linux_dsm_epyc7002/drivers/net/phy/sfp-bus.c
Russell King 126d6848ef sfp: fix oops with ethtool -m
If a network interface is created prior to the SFP socket being
available, ethtool can request module information.  This unfortunately
leads to an oops:

Unable to handle kernel NULL pointer dereference at virtual address 00000008
pgd = (ptrval)
[00000008] *pgd=7c400831, *pte=00000000, *ppte=00000000
Internal error: Oops: 17 [#1] SMP ARM
Modules linked in:
CPU: 0 PID: 1480 Comm: ethtool Not tainted 4.19.0-rc3 #138
Hardware name: Broadcom Northstar Plus SoC
PC is at sfp_get_module_info+0x8/0x10
LR is at dev_ethtool+0x218c/0x2afc

Fix this by not filling in the network device's SFP bus pointer until
SFP is fully bound, thereby avoiding the core calling into the SFP bus
code.

Fixes: ce0aa27ff3 ("sfp: add sfp-bus to bridge between network devices and sfp cages")
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-18 20:14:19 -07:00

620 lines
16 KiB
C

#include <linux/export.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/phylink.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include "sfp.h"
/**
* struct sfp_bus - internal representation of a sfp bus
*/
struct sfp_bus {
/* private: */
struct kref kref;
struct list_head node;
struct fwnode_handle *fwnode;
const struct sfp_socket_ops *socket_ops;
struct device *sfp_dev;
struct sfp *sfp;
const struct sfp_upstream_ops *upstream_ops;
void *upstream;
struct net_device *netdev;
struct phy_device *phydev;
bool registered;
bool started;
};
/**
* sfp_parse_port() - Parse the EEPROM base ID, setting the port type
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @id: a pointer to the module's &struct sfp_eeprom_id
* @support: optional pointer to an array of unsigned long for the
* ethtool support mask
*
* Parse the EEPROM identification given in @id, and return one of
* %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
* also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
* the connector type.
*
* If the port type is not known, returns %PORT_OTHER.
*/
int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
unsigned long *support)
{
int port;
/* port is the physical connector, set this from the connector field. */
switch (id->base.connector) {
case SFP_CONNECTOR_SC:
case SFP_CONNECTOR_FIBERJACK:
case SFP_CONNECTOR_LC:
case SFP_CONNECTOR_MT_RJ:
case SFP_CONNECTOR_MU:
case SFP_CONNECTOR_OPTICAL_PIGTAIL:
port = PORT_FIBRE;
break;
case SFP_CONNECTOR_RJ45:
port = PORT_TP;
break;
case SFP_CONNECTOR_COPPER_PIGTAIL:
port = PORT_DA;
break;
case SFP_CONNECTOR_UNSPEC:
if (id->base.e1000_base_t) {
port = PORT_TP;
break;
}
/* fallthrough */
case SFP_CONNECTOR_SG: /* guess */
case SFP_CONNECTOR_MPO_1X12:
case SFP_CONNECTOR_MPO_2X16:
case SFP_CONNECTOR_HSSDC_II:
case SFP_CONNECTOR_NOSEPARATE:
case SFP_CONNECTOR_MXC_2X16:
port = PORT_OTHER;
break;
default:
dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
id->base.connector);
port = PORT_OTHER;
break;
}
if (support) {
switch (port) {
case PORT_FIBRE:
phylink_set(support, FIBRE);
break;
case PORT_TP:
phylink_set(support, TP);
break;
}
}
return port;
}
EXPORT_SYMBOL_GPL(sfp_parse_port);
/**
* sfp_parse_support() - Parse the eeprom id for supported link modes
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @id: a pointer to the module's &struct sfp_eeprom_id
* @support: pointer to an array of unsigned long for the ethtool support mask
*
* Parse the EEPROM identification information and derive the supported
* ethtool link modes for the module.
*/
void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
unsigned long *support)
{
unsigned int br_min, br_nom, br_max;
__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
/* Decode the bitrate information to MBd */
br_min = br_nom = br_max = 0;
if (id->base.br_nominal) {
if (id->base.br_nominal != 255) {
br_nom = id->base.br_nominal * 100;
br_min = br_nom - id->base.br_nominal * id->ext.br_min;
br_max = br_nom + id->base.br_nominal * id->ext.br_max;
} else if (id->ext.br_max) {
br_nom = 250 * id->ext.br_max;
br_max = br_nom + br_nom * id->ext.br_min / 100;
br_min = br_nom - br_nom * id->ext.br_min / 100;
}
/* When using passive cables, in case neither BR,min nor BR,max
* are specified, set br_min to 0 as the nominal value is then
* used as the maximum.
