mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 15:36:45 +07:00
0db4f9b91c
Add support for building i.MX serial driver as module. The changes of the patch: - imx console driver can be built as module. - move out earlycon code to separated driver like imx_earlycon.c, and imx earlycon driver only support build-in. Signed-off-by: Fugang Duan <fugang.duan@nxp.com> Link: https://lore.kernel.org/r/20200724070815.11445-2-fugang.duan@nxp.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2685 lines
70 KiB
C
2685 lines
70 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Driver for Motorola/Freescale IMX serial ports
|
|
*
|
|
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
|
|
*
|
|
* Author: Sascha Hauer <sascha@saschahauer.de>
|
|
* Copyright (C) 2004 Pengutronix
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/console.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/rational.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <linux/platform_data/serial-imx.h>
|
|
#include <linux/platform_data/dma-imx.h>
|
|
|
|
#include "serial_mctrl_gpio.h"
|
|
|
|
/* Register definitions */
|
|
#define URXD0 0x0 /* Receiver Register */
|
|
#define URTX0 0x40 /* Transmitter Register */
|
|
#define UCR1 0x80 /* Control Register 1 */
|
|
#define UCR2 0x84 /* Control Register 2 */
|
|
#define UCR3 0x88 /* Control Register 3 */
|
|
#define UCR4 0x8c /* Control Register 4 */
|
|
#define UFCR 0x90 /* FIFO Control Register */
|
|
#define USR1 0x94 /* Status Register 1 */
|
|
#define USR2 0x98 /* Status Register 2 */
|
|
#define UESC 0x9c /* Escape Character Register */
|
|
#define UTIM 0xa0 /* Escape Timer Register */
|
|
#define UBIR 0xa4 /* BRM Incremental Register */
|
|
#define UBMR 0xa8 /* BRM Modulator Register */
|
|
#define UBRC 0xac /* Baud Rate Count Register */
|
|
#define IMX21_ONEMS 0xb0 /* One Millisecond register */
|
|
#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
|
|
#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
|
|
|
|
/* UART Control Register Bit Fields.*/
|
|
#define URXD_DUMMY_READ (1<<16)
|
|
#define URXD_CHARRDY (1<<15)
|
|
#define URXD_ERR (1<<14)
|
|
#define URXD_OVRRUN (1<<13)
|
|
#define URXD_FRMERR (1<<12)
|
|
#define URXD_BRK (1<<11)
|
|
#define URXD_PRERR (1<<10)
|
|
#define URXD_RX_DATA (0xFF<<0)
|
|
#define UCR1_ADEN (1<<15) /* Auto detect interrupt */
|
|
#define UCR1_ADBR (1<<14) /* Auto detect baud rate */
|
|
#define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */
|
|
#define UCR1_IDEN (1<<12) /* Idle condition interrupt */
|
|
#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
|
|
#define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */
|
|
#define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */
|
|
#define UCR1_IREN (1<<7) /* Infrared interface enable */
|
|
#define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */
|
|
#define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */
|
|
#define UCR1_SNDBRK (1<<4) /* Send break */
|
|
#define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */
|
|
#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
|
|
#define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */
|
|
#define UCR1_DOZE (1<<1) /* Doze */
|
|
#define UCR1_UARTEN (1<<0) /* UART enabled */
|
|
#define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */
|
|
#define UCR2_IRTS (1<<14) /* Ignore RTS pin */
|
|
#define UCR2_CTSC (1<<13) /* CTS pin control */
|
|
#define UCR2_CTS (1<<12) /* Clear to send */
|
|
#define UCR2_ESCEN (1<<11) /* Escape enable */
|
|
#define UCR2_PREN (1<<8) /* Parity enable */
|
|
#define UCR2_PROE (1<<7) /* Parity odd/even */
|
|
#define UCR2_STPB (1<<6) /* Stop */
|
|
#define UCR2_WS (1<<5) /* Word size */
|
|
#define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */
|
|
#define UCR2_ATEN (1<<3) /* Aging Timer Enable */
|
|
#define UCR2_TXEN (1<<2) /* Transmitter enabled */
|
|
#define UCR2_RXEN (1<<1) /* Receiver enabled */
|
|
#define UCR2_SRST (1<<0) /* SW reset */
|
|
#define UCR3_DTREN (1<<13) /* DTR interrupt enable */
|
|
#define UCR3_PARERREN (1<<12) /* Parity enable */
|
|
#define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */
|
|
#define UCR3_DSR (1<<10) /* Data set ready */
|
|
#define UCR3_DCD (1<<9) /* Data carrier detect */
|
|
#define UCR3_RI (1<<8) /* Ring indicator */
|
|
#define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */
|
|
#define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */
|
|
#define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */
|
|
#define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */
|
|
#define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */
|
|
#define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */
|
|
#define UCR3_INVT (1<<1) /* Inverted Infrared transmission */
|
|
#define UCR3_BPEN (1<<0) /* Preset registers enable */
|
|
#define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */
|
|
#define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */
|
|
#define UCR4_INVR (1<<9) /* Inverted infrared reception */
|
|
#define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */
|
|
#define UCR4_WKEN (1<<7) /* Wake interrupt enable */
|
|
#define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */
|
|
#define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */
|
|
#define UCR4_IRSC (1<<5) /* IR special case */
|
|
#define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */
|
|
#define UCR4_BKEN (1<<2) /* Break condition interrupt enable */
|
|
#define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */
|
|
#define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */
|
|
#define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */
|
|
#define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */
|
|
#define UFCR_RFDIV (7<<7) /* Reference freq divider mask */
|
|
#define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7)
|
|
#define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */
|
|
#define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */
|
|
#define USR1_RTSS (1<<14) /* RTS pin status */
|
|
#define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */
|
|
#define USR1_RTSD (1<<12) /* RTS delta */
|
|
#define USR1_ESCF (1<<11) /* Escape seq interrupt flag */
|
|
#define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */
|
|
#define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */
|
|
#define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */
|
|
#define USR1_DTRD (1<<7) /* DTR Delta */
|
|
#define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */
|
|
#define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */
|
|
#define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */
|
|
#define USR2_ADET (1<<15) /* Auto baud rate detect complete */
|
|
#define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */
|
|
#define USR2_DTRF (1<<13) /* DTR edge interrupt flag */
|
|
#define USR2_IDLE (1<<12) /* Idle condition */
|
|
#define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */
|
|
#define USR2_RIIN (1<<9) /* Ring Indicator Input */
|
|
#define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */
|
|
#define USR2_WAKE (1<<7) /* Wake */
|
|
#define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */
|
|
#define USR2_RTSF (1<<4) /* RTS edge interrupt flag */
|
|
#define USR2_TXDC (1<<3) /* Transmitter complete */
|
|
#define USR2_BRCD (1<<2) /* Break condition */
|
|
#define USR2_ORE (1<<1) /* Overrun error */
|
|
#define USR2_RDR (1<<0) /* Recv data ready */
|
|
#define UTS_FRCPERR (1<<13) /* Force parity error */
|
|
#define UTS_LOOP (1<<12) /* Loop tx and rx */
|
|
#define UTS_TXEMPTY (1<<6) /* TxFIFO empty */
|
|
#define UTS_RXEMPTY (1<<5) /* RxFIFO empty */
|
|
#define UTS_TXFULL (1<<4) /* TxFIFO full */
|
|
#define UTS_RXFULL (1<<3) /* RxFIFO full */
|
|
#define UTS_SOFTRST (1<<0) /* Software reset */
|
|
|
|
/* We've been assigned a range on the "Low-density serial ports" major */
|
|
#define SERIAL_IMX_MAJOR 207
|
|
#define MINOR_START 16
|
|
#define DEV_NAME "ttymxc"
|
|
|
|
/*
|
|
* This determines how often we check the modem status signals
|
|
* for any change. They generally aren't connected to an IRQ
|
|
* so we have to poll them. We also check immediately before
|
|
* filling the TX fifo incase CTS has been dropped.
