork_init_cow(src);
} else
xfs_iunlock(src, XFS_ILOCK_EXCL);
if (src->i_ino == dest->i_ino)
goto commit_flags;
if (!xfs_is_reflink_inode(dest)) {
trace_xfs_reflink_set_inode_flag(dest);
xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
xfs_ifork_init_cow(dest);
} else
xfs_iunlock(dest, XFS_ILOCK_EXCL);
commit_flags:
error = xfs_trans_commit(tp);
if (error)
goto out_error;
return error;
out_error:
trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
return error;
}
/*
* Update destination inode size & cowextsize hint, if necessary.
*/
STATIC int
xfs_reflink_update_dest(
struct xfs_inode *dest,
xfs_off_t newlen,
xfs_extlen_t cowextsize)
{
struct xfs_mount *mp = dest->i_mount;
struct xfs_trans *tp;
int error;
if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
return 0;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
if (error)
goto out_error;
xfs_ilock(dest, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
if (newlen > i_size_read(VFS_I(dest))) {
trace_xfs_reflink_update_inode_size(dest, newlen);
i_size_write(VFS_I(dest), newlen);
dest->i_d.di_size = newlen;
}
if (cowextsize) {
dest->i_d.di_cowextsize = cowextsize;
dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
}
xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
error = xfs_trans_commit(tp);
if (error)
goto out_error;
return error;
out_error:
trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
return error;
}
/*
* Do we have enough reserve in this AG to handle a reflink? The refcount
* btree already reserved all the space it needs, but the rmap btree can grow
* infinitely, so we won't allow more reflinks when the AG is down to the
* btree reserves.
*/
static int
xfs_reflink_ag_has_free_space(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
struct xfs_perag *pag;
int error = 0;
if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
return 0;
pag = xfs_perag_get(mp, agno);
if (xfs_ag_resv_critical(pag, XFS_AG_RESV_AGFL) ||
xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
error = -ENOSPC;
xfs_perag_put(pag);
return error;
}
/*
* Unmap a range of blocks from a file, then map other blocks into the hole.
* The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
* The extent irec is mapped into dest at irec->br_startoff.
*/
STATIC int
xfs_reflink_remap_extent(
struct xfs_inode *ip,
struct xfs_bmbt_irec *irec,
xfs_fileoff_t destoff,
xfs_off_t new_isize)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
xfs_fsblock_t firstfsb;
unsigned int resblks;
struct xfs_defer_ops dfops;
struct xfs_bmbt_irec uirec;
bool real_extent;
xfs_filblks_t rlen;
xfs_filblks_t unmap_len;
xfs_off_t newlen;
int error;
unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
/* Only remap normal extents. */
real_extent = (irec->br_startblock != HOLESTARTBLOCK &&
irec->br_startblock != DELAYSTARTBLOCK &&
!ISUNWRITTEN(irec));
/* No reflinking if we're low on space */
if (real_extent) {
error = xfs_reflink_ag_has_free_space(mp,
XFS_FSB_TO_AGNO(mp, irec->br_startblock));
if (error)
goto out;
}
/* Start a rolling transaction to switch the mappings */
resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/* If we're not just clearing space, then do we have enough quota? */
if (real_extent) {
error = xfs_trans_reserve_quota_nblks(tp, ip,
irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
if (error)
goto out_cancel;
}
trace_xfs_reflink_remap(ip, irec->br_startoff,
irec->br_blockcount, irec->br_startblock);
/* Unmap the old blocks in the data fork. */
rlen = unmap_len;
while (rlen) {
xfs_defer_init(&dfops, &firstfsb);
error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
&firstfsb, &dfops);
if (error)
goto out_defer;
/*
* Trim the extent to whatever got unmapped.
* Remember, bunmapi works backwards.
