mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 07:40:53 +07:00
9dad5feb49
fscrypt_get_encryption_info() has never actually been safe to call in a context that needs GFP_NOFS, since it calls crypto_alloc_skcipher(). crypto_alloc_skcipher() isn't GFP_NOFS-safe, even if called under memalloc_nofs_save(). This is because it may load kernel modules, and also because it internally takes crypto_alg_sem. Other tasks can do GFP_KERNEL allocations while holding crypto_alg_sem for write. The use of fscrypt_init_mutex isn't GFP_NOFS-safe either. So, stop pretending that fscrypt_get_encryption_info() is nofs-safe. I.e., when it allocates memory, just use GFP_KERNEL instead of GFP_NOFS. Note, another reason to do this is that GFP_NOFS is deprecated in favor of using memalloc_nofs_save() in the proper places. Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-10-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
320 lines
9.3 KiB
C
320 lines
9.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Key setup for v1 encryption policies
|
|
*
|
|
* Copyright 2015, 2019 Google LLC
|
|
*/
|
|
|
|
/*
|
|
* This file implements compatibility functions for the original encryption
|
|
* policy version ("v1"), including:
|
|
*
|
|
* - Deriving per-file encryption keys using the AES-128-ECB based KDF
|
|
* (rather than the new method of using HKDF-SHA512)
|
|
*
|
|
* - Retrieving fscrypt master keys from process-subscribed keyrings
|
|
* (rather than the new method of using a filesystem-level keyring)
|
|
*
|
|
* - Handling policies with the DIRECT_KEY flag set using a master key table
|
|
* (rather than the new method of implementing DIRECT_KEY with per-mode keys
|
|
* managed alongside the master keys in the filesystem-level keyring)
|
|
*/
|
|
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <keys/user-type.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include "fscrypt_private.h"
|
|
|
|
/* Table of keys referenced by DIRECT_KEY policies */
|
|
static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */
|
|
static DEFINE_SPINLOCK(fscrypt_direct_keys_lock);
|
|
|
|
/*
|
|
* v1 key derivation function. This generates the derived key by encrypting the
|
|
* master key with AES-128-ECB using the nonce as the AES key. This provides a
|
|
* unique derived key with sufficient entropy for each inode. However, it's
|
|
* nonstandard, non-extensible, doesn't evenly distribute the entropy from the
|
|
* master key, and is trivially reversible: an attacker who compromises a
|
|
* derived key can "decrypt" it to get back to the master key, then derive any
|
|
* other key. For all new code, use HKDF instead.
|
|
*
|
|
* The master key must be at least as long as the derived key. If the master
|
|
* key is longer, then only the first 'derived_keysize' bytes are used.
|
|
*/
|
|
static int derive_key_aes(const u8 *master_key,
|
|
const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
|
|
u8 *derived_key, unsigned int derived_keysize)
|
|
{
|
|
int res = 0;
|
|
struct skcipher_request *req = NULL;
|
|
DECLARE_CRYPTO_WAIT(wait);
|
|
struct scatterlist src_sg, dst_sg;
|
|
struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
|
|
|
|
if (IS_ERR(tfm)) {
|
|
res = PTR_ERR(tfm);
|
|
tfm = NULL;
|
|
goto out;
|
|
}
|
|
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
|
|
req = skcipher_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req) {
|
|
res = -ENOMEM;
|
|
goto out;
|
|
}
|
|
skcipher_request_set_callback(req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
crypto_req_done, &wait);
|
|
res = crypto_skcipher_setkey(tfm, nonce, FSCRYPT_FILE_NONCE_SIZE);
|
|
if (res < 0)
|
|
goto out;
|
|
|
|
sg_init_one(&src_sg, master_key, derived_keysize);
|
|
sg_init_one(&dst_sg, derived_key, derived_keysize);
|
|
skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
|
|
NULL);
|
|
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
|
|
out:
|
|
skcipher_request_free(req);
|
|
crypto_free_skcipher(tfm);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Search the current task's subscribed keyrings for a "logon" key with
|
|
* description prefix:descriptor, and if found acquire a read lock on it and
|
|
* return a pointer to its validated payload in *payload_ret.