|
|
*/
|
|
#define MCTRL_TIMEOUT (250*HZ/1000)
|
|
|
|
#define DRIVER_NAME "IMX-uart"
|
|
|
|
#define UART_NR 8
|
|
|
|
/* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
|
|
enum imx_uart_type {
|
|
IMX1_UART,
|
|
IMX21_UART,
|
|
IMX53_UART,
|
|
IMX6Q_UART,
|
|
};
|
|
|
|
/* device type dependent stuff */
|
|
struct imx_uart_data {
|
|
unsigned uts_reg;
|
|
enum imx_uart_type devtype;
|
|
};
|
|
|
|
enum imx_tx_state {
|
|
OFF,
|
|
WAIT_AFTER_RTS,
|
|
SEND,
|
|
WAIT_AFTER_SEND,
|
|
};
|
|
|
|
struct imx_port {
|
|
struct uart_port port;
|
|
struct timer_list timer;
|
|
unsigned int old_status;
|
|
unsigned int have_rtscts:1;
|
|
unsigned int have_rtsgpio:1;
|
|
unsigned int dte_mode:1;
|
|
unsigned int inverted_tx:1;
|
|
unsigned int inverted_rx:1;
|
|
struct clk *clk_ipg;
|
|
struct clk *clk_per;
|
|
const struct imx_uart_data *devdata;
|
|
|
|
struct mctrl_gpios *gpios;
|
|
|
|
/* shadow registers */
|
|
unsigned int ucr1;
|
|
unsigned int ucr2;
|
|
unsigned int ucr3;
|
|
unsigned int ucr4;
|
|
unsigned int ufcr;
|
|
|
|
/* DMA fields */
|
|
unsigned int dma_is_enabled:1;
|
|
unsigned int dma_is_rxing:1;
|
|
unsigned int dma_is_txing:1;
|
|
struct dma_chan *dma_chan_rx, *dma_chan_tx;
|
|
struct scatterlist rx_sgl, tx_sgl[2];
|
|
void *rx_buf;
|
|
struct circ_buf rx_ring;
|
|
unsigned int rx_periods;
|
|
dma_cookie_t rx_cookie;
|
|
unsigned int tx_bytes;
|
|
unsigned int dma_tx_nents;
|
|
unsigned int saved_reg[10];
|
|
bool context_saved;
|
|
|
|
enum imx_tx_state tx_state;
|
|
struct hrtimer trigger_start_tx;
|
|
struct hrtimer trigger_stop_tx;
|
|
};
|
|
|
|
struct imx_port_ucrs {
|
|
unsigned int ucr1;
|
|
unsigned int ucr2;
|
|
unsigned int ucr3;
|
|
};
|
|
|
|
static struct imx_uart_data imx_uart_devdata[] = {
|
|
[IMX1_UART] = {
|
|
.uts_reg = IMX1_UTS,
|
|
.devtype = IMX1_UART,
|
|
},
|
|
[IMX21_UART] = {
|
|
.uts_reg = IMX21_UTS,
|
|
.devtype = IMX21_UART,
|
|
},
|
|
[IMX53_UART] = {
|
|
.uts_reg = IMX21_UTS,
|
|
.devtype = IMX53_UART,
|
|
},
|
|
[IMX6Q_UART] = {
|
|
.uts_reg = IMX21_UTS,
|
|
.devtype = IMX6Q_UART,
|
|
},
|
|
};
|
|
|
|
static const struct platform_device_id imx_uart_devtype[] = {
|
|
{
|
|
.name = "imx1-uart",
|
|
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
|
|
}, {
|
|
.name = "imx21-uart",
|
|
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
|
|
}, {
|
|
.name = "imx53-uart",
|
|
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
|
|
}, {
|
|
.name = "imx6q-uart",
|
|
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
|
|
|
|
static const struct of_device_id imx_uart_dt_ids[] = {
|
|
{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
|
|
{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
|
|
{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
|
|
{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
|
|
|
|
static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
|
|
{
|
|
switch (offset) {
|
|
case UCR1:
|
|
sport->ucr1 = val;
|
|
break;
|
|
case UCR2:
|
|
sport->ucr2 = val;
|
|
break;
|
|
case UCR3:
|
|
sport->ucr3 = val;
|
|
break;
|
|
case UCR4:
|
|
sport->ucr4 = val;
|
|
break;
|
|
case UFCR:
|
|
sport->ufcr = val;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
writel(val, sport->port.membase + offset);
|
|
}
|
|
|
|
static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
|
|
{
|
|
switch (offset) {
|
|
case UCR1:
|
|
return sport->ucr1;
|
|
break;
|
|
case UCR2:
|
|
/*
|
|
* UCR2_SRST is the only bit in the cached registers that might
|
|
* differ from the value that was last written. As it only
|
|
* automatically becomes one after being cleared, reread
|
|
* conditionally.
|
|
*/
|
|
if (!(sport->ucr2 & UCR2_SRST))
|
|
sport->ucr2 = readl(sport->port.membase + offset);
|
|
return sport->ucr2;
|
|
break;
|
|
case UCR3:
|
|
return sport->ucr3;
|
|
break;
|
|
case UCR4:
|
|
return sport->ucr4;
|
|
break;
|
|
case UFCR:
|
|
return sport->ufcr;
|
|
break;
|
|
default:
|
|
return readl(sport->port.membase + offset);
|
|
}
|
|
}
|
|
|
|
static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
|
|
{
|
|
return sport->devdata->uts_reg;
|
|
}
|
|
|
|
static inline int imx_uart_is_imx1(struct imx_port *sport)
|
|
{
|
|
return sport->devdata->devtype == IMX1_UART;
|
|
}
|
|
|
|
static inline int imx_uart_is_imx21(struct imx_port *sport)
|
|
{
|
|
return sport->devdata->devtype == IMX21_UART;
|
|
}
|
|
|
|
static inline int imx_uart_is_imx53(struct imx_port *sport)
|
|
{
|
|
return sport->devdata->devtype == IMX53_UART;
|
|
}
|
|
|
|
static inline int imx_uart_is_imx6q(struct imx_port *sport)
|
|
{
|
|
return sport->devdata->devtype == IMX6Q_UART;
|
|
}
|
|
/*
|
|
* Save and restore functions for UCR1, UCR2 and UCR3 registers
|
|
*/
|
|
#if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
|
|
static void imx_uart_ucrs_save(struct imx_port *sport,
|
|
struct imx_port_ucrs *ucr)
|
|
{
|
|
/* save control registers */
|
|
ucr->ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr->ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr->ucr3 = imx_uart_readl(sport, UCR3);
|
|
}
|
|
|
|
static void imx_uart_ucrs_restore(struct imx_port *sport,
|
|
struct imx_port_ucrs *ucr)
|
|
{
|
|
/* restore control registers */
|
|
imx_uart_writel(sport, ucr->ucr1, UCR1);
|
|
imx_uart_writel(sport, ucr->ucr2, UCR2);
|
|
imx_uart_writel(sport, ucr->ucr3, UCR3);
|
|
}
|
|
#endif
|
|
|
|
/* called with port.lock taken and irqs caller dependent */
|
|
static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
|
|
{
|
|
*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
|
|
|
|
sport->port.mctrl |= TIOCM_RTS;
|
|
mctrl_gpio_set(sport->gpios, sport->port.mctrl);
|
|
}
|
|
|
|
/* called with port.lock taken and irqs caller dependent */
|
|
static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
|
|
{
|
|
*ucr2 &= ~UCR2_CTSC;
|
|
*ucr2 |= UCR2_CTS;
|
|
|
|
sport->port.mctrl &= ~TIOCM_RTS;
|
|
mctrl_gpio_set(sport->gpios, sport->port.mctrl);
|
|
}
|
|
|
|
static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
|
|
{
|
|
long sec = msec / MSEC_PER_SEC;
|
|
long nsec = (msec % MSEC_PER_SEC) * 1000000;
|
|
ktime_t t = ktime_set(sec, nsec);
|
|
|
|
hrtimer_start(hrt, t, HRTIMER_MODE_REL);
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_start_rx(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned int ucr1, ucr2;
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
|
|
ucr2 |= UCR2_RXEN;
|
|
|
|
if (sport->dma_is_enabled) {
|
|
ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
|
|
} else {
|
|
ucr1 |= UCR1_RRDYEN;
|
|
ucr2 |= UCR2_ATEN;
|
|
}
|
|
|
|
/* Write UCR2 first as it includes RXEN */
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_stop_tx(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
u32 ucr1, ucr4, usr2;
|
|
|
|
if (sport->tx_state == OFF)
|
|
return;
|
|
|
|
/*
|
|
* We are maybe in the SMP context, so if the DMA TX thread is running
|
|
* on other cpu, we have to wait for it to finish.