*/
uirec.br_startblock = irec->br_startblock + rlen;
uirec.br_startoff = irec->br_startoff + rlen;
uirec.br_blockcount = unmap_len - rlen;
unmap_len = rlen;
/* If this isn't a real mapping, we're done. */
if (!real_extent || uirec.br_blockcount == 0)
goto next_extent;
trace_xfs_reflink_remap(ip, uirec.br_startoff,
uirec.br_blockcount, uirec.br_startblock);
/* Update the refcount tree */
error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
if (error)
goto out_defer;
/* Map the new blocks into the data fork. */
error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
if (error)
goto out_defer;
/* Update quota accounting. */
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
uirec.br_blockcount);
/* Update dest isize if needed. */
newlen = XFS_FSB_TO_B(mp,
uirec.br_startoff + uirec.br_blockcount);
newlen = min_t(xfs_off_t, newlen, new_isize);
if (newlen > i_size_read(VFS_I(ip))) {
trace_xfs_reflink_update_inode_size(ip, newlen);
i_size_write(VFS_I(ip), newlen);
ip->i_d.di_size = newlen;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
next_extent:
/* Process all the deferred stuff. */
error = xfs_defer_finish(&tp, &dfops, ip);
if (error)
goto out_defer;
}
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
goto out;
return 0;
out_defer:
xfs_defer_cancel(&dfops);
out_cancel:
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
return error;
}
/*
* Iteratively remap one file's extents (and holes) to another's.
*/
STATIC int
xfs_reflink_remap_blocks(
struct xfs_inode *src,
xfs_fileoff_t srcoff,
struct xfs_inode *dest,
xfs_fileoff_t destoff,
xfs_filblks_t len,
xfs_off_t new_isize)
{
struct xfs_bmbt_irec imap;
int nimaps;
int error = 0;
xfs_filblks_t range_len;
/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
while (len) {
trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
dest, destoff);
/* Read extent from the source file */
nimaps = 1;
xfs_ilock(src, XFS_ILOCK_EXCL);
error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
xfs_iunlock(src, XFS_ILOCK_EXCL);
if (error)
goto err;
ASSERT(nimaps == 1);
trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
&imap);
/* Translate imap into the destination file. */
range_len = imap.br_startoff + imap.br_blockcount - srcoff;
imap.br_startoff += destoff - srcoff;
/* Clear dest from destoff to the end of imap and map it in. */
error = xfs_reflink_remap_extent(dest, &imap, destoff,
new_isize);
if (error)
goto err;
if (fatal_signal_pending(current)) {
error = -EINTR;
goto err;
}
/* Advance drange/srange */
srcoff += range_len;
destoff += range_len;
len -= range_len;
}
return 0;
err:
trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
return error;
}
/*
* Read a page's worth of file data into the page cache. Return the page
* locked.
*/
static struct page *
xfs_get_page(
struct inode *inode,
xfs_off_t offset)
{
struct address_space *mapping;
struct page *page;
pgoff_t n;
n = offset >> PAGE_SHIFT;
mapping = inode->i_mapping;
page = read_mapping_page(mapping, n, NULL);
if (IS_ERR(page))
return page;
if (!PageUptodate(page)) {
put_page(page);
return ERR_PTR(-EIO);
}
lock_page(page);
return page;
}
/*
* Compare extents of two files to see if they are the same.