|
|
*/
|
|
static struct key *
|
|
find_and_lock_process_key(const char *prefix,
|
|
const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE],
|
|
unsigned int min_keysize,
|
|
const struct fscrypt_key **payload_ret)
|
|
{
|
|
char *description;
|
|
struct key *key;
|
|
const struct user_key_payload *ukp;
|
|
const struct fscrypt_key *payload;
|
|
|
|
description = kasprintf(GFP_KERNEL, "%s%*phN", prefix,
|
|
FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor);
|
|
if (!description)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
key = request_key(&key_type_logon, description, NULL);
|
|
kfree(description);
|
|
if (IS_ERR(key))
|
|
return key;
|
|
|
|
down_read(&key->sem);
|
|
ukp = user_key_payload_locked(key);
|
|
|
|
if (!ukp) /* was the key revoked before we acquired its semaphore? */
|
|
goto invalid;
|
|
|
|
payload = (const struct fscrypt_key *)ukp->data;
|
|
|
|
if (ukp->datalen != sizeof(struct fscrypt_key) ||
|
|
payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) {
|
|
fscrypt_warn(NULL,
|
|
"key with description '%s' has invalid payload",
|
|
key->description);
|
|
goto invalid;
|
|
}
|
|
|
|
if (payload->size < min_keysize) {
|
|
fscrypt_warn(NULL,
|
|
"key with description '%s' is too short (got %u bytes, need %u+ bytes)",
|
|
key->description, payload->size, min_keysize);
|
|
goto invalid;
|
|
}
|
|
|
|
*payload_ret = payload;
|
|
return key;
|
|
|
|
invalid:
|
|
up_read(&key->sem);
|
|
key_put(key);
|
|
return ERR_PTR(-ENOKEY);
|
|
}
|
|
|
|
/* Master key referenced by DIRECT_KEY policy */
|
|
struct fscrypt_direct_key {
|
|
struct hlist_node dk_node;
|
|
refcount_t dk_refcount;
|
|
const struct fscrypt_mode *dk_mode;
|
|
struct fscrypt_prepared_key dk_key;
|
|
u8 dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
|
|
u8 dk_raw[FSCRYPT_MAX_KEY_SIZE];
|
|
};
|
|
|
|
static void free_direct_key(struct fscrypt_direct_key *dk)
|
|
{
|
|
if (dk) {
|
|
fscrypt_destroy_prepared_key(&dk->dk_key);
|
|
kfree_sensitive(dk);
|
|
}
|
|
}
|
|
|
|
void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
|
|
{
|
|
if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock))
|
|
return;
|
|
hash_del(&dk->dk_node);
|
|
spin_unlock(&fscrypt_direct_keys_lock);
|
|
|
|
free_direct_key(dk);
|
|
}
|
|
|
|
/*
|
|
* Find/insert the given key into the fscrypt_direct_keys table. If found, it
|
|
* is returned with elevated refcount, and 'to_insert' is freed if non-NULL. If
|
|
* not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
|
|
* NULL is returned.
|
|
*/
|
|
static struct fscrypt_direct_key *
|
|
find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
|
|
const u8 *raw_key, const struct fscrypt_info *ci)
|
|
{
|
|
unsigned long hash_key;
|
|
struct fscrypt_direct_key *dk;
|
|
|
|
/*
|
|
* Careful: to avoid potentially leaking secret key bytes via timing
|
|
* information, we must key the hash table by descriptor rather than by
|
|
* raw key, and use crypto_memneq() when comparing raw keys.