|
|
*/
|
|
if (sport->dma_is_txing)
|
|
return;
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
|
|
|
|
usr2 = imx_uart_readl(sport, USR2);
|
|
if (!(usr2 & USR2_TXDC)) {
|
|
/* The shifter is still busy, so retry once TC triggers */
|
|
return;
|
|
}
|
|
|
|
ucr4 = imx_uart_readl(sport, UCR4);
|
|
ucr4 &= ~UCR4_TCEN;
|
|
imx_uart_writel(sport, ucr4, UCR4);
|
|
|
|
/* in rs485 mode disable transmitter */
|
|
if (port->rs485.flags & SER_RS485_ENABLED) {
|
|
if (sport->tx_state == SEND) {
|
|
sport->tx_state = WAIT_AFTER_SEND;
|
|
start_hrtimer_ms(&sport->trigger_stop_tx,
|
|
port->rs485.delay_rts_after_send);
|
|
return;
|
|
}
|
|
|
|
if (sport->tx_state == WAIT_AFTER_RTS ||
|
|
sport->tx_state == WAIT_AFTER_SEND) {
|
|
u32 ucr2;
|
|
|
|
hrtimer_try_to_cancel(&sport->trigger_start_tx);
|
|
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
|
|
imx_uart_rts_active(sport, &ucr2);
|
|
else
|
|
imx_uart_rts_inactive(sport, &ucr2);
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
imx_uart_start_rx(port);
|
|
|
|
sport->tx_state = OFF;
|
|
}
|
|
} else {
|
|
sport->tx_state = OFF;
|
|
}
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_stop_rx(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
u32 ucr1, ucr2;
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
|
|
if (sport->dma_is_enabled) {
|
|
ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
|
|
} else {
|
|
ucr1 &= ~UCR1_RRDYEN;
|
|
ucr2 &= ~UCR2_ATEN;
|
|
}
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
ucr2 &= ~UCR2_RXEN;
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_enable_ms(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
|
|
mod_timer(&sport->timer, jiffies);
|
|
|
|
mctrl_gpio_enable_ms(sport->gpios);
|
|
}
|
|
|
|
static void imx_uart_dma_tx(struct imx_port *sport);
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static inline void imx_uart_transmit_buffer(struct imx_port *sport)
|
|
{
|
|
struct circ_buf *xmit = &sport->port.state->xmit;
|
|
|
|
if (sport->port.x_char) {
|
|
/* Send next char */
|
|
imx_uart_writel(sport, sport->port.x_char, URTX0);
|
|
sport->port.icount.tx++;
|
|
sport->port.x_char = 0;
|
|
return;
|
|
}
|
|
|
|
if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
|
|
imx_uart_stop_tx(&sport->port);
|
|
return;
|
|
}
|
|
|
|
if (sport->dma_is_enabled) {
|
|
u32 ucr1;
|
|
/*
|
|
* We've just sent a X-char Ensure the TX DMA is enabled
|
|
* and the TX IRQ is disabled.
|
|
**/
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~UCR1_TRDYEN;
|
|
if (sport->dma_is_txing) {
|
|
ucr1 |= UCR1_TXDMAEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
} else {
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
imx_uart_dma_tx(sport);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
while (!uart_circ_empty(xmit) &&
|
|
!(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
|
|
/* send xmit->buf[xmit->tail]
|
|
* out the port here */
|
|
imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
|
|
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
|
|
sport->port.icount.tx++;
|
|
}
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(&sport->port);
|
|
|
|
if (uart_circ_empty(xmit))
|
|
imx_uart_stop_tx(&sport->port);
|
|
}
|
|
|
|
static void imx_uart_dma_tx_callback(void *data)
|
|
{
|
|
struct imx_port *sport = data;
|
|
struct scatterlist *sgl = &sport->tx_sgl[0];
|
|
struct circ_buf *xmit = &sport->port.state->xmit;
|
|
unsigned long flags;
|
|
u32 ucr1;
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
|
|
dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~UCR1_TXDMAEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
/* update the stat */
|
|
xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
|
|
sport->port.icount.tx += sport->tx_bytes;
|
|
|
|
dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
|
|
|
|
sport->dma_is_txing = 0;
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(&sport->port);
|
|
|
|
if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
|
|
imx_uart_dma_tx(sport);
|
|
else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
|
|
u32 ucr4 = imx_uart_readl(sport, UCR4);
|
|
ucr4 |= UCR4_TCEN;
|
|
imx_uart_writel(sport, ucr4, UCR4);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_dma_tx(struct imx_port *sport)
|
|
{
|
|
struct circ_buf *xmit = &sport->port.state->xmit;
|
|
struct scatterlist *sgl = sport->tx_sgl;
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct dma_chan *chan = sport->dma_chan_tx;
|
|
struct device *dev = sport->port.dev;
|
|
u32 ucr1, ucr4;
|
|
int ret;
|
|
|
|
if (sport->dma_is_txing)
|
|
return;
|
|
|
|
ucr4 = imx_uart_readl(sport, UCR4);
|
|
ucr4 &= ~UCR4_TCEN;
|
|
imx_uart_writel(sport, ucr4, UCR4);
|
|
|
|
sport->tx_bytes = uart_circ_chars_pending(xmit);
|
|
|
|
if (xmit->tail < xmit->head || xmit->head == 0) {
|
|
sport->dma_tx_nents = 1;
|
|
sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
|
|
} else {
|
|
sport->dma_tx_nents = 2;
|
|
sg_init_table(sgl, 2);
|
|
sg_set_buf(sgl, xmit->buf + xmit->tail,
|
|
UART_XMIT_SIZE - xmit->tail);
|
|
sg_set_buf(sgl + 1, xmit->buf, xmit->head);
|
|
}
|
|
|
|
ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
|
|
if (ret == 0) {
|
|
dev_err(dev, "DMA mapping error for TX.\n");
|
|
return;
|
|
}
|
|
desc = dmaengine_prep_slave_sg(chan, sgl, ret,
|
|
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
|
|
if (!desc) {
|
|
dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
|
|
DMA_TO_DEVICE);
|
|
dev_err(dev, "We cannot prepare for the TX slave dma!\n");
|
|
return;
|
|
}
|
|
desc->callback = imx_uart_dma_tx_callback;
|
|
desc->callback_param = sport;
|
|
|
|
dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
|
|
uart_circ_chars_pending(xmit));
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 |= UCR1_TXDMAEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
/* fire it */
|
|
sport->dma_is_txing = 1;
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(chan);
|
|
return;
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_start_tx(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
u32 ucr1;
|
|
|
|
if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
|
|
return;
|
|
|
|
/*
|
|
* We cannot simply do nothing here if sport->tx_state == SEND already
|
|
* because UCR1_TXMPTYEN might already have been cleared in
|
|
* imx_uart_stop_tx(), but tx_state is still SEND.