*/
static int
xfs_compare_extents(
struct inode *src,
xfs_off_t srcoff,
struct inode *dest,
xfs_off_t destoff,
xfs_off_t len,
bool *is_same)
{
xfs_off_t src_poff;
xfs_off_t dest_poff;
void *src_addr;
void *dest_addr;
struct page *src_page;
struct page *dest_page;
xfs_off_t cmp_len;
bool same;
int error;
error = -EINVAL;
same = true;
while (len) {
src_poff = srcoff & (PAGE_SIZE - 1);
dest_poff = destoff & (PAGE_SIZE - 1);
cmp_len = min(PAGE_SIZE - src_poff,
PAGE_SIZE - dest_poff);
cmp_len = min(cmp_len, len);
ASSERT(cmp_len > 0);
trace_xfs_reflink_compare_extents(XFS_I(src), srcoff, cmp_len,
XFS_I(dest), destoff);
src_page = xfs_get_page(src, srcoff);
if (IS_ERR(src_page)) {
error = PTR_ERR(src_page);
goto out_error;
}
dest_page = xfs_get_page(dest, destoff);
if (IS_ERR(dest_page)) {
error = PTR_ERR(dest_page);
unlock_page(src_page);
put_page(src_page);
goto out_error;
}
src_addr = kmap_atomic(src_page);
dest_addr = kmap_atomic(dest_page);
flush_dcache_page(src_page);
flush_dcache_page(dest_page);
if (memcmp(src_addr + src_poff, dest_addr + dest_poff, cmp_len))
same = false;
kunmap_atomic(dest_addr);
kunmap_atomic(src_addr);
unlock_page(dest_page);
unlock_page(src_page);
put_page(dest_page);
put_page(src_page);
if (!same)
break;
srcoff += cmp_len;
destoff += cmp_len;
len -= cmp_len;
}
*is_same = same;
return 0;
out_error:
trace_xfs_reflink_compare_extents_error(XFS_I(dest), error, _RET_IP_);
return error;
}
/*
* Link a range of blocks from one file to another.
*/
int
xfs_reflink_remap_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len,
bool is_dedupe)
{
struct inode *inode_in = file_inode(file_in);
struct xfs_inode *src = XFS_I(inode_in);
struct inode *inode_out = file_inode(file_out);
struct xfs_inode *dest = XFS_I(inode_out);
struct xfs_mount *mp = src->i_mount;
loff_t bs = inode_out->i_sb->s_blocksize;
bool same_inode = (inode_in == inode_out);
xfs_fileoff_t sfsbno, dfsbno;
xfs_filblks_t fsblen;
xfs_extlen_t cowextsize;
loff_t isize;
ssize_t ret;
loff_t blen;
if (!xfs_sb_version_hasreflink(&mp->m_sb))
return -EOPNOTSUPP;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
/* Lock both files against IO */
lock_two_nondirectories(inode_in, inode_out);
if (same_inode)
xfs_ilock(src, XFS_MMAPLOCK_EXCL);
else
xfs_lock_two_inodes(src, dest, XFS_MMAPLOCK_EXCL);
/* Don't touch certain kinds of inodes */
ret = -EPERM;
if (IS_IMMUTABLE(inode_out))
goto out_unlock;
ret = -ETXTBSY;
if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
goto out_unlock;
/* Don't reflink dirs, pipes, sockets... */
ret = -EISDIR;
if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
goto out_unlock;
ret = -EINVAL;
if (S_ISFIFO(inode_in->i_mode) || S_ISFIFO(inode_out->i_mode))
goto out_unlock;
if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
goto out_unlock;
/* Don't reflink realtime inodes */
if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
goto out_unlock;
/* Don't share DAX file data for now. */
if (IS_DAX(inode_in) || IS_DAX(inode_out))
goto out_unlock;
/* Are we going all the way to the end? */
isize = i_size_read(inode_in);
if (isize == 0) {
ret = 0;
goto out_unlock;
}
/* Zero length dedupe exits immediately; reflink goes to EOF. */
if (len == 0) {
if (is_dedupe) {
ret = 0;
goto out_unlock;
}
len = isize - pos_in;
}
/* Ensure offsets don't wrap and the input is inside i_size */
if (pos_in + len < pos_in || pos_out + len < pos_out ||
pos_in + len > isize)
goto out_unlock;
/* Don't allow dedupe past EOF in the dest file */
if (is_dedupe) {
loff_t disize;
disize = i_size_read(inode_out);
if (pos_out >= disize || pos_out + len > disize)
goto out_unlock;
}
/* If we're linking to EOF, continue to the block boundary. */
if (pos_in + len == isize)
blen = ALIGN(isize, bs) - pos_in;
else
blen = len;
/* Only reflink if we're aligned to block boundaries */
if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) ||
!IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs))
goto out_unlock;
/* Don't allow overlapped reflink within the same file */
if (same_inode) {
if (pos_out + blen > pos_in && pos_out < pos_in + blen)
goto out_unlock;
}
/* Wait for the completion of any pending IOs on both files */
inode_dio_wait(inode_in);
if (!same_inode)
inode_dio_wait(inode_out);
ret = filemap_write_and_wait_range(inode_in->i_mapping,
pos_in, pos_in + len - 1);
if (ret)
goto out_unlock;
ret = filemap_write_and_wait_range(inode_out->i_mapping,
pos_out, pos_out + len - 1);
if (ret)
goto out_unlock;
trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
/*
* Check that the extents are the same.