*/
if (br_min == br_max && id->base.sfp_ct_passive)
br_min = 0;
}
/* Set ethtool support from the compliance fields. */
if (id->base.e10g_base_sr)
phylink_set(modes, 10000baseSR_Full);
if (id->base.e10g_base_lr)
phylink_set(modes, 10000baseLR_Full);
if (id->base.e10g_base_lrm)
phylink_set(modes, 10000baseLRM_Full);
if (id->base.e10g_base_er)
phylink_set(modes, 10000baseER_Full);
if (id->base.e1000_base_sx ||
id->base.e1000_base_lx ||
id->base.e1000_base_cx)
phylink_set(modes, 1000baseX_Full);
if (id->base.e1000_base_t) {
phylink_set(modes, 1000baseT_Half);
phylink_set(modes, 1000baseT_Full);
}
/* 1000Base-PX or 1000Base-BX10 */
if ((id->base.e_base_px || id->base.e_base_bx10) &&
br_min <= 1300 && br_max >= 1200)
phylink_set(support, 1000baseX_Full);
/* For active or passive cables, select the link modes
* based on the bit rates and the cable compliance bytes.
*/
if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
/* This may look odd, but some manufacturers use 12000MBd */
if (br_min <= 12000 && br_max >= 10300)
phylink_set(modes, 10000baseCR_Full);
if (br_min <= 3200 && br_max >= 3100)
phylink_set(modes, 2500baseX_Full);
if (br_min <= 1300 && br_max >= 1200)
phylink_set(modes, 1000baseX_Full);
}
if (id->base.sfp_ct_passive) {
if (id->base.passive.sff8431_app_e)
phylink_set(modes, 10000baseCR_Full);
}
if (id->base.sfp_ct_active) {
if (id->base.active.sff8431_app_e ||
id->base.active.sff8431_lim) {
phylink_set(modes, 10000baseCR_Full);
}
}
switch (id->base.extended_cc) {
case 0x00: /* Unspecified */
break;
case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */
phylink_set(modes, 100000baseSR4_Full);
phylink_set(modes, 25000baseSR_Full);
break;
case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */
case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */
phylink_set(modes, 100000baseLR4_ER4_Full);
break;
case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */
case 0x0c: /* 25Gbase-CR CA-S */
case 0x0d: /* 25Gbase-CR CA-N */
phylink_set(modes, 100000baseCR4_Full);
phylink_set(modes, 25000baseCR_Full);
break;
default:
dev_warn(bus->sfp_dev,
"Unknown/unsupported extended compliance code: 0x%02x\n",
id->base.extended_cc);
break;
}
/* For fibre channel SFP, derive possible BaseX modes */
if (id->base.fc_speed_100 ||
id->base.fc_speed_200 ||
id->base.fc_speed_400) {
if (id->base.br_nominal >= 31)
phylink_set(modes, 2500baseX_Full);
if (id->base.br_nominal >= 12)
phylink_set(modes, 1000baseX_Full);
}
/* If we haven't discovered any modes that this module supports, try
* the encoding and bitrate to determine supported modes. Some BiDi
* modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
* the differing wavelengths, so do not set any transceiver bits.
*/
if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
/* If the encoding and bit rate allows 1000baseX */
if (id->base.encoding == SFP_ENCODING_8B10B && br_nom &&
br_min <= 1300 && br_max >= 1200)
phylink_set(modes, 1000baseX_Full);
}
bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
phylink_set(support, Autoneg);
phylink_set(support, Pause);
phylink_set(support, Asym_Pause);
}
EXPORT_SYMBOL_GPL(sfp_parse_support);
/**
* sfp_select_interface() - Select appropriate phy_interface_t mode
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @id: a pointer to the module's &struct sfp_eeprom_id
* @link_modes: ethtool link modes mask
*
* Derive the phy_interface_t mode for the information found in the
* module's identifying EEPROM and the link modes mask. There is no
* standard or defined way to derive this information, so we decide
* based upon the link mode mask.