|
|
*/
|
|
|
|
if (port->rs485.flags & SER_RS485_ENABLED) {
|
|
if (sport->tx_state == OFF) {
|
|
u32 ucr2 = imx_uart_readl(sport, UCR2);
|
|
if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
|
|
imx_uart_rts_active(sport, &ucr2);
|
|
else
|
|
imx_uart_rts_inactive(sport, &ucr2);
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
|
|
imx_uart_stop_rx(port);
|
|
|
|
sport->tx_state = WAIT_AFTER_RTS;
|
|
start_hrtimer_ms(&sport->trigger_start_tx,
|
|
port->rs485.delay_rts_before_send);
|
|
return;
|
|
}
|
|
|
|
if (sport->tx_state == WAIT_AFTER_SEND
|
|
|| sport->tx_state == WAIT_AFTER_RTS) {
|
|
|
|
hrtimer_try_to_cancel(&sport->trigger_stop_tx);
|
|
|
|
/*
|
|
* Enable transmitter and shifter empty irq only if DMA
|
|
* is off. In the DMA case this is done in the
|
|
* tx-callback.
|
|
*/
|
|
if (!sport->dma_is_enabled) {
|
|
u32 ucr4 = imx_uart_readl(sport, UCR4);
|
|
ucr4 |= UCR4_TCEN;
|
|
imx_uart_writel(sport, ucr4, UCR4);
|
|
}
|
|
|
|
sport->tx_state = SEND;
|
|
}
|
|
} else {
|
|
sport->tx_state = SEND;
|
|
}
|
|
|
|
if (!sport->dma_is_enabled) {
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
|
|
}
|
|
|
|
if (sport->dma_is_enabled) {
|
|
if (sport->port.x_char) {
|
|
/* We have X-char to send, so enable TX IRQ and
|
|
* disable TX DMA to let TX interrupt to send X-char */
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~UCR1_TXDMAEN;
|
|
ucr1 |= UCR1_TRDYEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
return;
|
|
}
|
|
|
|
if (!uart_circ_empty(&port->state->xmit) &&
|
|
!uart_tx_stopped(port))
|
|
imx_uart_dma_tx(sport);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
|
|
{
|
|
struct imx_port *sport = dev_id;
|
|
u32 usr1;
|
|
|
|
imx_uart_writel(sport, USR1_RTSD, USR1);
|
|
usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
|
|
uart_handle_cts_change(&sport->port, !!usr1);
|
|
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
|
|
{
|
|
struct imx_port *sport = dev_id;
|
|
irqreturn_t ret;
|
|
|
|
spin_lock(&sport->port.lock);
|
|
|
|
ret = __imx_uart_rtsint(irq, dev_id);
|
|
|
|
spin_unlock(&sport->port.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t imx_uart_txint(int irq, void *dev_id)
|
|
{
|
|
struct imx_port *sport = dev_id;
|
|
|
|
spin_lock(&sport->port.lock);
|
|
imx_uart_transmit_buffer(sport);
|
|
spin_unlock(&sport->port.lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
|
|
{
|
|
struct imx_port *sport = dev_id;
|
|
unsigned int rx, flg, ignored = 0;
|
|
struct tty_port *port = &sport->port.state->port;
|
|
|
|
while (imx_uart_readl(sport, USR2) & USR2_RDR) {
|
|
u32 usr2;
|
|
|
|
flg = TTY_NORMAL;
|
|
sport->port.icount.rx++;
|
|
|
|
rx = imx_uart_readl(sport, URXD0);
|
|
|
|
usr2 = imx_uart_readl(sport, USR2);
|
|
if (usr2 & USR2_BRCD) {
|
|
imx_uart_writel(sport, USR2_BRCD, USR2);
|
|
if (uart_handle_break(&sport->port))
|
|
continue;
|
|
}
|
|
|
|
if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
|
|
continue;
|
|
|
|
if (unlikely(rx & URXD_ERR)) {
|
|
if (rx & URXD_BRK)
|
|
sport->port.icount.brk++;
|
|
else if (rx & URXD_PRERR)
|
|
sport->port.icount.parity++;
|
|
else if (rx & URXD_FRMERR)
|
|
sport->port.icount.frame++;
|
|
if (rx & URXD_OVRRUN)
|
|
sport->port.icount.overrun++;
|
|
|
|
if (rx & sport->port.ignore_status_mask) {
|
|
if (++ignored > 100)
|
|
goto out;
|
|
continue;
|
|
}
|
|
|
|
rx &= (sport->port.read_status_mask | 0xFF);
|
|
|
|
if (rx & URXD_BRK)
|
|
flg = TTY_BREAK;
|
|
else if (rx & URXD_PRERR)
|
|
flg = TTY_PARITY;
|
|
else if (rx & URXD_FRMERR)
|
|
flg = TTY_FRAME;
|
|
if (rx & URXD_OVRRUN)
|
|
flg = TTY_OVERRUN;
|
|
|
|
sport->port.sysrq = 0;
|
|
}
|
|
|
|
if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
|
|
goto out;
|
|
|
|
if (tty_insert_flip_char(port, rx, flg) == 0)
|
|
sport->port.icount.buf_overrun++;
|
|
}
|
|
|
|
out:
|
|
tty_flip_buffer_push(port);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
|
|
{
|
|
struct imx_port *sport = dev_id;
|
|
irqreturn_t ret;
|
|
|
|
spin_lock(&sport->port.lock);
|
|
|
|
ret = __imx_uart_rxint(irq, dev_id);
|
|
|
|
spin_unlock(&sport->port.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void imx_uart_clear_rx_errors(struct imx_port *sport);
|
|
|
|
/*
|
|
* We have a modem side uart, so the meanings of RTS and CTS are inverted.
|
|
*/
|
|
static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
|
|
{
|
|
unsigned int tmp = TIOCM_DSR;
|
|
unsigned usr1 = imx_uart_readl(sport, USR1);
|
|
unsigned usr2 = imx_uart_readl(sport, USR2);
|
|
|
|
if (usr1 & USR1_RTSS)
|
|
tmp |= TIOCM_CTS;
|
|
|
|
/* in DCE mode DCDIN is always 0 */
|
|
if (!(usr2 & USR2_DCDIN))
|
|
tmp |= TIOCM_CAR;
|
|
|
|
if (sport->dte_mode)
|
|
if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
|
|
tmp |= TIOCM_RI;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Handle any change of modem status signal since we were last called.
|
|
*/
|
|
static void imx_uart_mctrl_check(struct imx_port *sport)
|
|
{
|
|
unsigned int status, changed;
|
|
|
|
status = imx_uart_get_hwmctrl(sport);
|
|
changed = status ^ sport->old_status;
|
|
|
|
if (changed == 0)
|
|
return;
|
|
|
|
sport->old_status = status;
|
|
|
|
if (changed & TIOCM_RI && status & TIOCM_RI)
|
|
sport->port.icount.rng++;
|
|
if (changed & TIOCM_DSR)
|
|
sport->port.icount.dsr++;
|
|
if (changed & TIOCM_CAR)
|
|
uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
|
|
if (changed & TIOCM_CTS)
|
|
uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
|
|
|
|
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
|
|
}
|
|
|
|
static irqreturn_t imx_uart_int(int irq, void *dev_id)
|
|
{
|
|
struct imx_port *sport = dev_id;
|
|
unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
spin_lock(&sport->port.lock);
|
|
|
|
usr1 = imx_uart_readl(sport, USR1);
|
|
usr2 = imx_uart_readl(sport, USR2);
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr3 = imx_uart_readl(sport, UCR3);
|
|
ucr4 = imx_uart_readl(sport, UCR4);
|
|
|
|
/*
|
|
* Even if a condition is true that can trigger an irq only handle it if
|
|
* the respective irq source is enabled. This prevents some undesired
|
|
* actions, for example if a character that sits in the RX FIFO and that
|
|
* should be fetched via DMA is tried to be fetched using PIO. Or the
|
|
* receiver is currently off and so reading from URXD0 results in an
|
|
* exception. So just mask the (raw) status bits for disabled irqs.