|
|
*/
|
|
|
|
BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE);
|
|
memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor,
|
|
sizeof(hash_key));
|
|
|
|
spin_lock(&fscrypt_direct_keys_lock);
|
|
hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) {
|
|
if (memcmp(ci->ci_policy.v1.master_key_descriptor,
|
|
dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0)
|
|
continue;
|
|
if (ci->ci_mode != dk->dk_mode)
|
|
continue;
|
|
if (!fscrypt_is_key_prepared(&dk->dk_key, ci))
|
|
continue;
|
|
if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize))
|
|
continue;
|
|
/* using existing tfm with same (descriptor, mode, raw_key) */
|
|
refcount_inc(&dk->dk_refcount);
|
|
spin_unlock(&fscrypt_direct_keys_lock);
|
|
free_direct_key(to_insert);
|
|
return dk;
|
|
}
|
|
if (to_insert)
|
|
hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
|
|
spin_unlock(&fscrypt_direct_keys_lock);
|
|
return to_insert;
|
|
}
|
|
|
|
/* Prepare to encrypt directly using the master key in the given mode */
|
|
static struct fscrypt_direct_key *
|
|
fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
|
|
{
|
|
struct fscrypt_direct_key *dk;
|
|
int err;
|
|
|
|
/* Is there already a tfm for this key? */
|
|
dk = find_or_insert_direct_key(NULL, raw_key, ci);
|
|
if (dk)
|
|
return dk;
|
|
|
|
/* Nope, allocate one. */
|
|
dk = kzalloc(sizeof(*dk), GFP_KERNEL);
|
|
if (!dk)
|
|
return ERR_PTR(-ENOMEM);
|
|
refcount_set(&dk->dk_refcount, 1);
|
|
dk->dk_mode = ci->ci_mode;
|
|
err = fscrypt_prepare_key(&dk->dk_key, raw_key, ci);
|
|
if (err)
|
|
goto err_free_dk;
|
|
memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor,
|
|
FSCRYPT_KEY_DESCRIPTOR_SIZE);
|
|
memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);
|
|
|
|
return find_or_insert_direct_key(dk, raw_key, ci);
|
|
|
|
err_free_dk:
|
|
free_direct_key(dk);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* v1 policy, DIRECT_KEY: use the master key directly */
|
|
static int setup_v1_file_key_direct(struct fscrypt_info *ci,
|
|
const u8 *raw_master_key)
|
|
{
|
|
struct fscrypt_direct_key *dk;
|
|
|
|
dk = fscrypt_get_direct_key(ci, raw_master_key);
|
|
if (IS_ERR(dk))
|
|
return PTR_ERR(dk);
|
|
ci->ci_direct_key = dk;
|
|
ci->ci_enc_key = dk->dk_key;
|
|
return 0;
|
|
}
|
|
|
|
/* v1 policy, !DIRECT_KEY: derive the file's encryption key */
|
|
static int setup_v1_file_key_derived(struct fscrypt_info *ci,
|
|
const u8 *raw_master_key)
|
|
{
|
|
u8 *derived_key;
|
|
int err;
|
|
|
|
/*
|
|
* This cannot be a stack buffer because it will be passed to the
|
|
* scatterlist crypto API during derive_key_aes().
|
|
*/
|
|
derived_key = kmalloc(ci->ci_mode->keysize, GFP_KERNEL);
|
|
if (!derived_key)
|
|
return -ENOMEM;
|
|
|
|
err = derive_key_aes(raw_master_key, ci->ci_nonce,
|
|
derived_key, ci->ci_mode->keysize);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = fscrypt_set_per_file_enc_key(ci, derived_key);
|
|
out:
|
|
kfree_sensitive(derived_key);
|
|
return err;
|
|
}
|
|
|
|
int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key)
|
|
{
|
|
if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
|
|
return setup_v1_file_key_direct(ci, raw_master_key);
|
|
else
|
|
return setup_v1_file_key_derived(ci, raw_master_key);
|
|
}
|
|
|
|
int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
|
|
{
|
|
struct key *key;
|
|
const struct fscrypt_key *payload;
|
|
int err;
|
|
|
|
key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
|
|
ci->ci_policy.v1.master_key_descriptor,
|
|
ci->ci_mode->keysize, &payload);
|
|
if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) {
|
|
key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix,
|
|
ci->ci_policy.v1.master_key_descriptor,
|
|
ci->ci_mode->keysize, &payload);
|
|
}
|
|
if (IS_ERR(key))
|
|
return PTR_ERR(key);
|
|
|
|
err = fscrypt_setup_v1_file_key(ci, payload->raw);
|
|
up_read(&key->sem);
|
|
key_put(key);
|
|
return err;
|
|
}
|