*/
if (is_dedupe) {
bool is_same = false;
ret = xfs_compare_extents(inode_in, pos_in, inode_out, pos_out,
len, &is_same);
if (ret)
goto out_unlock;
if (!is_same) {
ret = -EBADE;
goto out_unlock;
}
}
ret = xfs_reflink_set_inode_flag(src, dest);
if (ret)
goto out_unlock;
/*
* Invalidate the page cache so that we can clear any CoW mappings
* in the destination file.
*/
truncate_inode_pages_range(&inode_out->i_data, pos_out,
PAGE_ALIGN(pos_out + len) - 1);
dfsbno = XFS_B_TO_FSBT(mp, pos_out);
sfsbno = XFS_B_TO_FSBT(mp, pos_in);
fsblen = XFS_B_TO_FSB(mp, len);
ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
pos_out + len);
if (ret)
goto out_unlock;
/*
* Carry the cowextsize hint from src to dest if we're sharing the
* entire source file to the entire destination file, the source file
* has a cowextsize hint, and the destination file does not.
*/
cowextsize = 0;
if (pos_in == 0 && len == i_size_read(inode_in) &&
(src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
pos_out == 0 && len >= i_size_read(inode_out) &&
!(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
cowextsize = src->i_d.di_cowextsize;
ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize);
out_unlock:
xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
if (!same_inode)
xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
unlock_two_nondirectories(inode_in, inode_out);
if (ret)
trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
return ret;
}
/*
* The user wants to preemptively CoW all shared blocks in this file,
* which enables us to turn off the reflink flag. Iterate all
* extents which are not prealloc/delalloc to see which ranges are
* mentioned in the refcount tree, then read those blocks into the
* pagecache, dirty them, fsync them back out, and then we can update
* the inode flag. What happens if we run out of memory? :)
*/
STATIC int
xfs_reflink_dirty_extents(
struct xfs_inode *ip,
xfs_fileoff_t fbno,
xfs_filblks_t end,
xfs_off_t isize)
{
struct xfs_mount *mp = ip->i_mount;
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t rbno;
xfs_extlen_t rlen;
xfs_off_t fpos;
xfs_off_t flen;
struct xfs_bmbt_irec map[2];
int nmaps;
int error = 0;
while (end - fbno > 0) {
nmaps = 1;
/*
* Look for extents in the file. Skip holes, delalloc, or
* unwritten extents; they can't be reflinked.