|
|
*/
|
|
if ((ucr1 & UCR1_RRDYEN) == 0)
|
|
usr1 &= ~USR1_RRDY;
|
|
if ((ucr2 & UCR2_ATEN) == 0)
|
|
usr1 &= ~USR1_AGTIM;
|
|
if ((ucr1 & UCR1_TRDYEN) == 0)
|
|
usr1 &= ~USR1_TRDY;
|
|
if ((ucr4 & UCR4_TCEN) == 0)
|
|
usr2 &= ~USR2_TXDC;
|
|
if ((ucr3 & UCR3_DTRDEN) == 0)
|
|
usr1 &= ~USR1_DTRD;
|
|
if ((ucr1 & UCR1_RTSDEN) == 0)
|
|
usr1 &= ~USR1_RTSD;
|
|
if ((ucr3 & UCR3_AWAKEN) == 0)
|
|
usr1 &= ~USR1_AWAKE;
|
|
if ((ucr4 & UCR4_OREN) == 0)
|
|
usr2 &= ~USR2_ORE;
|
|
|
|
if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
|
|
imx_uart_writel(sport, USR1_AGTIM, USR1);
|
|
|
|
__imx_uart_rxint(irq, dev_id);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
|
|
imx_uart_transmit_buffer(sport);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (usr1 & USR1_DTRD) {
|
|
imx_uart_writel(sport, USR1_DTRD, USR1);
|
|
|
|
imx_uart_mctrl_check(sport);
|
|
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (usr1 & USR1_RTSD) {
|
|
__imx_uart_rtsint(irq, dev_id);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (usr1 & USR1_AWAKE) {
|
|
imx_uart_writel(sport, USR1_AWAKE, USR1);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (usr2 & USR2_ORE) {
|
|
sport->port.icount.overrun++;
|
|
imx_uart_writel(sport, USR2_ORE, USR2);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
spin_unlock(&sport->port.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return TIOCSER_TEMT when transmitter is not busy.
|
|
*/
|
|
static unsigned int imx_uart_tx_empty(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned int ret;
|
|
|
|
ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0;
|
|
|
|
/* If the TX DMA is working, return 0. */
|
|
if (sport->dma_is_txing)
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static unsigned int imx_uart_get_mctrl(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned int ret = imx_uart_get_hwmctrl(sport);
|
|
|
|
mctrl_gpio_get(sport->gpios, &ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
u32 ucr3, uts;
|
|
|
|
if (!(port->rs485.flags & SER_RS485_ENABLED)) {
|
|
u32 ucr2;
|
|
|
|
/*
|
|
* Turn off autoRTS if RTS is lowered and restore autoRTS
|
|
* setting if RTS is raised.
|
|
*/
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
|
|
if (mctrl & TIOCM_RTS) {
|
|
ucr2 |= UCR2_CTS;
|
|
/*
|
|
* UCR2_IRTS is unset if and only if the port is
|
|
* configured for CRTSCTS, so we use inverted UCR2_IRTS
|
|
* to get the state to restore to.
|
|
*/
|
|
if (!(ucr2 & UCR2_IRTS))
|
|
ucr2 |= UCR2_CTSC;
|
|
}
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
}
|
|
|
|
ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
|
|
if (!(mctrl & TIOCM_DTR))
|
|
ucr3 |= UCR3_DSR;
|
|
imx_uart_writel(sport, ucr3, UCR3);
|
|
|
|
uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
|
|
if (mctrl & TIOCM_LOOP)
|
|
uts |= UTS_LOOP;
|
|
imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
|
|
|
|
mctrl_gpio_set(sport->gpios, mctrl);
|
|
}
|
|
|
|
/*
|
|
* Interrupts always disabled.
|
|
*/
|
|
static void imx_uart_break_ctl(struct uart_port *port, int break_state)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned long flags;
|
|
u32 ucr1;
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
|
|
|
|
if (break_state != 0)
|
|
ucr1 |= UCR1_SNDBRK;
|
|
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This is our per-port timeout handler, for checking the
|
|
* modem status signals.
|
|
*/
|
|
static void imx_uart_timeout(struct timer_list *t)
|
|
{
|
|
struct imx_port *sport = from_timer(sport, t, timer);
|
|
unsigned long flags;
|
|
|
|
if (sport->port.state) {
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
imx_uart_mctrl_check(sport);
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There are two kinds of RX DMA interrupts(such as in the MX6Q):
|
|
* [1] the RX DMA buffer is full.
|
|
* [2] the aging timer expires
|
|
*
|
|
* Condition [2] is triggered when a character has been sitting in the FIFO
|
|
* for at least 8 byte durations.
|
|
*/
|
|
static void imx_uart_dma_rx_callback(void *data)
|
|
{
|
|
struct imx_port *sport = data;
|
|
struct dma_chan *chan = sport->dma_chan_rx;
|
|
struct scatterlist *sgl = &sport->rx_sgl;
|
|
struct tty_port *port = &sport->port.state->port;
|
|
struct dma_tx_state state;
|
|
struct circ_buf *rx_ring = &sport->rx_ring;
|
|
enum dma_status status;
|
|
unsigned int w_bytes = 0;
|
|
unsigned int r_bytes;
|
|
unsigned int bd_size;
|
|
|
|
status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
|
|
|
|
if (status == DMA_ERROR) {
|
|
imx_uart_clear_rx_errors(sport);
|
|
return;
|
|
}
|
|
|
|
if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
|
|
|
|
/*
|
|
* The state-residue variable represents the empty space
|
|
* relative to the entire buffer. Taking this in consideration
|
|
* the head is always calculated base on the buffer total
|
|
* length - DMA transaction residue. The UART script from the
|
|
* SDMA firmware will jump to the next buffer descriptor,
|
|
* once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
|
|
* Taking this in consideration the tail is always at the
|
|
* beginning of the buffer descriptor that contains the head.