*/
phy_interface_t sfp_select_interface(struct sfp_bus *bus,
const struct sfp_eeprom_id *id,
unsigned long *link_modes)
{
if (phylink_test(link_modes, 10000baseCR_Full) ||
phylink_test(link_modes, 10000baseSR_Full) ||
phylink_test(link_modes, 10000baseLR_Full) ||
phylink_test(link_modes, 10000baseLRM_Full) ||
phylink_test(link_modes, 10000baseER_Full))
return PHY_INTERFACE_MODE_10GKR;
if (phylink_test(link_modes, 2500baseX_Full))
return PHY_INTERFACE_MODE_2500BASEX;
if (id->base.e1000_base_t ||
id->base.e100_base_lx ||
id->base.e100_base_fx)
return PHY_INTERFACE_MODE_SGMII;
if (phylink_test(link_modes, 1000baseX_Full))
return PHY_INTERFACE_MODE_1000BASEX;
dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
return PHY_INTERFACE_MODE_NA;
}
EXPORT_SYMBOL_GPL(sfp_select_interface);
static LIST_HEAD(sfp_buses);
static DEFINE_MUTEX(sfp_mutex);
static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
{
return bus->registered ? bus->upstream_ops : NULL;
}
static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
{
struct sfp_bus *sfp, *new, *found = NULL;
new = kzalloc(sizeof(*new), GFP_KERNEL);
mutex_lock(&sfp_mutex);
list_for_each_entry(sfp, &sfp_buses, node) {
if (sfp->fwnode == fwnode) {
kref_get(&sfp->kref);
found = sfp;
break;
}
}
if (!found && new) {
kref_init(&new->kref);
new->fwnode = fwnode;
list_add(&new->node, &sfp_buses);
found = new;
new = NULL;
}
mutex_unlock(&sfp_mutex);
kfree(new);
return found;
}
static void sfp_bus_release(struct kref *kref)
{
struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
list_del(&bus->node);
mutex_unlock(&sfp_mutex);
kfree(bus);
}
static void sfp_bus_put(struct sfp_bus *bus)
{
kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
}
static int sfp_register_bus(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = bus->upstream_ops;
int ret;
if (ops) {
if (ops->link_down)
ops->link_down(bus->upstream);
if (ops->connect_phy && bus->phydev) {
ret = ops->connect_phy(bus->upstream, bus->phydev);
if (ret)
return ret;
}
}
if (bus->started)
bus->socket_ops->start(bus->sfp);
bus->netdev->sfp_bus = bus;
bus->registered = true;
return 0;
}
static void sfp_unregister_bus(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = bus->upstream_ops;
bus->netdev->sfp_bus = NULL;
if (bus->registered) {
if (bus->started)
bus->socket_ops->stop(bus->sfp);
if (bus->phydev && ops && ops->disconnect_phy)
ops->disconnect_phy(bus->upstream);
}
bus->registered = false;
}
/**
* sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @modinfo: a &struct ethtool_modinfo
*
* Fill in the type and eeprom_len parameters in @modinfo for a module on
* the sfp bus specified by @bus.
*
* Returns 0 on success or a negative errno number.
*/
int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
{
return bus->socket_ops->module_info(bus->sfp, modinfo);
}
EXPORT_SYMBOL_GPL(sfp_get_module_info);
/**
* sfp_get_module_eeprom() - Read the SFP module EEPROM
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @ee: a &struct ethtool_eeprom
* @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
*
* Read the EEPROM as specified by the supplied @ee. See the documentation
* for &struct ethtool_eeprom for the region to be read.
*
* Returns 0 on success or a negative errno number.
*/
int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
u8 *data)
{
return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
}
EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
/**
* sfp_upstream_start() - Inform the SFP that the network device is up
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
*
* Inform the SFP socket that the network device is now up, so that the
* module can be enabled by allowing TX_DISABLE to be deasserted. This
* should be called from the network device driver's &struct net_device_ops
* ndo_open() method.
*/
void sfp_upstream_start(struct sfp_bus *bus)
{
if (bus->registered)
bus->socket_ops->start(bus->sfp);
bus->started = true;
}
EXPORT_SYMBOL_GPL(sfp_upstream_start);
/**
* sfp_upstream_stop() - Inform the SFP that the network device is down
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
*
* Inform the SFP socket that the network device is now up, so that the
* module can be disabled by asserting TX_DISABLE, disabling the laser
* in optical modules. This should be called from the network device
* driver's &struct net_device_ops ndo_stop() method.