*/
error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
if (error)
goto out;
if (nmaps == 0)
break;
if (map[0].br_startblock == HOLESTARTBLOCK ||
map[0].br_startblock == DELAYSTARTBLOCK ||
ISUNWRITTEN(&map[0]))
goto next;
map[1] = map[0];
while (map[1].br_blockcount) {
agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
aglen = map[1].br_blockcount;
error = xfs_reflink_find_shared(mp, agno, agbno, aglen,
&rbno, &rlen, true);
if (error)
goto out;
if (rbno == NULLAGBLOCK)
break;
/* Dirty the pages */
xfs_iunlock(ip, XFS_ILOCK_EXCL);
fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
(rbno - agbno));
flen = XFS_FSB_TO_B(mp, rlen);
if (fpos + flen > isize)
flen = isize - fpos;
error = iomap_file_dirty(VFS_I(ip), fpos, flen,
&xfs_iomap_ops);
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (error)
goto out;
map[1].br_blockcount -= (rbno - agbno + rlen);
map[1].br_startoff += (rbno - agbno + rlen);
map[1].br_startblock += (rbno - agbno + rlen);
}
next:
fbno = map[0].br_startoff + map[0].br_blockcount;
}
out:
return error;
}
/* Clear the inode reflink flag if there are no shared extents. */
int
xfs_reflink_clear_inode_flag(
struct xfs_inode *ip,
struct xfs_trans **tpp)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t fbno;
xfs_filblks_t end;
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t rbno;
xfs_extlen_t rlen;
struct xfs_bmbt_irec map;
int nmaps;
int error = 0;
ASSERT(xfs_is_reflink_inode(ip));
fbno = 0;
end = XFS_B_TO_FSB(mp, i_size_read(VFS_I(ip)));
while (end - fbno > 0) {
nmaps = 1;
/*
* Look for extents in the file. Skip holes, delalloc, or
* unwritten extents; they can't be reflinked.
*/
error = xfs_bmapi_read(ip, fbno, end - fbno, &map, &nmaps, 0);
if (error)
return error;
if (nmaps == 0)
break;
if (map.br_startblock == HOLESTARTBLOCK ||
map.br_startblock == DELAYSTARTBLOCK ||
ISUNWRITTEN(&map))
goto next;
agno = XFS_FSB_TO_AGNO(mp, map.br_startblock);
agbno = XFS_FSB_TO_AGBNO(mp, map.br_startblock);
aglen = map.br_blockcount;
error = xfs_reflink_find_shared(mp, agno, agbno, aglen,
&rbno, &rlen, false);
if (error)
return error;
/* Is there still a shared block here? */
if (rbno != NULLAGBLOCK)
return 0;
next:
fbno = map.br_startoff + map.br_blockcount;
}
/*
* We didn't find any shared blocks so turn off the reflink flag.
* First, get rid of any leftover CoW mappings.
*/
error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF);
if (error)
return error;
/* Clear the inode flag. */
trace_xfs_reflink_unset_inode_flag(ip);
ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
xfs_inode_clear_cowblocks_tag(ip);
xfs_trans_ijoin(*tpp, ip, 0);
xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
return error;
}
/*
* Clear the inode reflink flag if there are no shared extents and the size
* hasn't changed.
*/
STATIC int
xfs_reflink_try_clear_inode_flag(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
int error = 0;
/* Start a rolling transaction to remove the mappings */
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
error = xfs_reflink_clear_inode_flag(ip, &tp);
if (error)
goto cancel;
error = xfs_trans_commit(tp);
if (error)
goto out;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return 0;
cancel:
xfs_trans_cancel(tp);
out:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
/*
* Pre-COW all shared blocks within a given byte range of a file and turn off
* the reflink flag if we unshare all of the file's blocks.
*/
int
xfs_reflink_unshare(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t len)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t fbno;
xfs_filblks_t end;
xfs_off_t isize;
int error;
if (!xfs_is_reflink_inode(ip))
return 0;
trace_xfs_reflink_unshare(ip, offset, len);
inode_dio_wait(VFS_I(ip));
/* Try to CoW the selected ranges */
xfs_ilock(ip, XFS_ILOCK_EXCL);
fbno = XFS_B_TO_FSBT(mp, offset);
isize = i_size_read(VFS_I(ip));
end = XFS_B_TO_FSB(mp, offset + len);
error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
if (error)
goto out_unlock;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
/* Wait for the IO to finish */
error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (error)
goto out;
/* Turn off the reflink flag if possible. */
error = xfs_reflink_try_clear_inode_flag(ip);
if (error)
goto out;
return 0;
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
return error;
}