|
|
*/
|
|
|
|
/* Calculate the head */
|
|
rx_ring->head = sg_dma_len(sgl) - state.residue;
|
|
|
|
/* Calculate the tail. */
|
|
bd_size = sg_dma_len(sgl) / sport->rx_periods;
|
|
rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
|
|
|
|
if (rx_ring->head <= sg_dma_len(sgl) &&
|
|
rx_ring->head > rx_ring->tail) {
|
|
|
|
/* Move data from tail to head */
|
|
r_bytes = rx_ring->head - rx_ring->tail;
|
|
|
|
/* CPU claims ownership of RX DMA buffer */
|
|
dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
|
|
DMA_FROM_DEVICE);
|
|
|
|
w_bytes = tty_insert_flip_string(port,
|
|
sport->rx_buf + rx_ring->tail, r_bytes);
|
|
|
|
/* UART retrieves ownership of RX DMA buffer */
|
|
dma_sync_sg_for_device(sport->port.dev, sgl, 1,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (w_bytes != r_bytes)
|
|
sport->port.icount.buf_overrun++;
|
|
|
|
sport->port.icount.rx += w_bytes;
|
|
} else {
|
|
WARN_ON(rx_ring->head > sg_dma_len(sgl));
|
|
WARN_ON(rx_ring->head <= rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
if (w_bytes) {
|
|
tty_flip_buffer_push(port);
|
|
dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
|
|
}
|
|
}
|
|
|
|
/* RX DMA buffer periods */
|
|
#define RX_DMA_PERIODS 16
|
|
#define RX_BUF_SIZE (RX_DMA_PERIODS * PAGE_SIZE / 4)
|
|
|
|
static int imx_uart_start_rx_dma(struct imx_port *sport)
|
|
{
|
|
struct scatterlist *sgl = &sport->rx_sgl;
|
|
struct dma_chan *chan = sport->dma_chan_rx;
|
|
struct device *dev = sport->port.dev;
|
|
struct dma_async_tx_descriptor *desc;
|
|
int ret;
|
|
|
|
sport->rx_ring.head = 0;
|
|
sport->rx_ring.tail = 0;
|
|
sport->rx_periods = RX_DMA_PERIODS;
|
|
|
|
sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
|
|
ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
|
|
if (ret == 0) {
|
|
dev_err(dev, "DMA mapping error for RX.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
|
|
sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
|
|
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
|
|
|
|
if (!desc) {
|
|
dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
|
|
dev_err(dev, "We cannot prepare for the RX slave dma!\n");
|
|
return -EINVAL;
|
|
}
|
|
desc->callback = imx_uart_dma_rx_callback;
|
|
desc->callback_param = sport;
|
|
|
|
dev_dbg(dev, "RX: prepare for the DMA.\n");
|
|
sport->dma_is_rxing = 1;
|
|
sport->rx_cookie = dmaengine_submit(desc);
|
|
dma_async_issue_pending(chan);
|
|
return 0;
|
|
}
|
|
|
|
static void imx_uart_clear_rx_errors(struct imx_port *sport)
|
|
{
|
|
struct tty_port *port = &sport->port.state->port;
|
|
u32 usr1, usr2;
|
|
|
|
usr1 = imx_uart_readl(sport, USR1);
|
|
usr2 = imx_uart_readl(sport, USR2);
|
|
|
|
if (usr2 & USR2_BRCD) {
|
|
sport->port.icount.brk++;
|
|
imx_uart_writel(sport, USR2_BRCD, USR2);
|
|
uart_handle_break(&sport->port);
|
|
if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
|
|
sport->port.icount.buf_overrun++;
|
|
tty_flip_buffer_push(port);
|
|
} else {
|
|
if (usr1 & USR1_FRAMERR) {
|
|
sport->port.icount.frame++;
|
|
imx_uart_writel(sport, USR1_FRAMERR, USR1);
|
|
} else if (usr1 & USR1_PARITYERR) {
|
|
sport->port.icount.parity++;
|
|
imx_uart_writel(sport, USR1_PARITYERR, USR1);
|
|
}
|
|
}
|
|
|
|
if (usr2 & USR2_ORE) {
|
|
sport->port.icount.overrun++;
|
|
imx_uart_writel(sport, USR2_ORE, USR2);
|
|
}
|
|
|
|
}
|
|
|
|
#define TXTL_DEFAULT 2 /* reset default */
|
|
#define RXTL_DEFAULT 1 /* reset default */
|
|
#define TXTL_DMA 8 /* DMA burst setting */
|
|
#define RXTL_DMA 9 /* DMA burst setting */
|
|
|
|
static void imx_uart_setup_ufcr(struct imx_port *sport,
|
|
unsigned char txwl, unsigned char rxwl)
|
|
{
|
|
unsigned int val;
|
|
|
|
/* set receiver / transmitter trigger level */
|
|
val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
|
|
val |= txwl << UFCR_TXTL_SHF | rxwl;
|
|
imx_uart_writel(sport, val, UFCR);
|
|
}
|
|
|
|
static void imx_uart_dma_exit(struct imx_port *sport)
|
|
{
|
|
if (sport->dma_chan_rx) {
|
|
dmaengine_terminate_sync(sport->dma_chan_rx);
|
|
dma_release_channel(sport->dma_chan_rx);
|
|
sport->dma_chan_rx = NULL;
|
|
sport->rx_cookie = -EINVAL;
|
|
kfree(sport->rx_buf);
|
|
sport->rx_buf = NULL;
|
|
}
|
|
|
|
if (sport->dma_chan_tx) {
|
|
dmaengine_terminate_sync(sport->dma_chan_tx);
|
|
dma_release_channel(sport->dma_chan_tx);
|
|
sport->dma_chan_tx = NULL;
|
|
}
|
|
}
|
|
|
|
static int imx_uart_dma_init(struct imx_port *sport)
|
|
{
|
|
struct dma_slave_config slave_config = {};
|
|
struct device *dev = sport->port.dev;
|
|
int ret;
|
|
|
|
/* Prepare for RX : */
|
|
sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
|
|
if (!sport->dma_chan_rx) {
|
|
dev_dbg(dev, "cannot get the DMA channel.\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
slave_config.direction = DMA_DEV_TO_MEM;
|
|
slave_config.src_addr = sport->port.mapbase + URXD0;
|
|
slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
/* one byte less than the watermark level to enable the aging timer */
|
|
slave_config.src_maxburst = RXTL_DMA - 1;
|
|
ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
|
|
if (ret) {
|
|
dev_err(dev, "error in RX dma configuration.\n");
|
|
goto err;
|
|
}
|
|
|
|
sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
|
|
if (!sport->rx_buf) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
sport->rx_ring.buf = sport->rx_buf;
|
|
|
|
/* Prepare for TX : */
|
|
sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
|
|
if (!sport->dma_chan_tx) {
|
|
dev_err(dev, "cannot get the TX DMA channel!\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
slave_config.direction = DMA_MEM_TO_DEV;
|
|
slave_config.dst_addr = sport->port.mapbase + URTX0;
|
|
slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
slave_config.dst_maxburst = TXTL_DMA;
|
|
ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
|
|
if (ret) {
|
|
dev_err(dev, "error in TX dma configuration.");
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
imx_uart_dma_exit(sport);
|
|
return ret;
|
|
}
|
|
|
|
static void imx_uart_enable_dma(struct imx_port *sport)
|
|
{
|
|
u32 ucr1;
|
|
|
|
imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
|
|
|
|
/* set UCR1 */
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
sport->dma_is_enabled = 1;
|
|
}
|
|
|
|
static void imx_uart_disable_dma(struct imx_port *sport)
|
|
{
|
|
u32 ucr1;
|
|
|
|
/* clear UCR1 */
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
|
|
|
|
sport->dma_is_enabled = 0;
|
|
}
|
|
|
|
/* half the RX buffer size */
|
|
#define CTSTL 16
|
|
|
|
static int imx_uart_startup(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
int retval, i;
|
|
unsigned long flags;
|
|
int dma_is_inited = 0;
|
|
u32 ucr1, ucr2, ucr3, ucr4;
|
|
|
|
retval = clk_prepare_enable(sport->clk_per);
|
|
if (retval)
|
|
return retval;
|
|
retval = clk_prepare_enable(sport->clk_ipg);
|
|
if (retval) {
|
|
clk_disable_unprepare(sport->clk_per);
|
|
return retval;
|
|
}
|
|
|
|
imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
|
|
|
|
/* disable the DREN bit (Data Ready interrupt enable) before
|
|
* requesting IRQs
|
|
*/
|
|
ucr4 = imx_uart_readl(sport, UCR4);
|
|
|
|
/* set the trigger level for CTS */
|
|
ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
|
|
ucr4 |= CTSTL << UCR4_CTSTL_SHF;
|
|
|
|
imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
|
|
|
|
/* Can we enable the DMA support? */
|
|
if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
|
|
dma_is_inited = 1;
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
/* Reset fifo's and state machines */
|
|
i = 100;
|
|
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr2 &= ~UCR2_SRST;
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
|
|
udelay(1);
|
|
|
|
/*
|
|
* Finally, clear and enable interrupts
|
|
*/
|
|
imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
|
|
imx_uart_writel(sport, USR2_ORE, USR2);
|
|
|
|
ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
|
|
ucr1 |= UCR1_UARTEN;
|
|
if (sport->have_rtscts)
|
|
ucr1 |= UCR1_RTSDEN;
|
|
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
|
|
if (!sport->dma_is_enabled)
|
|
ucr4 |= UCR4_OREN;
|
|
if (sport->inverted_rx)
|
|
ucr4 |= UCR4_INVR;
|
|
imx_uart_writel(sport, ucr4, UCR4);
|
|
|
|
ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
|
|
/*
|
|
* configure tx polarity before enabling tx
|
|
*/
|
|
if (sport->inverted_tx)
|
|
ucr3 |= UCR3_INVT;
|
|
|
|
if (!imx_uart_is_imx1(sport)) {
|
|
ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
|
|
|
|
if (sport->dte_mode)
|
|
/* disable broken interrupts */
|
|
ucr3 &= ~(UCR3_RI | UCR3_DCD);
|
|
}
|
|
imx_uart_writel(sport, ucr3, UCR3);
|
|
|
|
ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
|
|
ucr2 |= (UCR2_RXEN | UCR2_TXEN);
|
|
if (!sport->have_rtscts)
|
|
ucr2 |= UCR2_IRTS;
|
|
/*
|
|
* make sure the edge sensitive RTS-irq is disabled,
|
|
* we're using RTSD instead.