*/
void sfp_upstream_stop(struct sfp_bus *bus)
{
if (bus->registered)
bus->socket_ops->stop(bus->sfp);
bus->started = false;
}
EXPORT_SYMBOL_GPL(sfp_upstream_stop);
static void sfp_upstream_clear(struct sfp_bus *bus)
{
bus->upstream_ops = NULL;
bus->upstream = NULL;
bus->netdev = NULL;
}
/**
* sfp_register_upstream() - Register the neighbouring device
* @fwnode: firmware node for the SFP bus
* @ndev: network device associated with the interface
* @upstream: the upstream private data
* @ops: the upstream's &struct sfp_upstream_ops
*
* Register the upstream device (eg, PHY) with the SFP bus. MAC drivers
* should use phylink, which will call this function for them. Returns
* a pointer to the allocated &struct sfp_bus.
*
* On error, returns %NULL.
*/
struct sfp_bus *sfp_register_upstream(struct fwnode_handle *fwnode,
struct net_device *ndev, void *upstream,
const struct sfp_upstream_ops *ops)
{
struct sfp_bus *bus = sfp_bus_get(fwnode);
int ret = 0;
if (bus) {
rtnl_lock();
bus->upstream_ops = ops;
bus->upstream = upstream;
bus->netdev = ndev;
if (bus->sfp) {
ret = sfp_register_bus(bus);
if (ret)
sfp_upstream_clear(bus);
}
rtnl_unlock();
}
if (ret) {
sfp_bus_put(bus);
bus = NULL;
}
return bus;
}
EXPORT_SYMBOL_GPL(sfp_register_upstream);
/**
* sfp_unregister_upstream() - Unregister sfp bus
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
*
* Unregister a previously registered upstream connection for the SFP
* module. @bus is returned from sfp_register_upstream().
*/
void sfp_unregister_upstream(struct sfp_bus *bus)
{
rtnl_lock();
if (bus->sfp)
sfp_unregister_bus(bus);
sfp_upstream_clear(bus);
rtnl_unlock();
sfp_bus_put(bus);
}
EXPORT_SYMBOL_GPL(sfp_unregister_upstream);
/* Socket driver entry points */
int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
int ret = 0;
if (ops && ops->connect_phy)
ret = ops->connect_phy(bus->upstream, phydev);
if (ret == 0)
bus->phydev = phydev;
return ret;
}
EXPORT_SYMBOL_GPL(sfp_add_phy);
void sfp_remove_phy(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->disconnect_phy)
ops->disconnect_phy(bus->upstream);
bus->phydev = NULL;
}
EXPORT_SYMBOL_GPL(sfp_remove_phy);
void sfp_link_up(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->link_up)
ops->link_up(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_link_up);
void sfp_link_down(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->link_down)
ops->link_down(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_link_down);
int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
int ret = 0;
if (ops && ops->module_insert)
ret = ops->module_insert(bus->upstream, id);
return ret;
}
EXPORT_SYMBOL_GPL(sfp_module_insert);
void sfp_module_remove(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->module_remove)
ops->module_remove(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_module_remove);
static void sfp_socket_clear(struct sfp_bus *bus)
{
bus->sfp_dev = NULL;
bus->sfp = NULL;
bus->socket_ops = NULL;
}
struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
const struct sfp_socket_ops *ops)
{
struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
int ret = 0;
if (bus) {
rtnl_lock();
bus->sfp_dev = dev;
bus->sfp = sfp;
bus->socket_ops = ops;
if (bus->netdev) {
ret = sfp_register_bus(bus);
if (ret)
sfp_socket_clear(bus);
}
rtnl_unlock();
}
if (ret) {
sfp_bus_put(bus);
bus = NULL;
}
return bus;
}
EXPORT_SYMBOL_GPL(sfp_register_socket);
void sfp_unregister_socket(struct sfp_bus *bus)
{
rtnl_lock();
if (bus->netdev)
sfp_unregister_bus(bus);
sfp_socket_clear(bus);
rtnl_unlock();
sfp_bus_put(bus);
}
EXPORT_SYMBOL_GPL(sfp_unregister_socket);