|
|
*/
|
|
if (!imx_uart_is_imx1(sport))
|
|
ucr2 &= ~UCR2_RTSEN;
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
/*
|
|
* Enable modem status interrupts
|
|
*/
|
|
imx_uart_enable_ms(&sport->port);
|
|
|
|
if (dma_is_inited) {
|
|
imx_uart_enable_dma(sport);
|
|
imx_uart_start_rx_dma(sport);
|
|
} else {
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 |= UCR1_RRDYEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr2 |= UCR2_ATEN;
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void imx_uart_shutdown(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned long flags;
|
|
u32 ucr1, ucr2, ucr4;
|
|
|
|
if (sport->dma_is_enabled) {
|
|
dmaengine_terminate_sync(sport->dma_chan_tx);
|
|
if (sport->dma_is_txing) {
|
|
dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
|
|
sport->dma_tx_nents, DMA_TO_DEVICE);
|
|
sport->dma_is_txing = 0;
|
|
}
|
|
dmaengine_terminate_sync(sport->dma_chan_rx);
|
|
if (sport->dma_is_rxing) {
|
|
dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
|
|
1, DMA_FROM_DEVICE);
|
|
sport->dma_is_rxing = 0;
|
|
}
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
imx_uart_stop_tx(port);
|
|
imx_uart_stop_rx(port);
|
|
imx_uart_disable_dma(sport);
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
imx_uart_dma_exit(sport);
|
|
}
|
|
|
|
mctrl_gpio_disable_ms(sport->gpios);
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
ucr4 = imx_uart_readl(sport, UCR4);
|
|
ucr4 &= ~UCR4_OREN;
|
|
imx_uart_writel(sport, ucr4, UCR4);
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
/*
|
|
* Stop our timer.
|
|
*/
|
|
del_timer_sync(&sport->timer);
|
|
|
|
/*
|
|
* Disable all interrupts, port and break condition.
|
|
*/
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
|
|
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
clk_disable_unprepare(sport->clk_per);
|
|
clk_disable_unprepare(sport->clk_ipg);
|
|
}
|
|
|
|
/* called with port.lock taken and irqs off */
|
|
static void imx_uart_flush_buffer(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
struct scatterlist *sgl = &sport->tx_sgl[0];
|
|
u32 ucr2;
|
|
int i = 100, ubir, ubmr, uts;
|
|
|
|
if (!sport->dma_chan_tx)
|
|
return;
|
|
|
|
sport->tx_bytes = 0;
|
|
dmaengine_terminate_all(sport->dma_chan_tx);
|
|
if (sport->dma_is_txing) {
|
|
u32 ucr1;
|
|
|
|
dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
|
|
DMA_TO_DEVICE);
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~UCR1_TXDMAEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
sport->dma_is_txing = 0;
|
|
}
|
|
|
|
/*
|
|
* According to the Reference Manual description of the UART SRST bit:
|
|
*
|
|
* "Reset the transmit and receive state machines,
|
|
* all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
|
|
* and UTS[6-3]".
|
|
*
|
|
* We don't need to restore the old values from USR1, USR2, URXD and
|
|
* UTXD. UBRC is read only, so only save/restore the other three
|
|
* registers.
|
|
*/
|
|
ubir = imx_uart_readl(sport, UBIR);
|
|
ubmr = imx_uart_readl(sport, UBMR);
|
|
uts = imx_uart_readl(sport, IMX21_UTS);
|
|
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr2 &= ~UCR2_SRST;
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
|
|
udelay(1);
|
|
|
|
/* Restore the registers */
|
|
imx_uart_writel(sport, ubir, UBIR);
|
|
imx_uart_writel(sport, ubmr, UBMR);
|
|
imx_uart_writel(sport, uts, IMX21_UTS);
|
|
}
|
|
|
|
static void
|
|
imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
|
|
struct ktermios *old)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned long flags;
|
|
u32 ucr2, old_ucr2, ufcr;
|
|
unsigned int baud, quot;
|
|
unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
|
|
unsigned long div;
|
|
unsigned long num, denom, old_ubir, old_ubmr;
|
|
uint64_t tdiv64;
|
|
|
|
/*
|
|
* We only support CS7 and CS8.
|
|
*/
|
|
while ((termios->c_cflag & CSIZE) != CS7 &&
|
|
(termios->c_cflag & CSIZE) != CS8) {
|
|
termios->c_cflag &= ~CSIZE;
|
|
termios->c_cflag |= old_csize;
|
|
old_csize = CS8;
|
|
}
|
|
|
|
del_timer_sync(&sport->timer);
|
|
|
|
/*
|
|
* Ask the core to calculate the divisor for us.
|
|
*/
|
|
baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
|
|
quot = uart_get_divisor(port, baud);
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
|
|
/*
|
|
* Read current UCR2 and save it for future use, then clear all the bits
|
|
* except those we will or may need to preserve.
|
|
*/
|
|
old_ucr2 = imx_uart_readl(sport, UCR2);
|
|
ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
|
|
|
|
ucr2 |= UCR2_SRST | UCR2_IRTS;
|
|
if ((termios->c_cflag & CSIZE) == CS8)
|
|
ucr2 |= UCR2_WS;
|
|
|
|
if (!sport->have_rtscts)
|
|
termios->c_cflag &= ~CRTSCTS;
|
|
|
|
if (port->rs485.flags & SER_RS485_ENABLED) {
|
|
/*
|
|
* RTS is mandatory for rs485 operation, so keep
|
|
* it under manual control and keep transmitter
|
|
* disabled.
|
|
*/
|
|
if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
|
|
imx_uart_rts_active(sport, &ucr2);
|
|
else
|
|
imx_uart_rts_inactive(sport, &ucr2);
|
|
|
|
} else if (termios->c_cflag & CRTSCTS) {
|
|
/*
|
|
* Only let receiver control RTS output if we were not requested
|
|
* to have RTS inactive (which then should take precedence).
|
|
*/
|
|
if (ucr2 & UCR2_CTS)
|
|
ucr2 |= UCR2_CTSC;
|
|
}
|
|
|
|
if (termios->c_cflag & CRTSCTS)
|
|
ucr2 &= ~UCR2_IRTS;
|
|
if (termios->c_cflag & CSTOPB)
|
|
ucr2 |= UCR2_STPB;
|
|
if (termios->c_cflag & PARENB) {
|
|
ucr2 |= UCR2_PREN;
|
|
if (termios->c_cflag & PARODD)
|
|
ucr2 |= UCR2_PROE;
|
|
}
|
|
|
|
sport->port.read_status_mask = 0;
|
|
if (termios->c_iflag & INPCK)
|
|
sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
|
|
if (termios->c_iflag & (BRKINT | PARMRK))
|
|
sport->port.read_status_mask |= URXD_BRK;
|
|
|
|
/*
|
|
* Characters to ignore
|
|
*/
|
|
sport->port.ignore_status_mask = 0;
|
|
if (termios->c_iflag & IGNPAR)
|
|
sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
|
|
if (termios->c_iflag & IGNBRK) {
|
|
sport->port.ignore_status_mask |= URXD_BRK;
|
|
/*
|
|
* If we're ignoring parity and break indicators,
|
|
* ignore overruns too (for real raw support).
|
|
*/
|
|
if (termios->c_iflag & IGNPAR)
|
|
sport->port.ignore_status_mask |= URXD_OVRRUN;
|
|
}
|
|
|
|
if ((termios->c_cflag & CREAD) == 0)
|
|
sport->port.ignore_status_mask |= URXD_DUMMY_READ;
|
|
|
|
/*
|
|
* Update the per-port timeout.
|
|
*/
|
|
uart_update_timeout(port, termios->c_cflag, baud);
|
|
|
|
/* custom-baudrate handling */
|
|
div = sport->port.uartclk / (baud * 16);
|
|
if (baud == 38400 && quot != div)
|
|
baud = sport->port.uartclk / (quot * 16);
|
|
|
|
div = sport->port.uartclk / (baud * 16);
|
|
if (div > 7)
|
|
div = 7;
|
|
if (!div)
|
|
div = 1;
|
|
|
|
rational_best_approximation(16 * div * baud, sport->port.uartclk,
|
|
1 << 16, 1 << 16, &num, &denom);
|
|
|
|
tdiv64 = sport->port.uartclk;
|
|
tdiv64 *= num;
|
|
do_div(tdiv64, denom * 16 * div);
|
|
tty_termios_encode_baud_rate(termios,
|
|
(speed_t)tdiv64, (speed_t)tdiv64);
|
|
|
|
num -= 1;
|
|
denom -= 1;
|
|
|
|
ufcr = imx_uart_readl(sport, UFCR);
|
|
ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
|
|
imx_uart_writel(sport, ufcr, UFCR);
|
|
|
|
/*
|
|
* Two registers below should always be written both and in this
|
|
* particular order. One consequence is that we need to check if any of
|
|
* them changes and then update both. We do need the check for change
|
|
* as even writing the same values seem to "restart"
|
|
* transmission/receiving logic in the hardware, that leads to data
|
|
* breakage even when rate doesn't in fact change. E.g., user switches
|
|
* RTS/CTS handshake and suddenly gets broken bytes.
|
|
*/
|
|
old_ubir = imx_uart_readl(sport, UBIR);
|
|
old_ubmr = imx_uart_readl(sport, UBMR);
|
|
if (old_ubir != num || old_ubmr != denom) {
|
|
imx_uart_writel(sport, num, UBIR);
|
|
imx_uart_writel(sport, denom, UBMR);
|
|
}
|
|
|
|
if (!imx_uart_is_imx1(sport))
|
|
imx_uart_writel(sport, sport->port.uartclk / div / 1000,
|
|
IMX21_ONEMS);
|
|
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
|
|
imx_uart_enable_ms(&sport->port);
|
|
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
}
|
|
|
|
static const char *imx_uart_type(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
|
|
return sport->port.type == PORT_IMX ? "IMX" : NULL;
|
|
}
|
|
|
|
/*
|
|
* Configure/autoconfigure the port.
|
|
*/
|
|
static void imx_uart_config_port(struct uart_port *port, int flags)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
|
|
if (flags & UART_CONFIG_TYPE)
|
|
sport->port.type = PORT_IMX;
|
|
}
|
|
|
|
/*
|
|
* Verify the new serial_struct (for TIOCSSERIAL).
|
|
* The only change we allow are to the flags and type, and
|
|
* even then only between PORT_IMX and PORT_UNKNOWN
|
|
*/
|
|
static int
|
|
imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
int ret = 0;
|
|
|
|
if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
|
|
ret = -EINVAL;
|
|
if (sport->port.irq != ser->irq)
|
|
ret = -EINVAL;
|
|
if (ser->io_type != UPIO_MEM)
|
|
ret = -EINVAL;
|
|
if (sport->port.uartclk / 16 != ser->baud_base)
|
|
ret = -EINVAL;
|
|
if (sport->port.mapbase != (unsigned long)ser->iomem_base)
|
|
ret = -EINVAL;
|
|
if (sport->port.iobase != ser->port)
|
|
ret = -EINVAL;
|
|
if (ser->hub6 != 0)
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
#if defined(CONFIG_CONSOLE_POLL)
|
|
|
|
static int imx_uart_poll_init(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned long flags;
|
|
u32 ucr1, ucr2;
|
|
int retval;
|
|
|
|
retval = clk_prepare_enable(sport->clk_ipg);
|
|
if (retval)
|
|
return retval;
|
|
retval = clk_prepare_enable(sport->clk_per);
|
|
if (retval)
|
|
clk_disable_unprepare(sport->clk_ipg);
|
|
|
|
imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
|
|
/*
|
|
* Be careful about the order of enabling bits here. First enable the
|
|
* receiver (UARTEN + RXEN) and only then the corresponding irqs.
|
|
* This prevents that a character that already sits in the RX fifo is
|
|
* triggering an irq but the try to fetch it from there results in an
|
|
* exception because UARTEN or RXEN is still off.
|
|
*/
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
|
|
if (imx_uart_is_imx1(sport))
|
|
ucr1 |= IMX1_UCR1_UARTCLKEN;
|
|
|
|
ucr1 |= UCR1_UARTEN;
|
|
ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
|
|
|
|
ucr2 |= UCR2_RXEN;
|
|
ucr2 &= ~UCR2_ATEN;
|
|
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
|
|
/* now enable irqs */
|
|
imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
|
|
imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
|
|
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imx_uart_poll_get_char(struct uart_port *port)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
|
|
return NO_POLL_CHAR;
|
|
|
|
return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
|
|
}
|
|
|
|
static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
unsigned int status;
|
|
|
|
/* drain */
|
|
do {
|
|
status = imx_uart_readl(sport, USR1);
|
|
} while (~status & USR1_TRDY);
|
|
|
|
/* write */
|
|
imx_uart_writel(sport, c, URTX0);
|
|
|
|
/* flush */
|
|
do {
|
|
status = imx_uart_readl(sport, USR2);
|
|
} while (~status & USR2_TXDC);
|
|
}
|
|
#endif
|
|
|
|
/* called with port.lock taken and irqs off or from .probe without locking */
|
|
static int imx_uart_rs485_config(struct uart_port *port,
|
|
struct serial_rs485 *rs485conf)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
u32 ucr2;
|
|
|
|
/* RTS is required to control the transmitter */
|
|
if (!sport->have_rtscts && !sport->have_rtsgpio)
|
|
rs485conf->flags &= ~SER_RS485_ENABLED;
|
|
|
|
if (rs485conf->flags & SER_RS485_ENABLED) {
|
|
/* Enable receiver if low-active RTS signal is requested */
|
|
if (sport->have_rtscts && !sport->have_rtsgpio &&
|
|
!(rs485conf->flags & SER_RS485_RTS_ON_SEND))
|
|
rs485conf->flags |= SER_RS485_RX_DURING_TX;
|
|
|
|
/* disable transmitter */
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
|
|
imx_uart_rts_active(sport, &ucr2);
|
|
else
|
|
imx_uart_rts_inactive(sport, &ucr2);
|
|
imx_uart_writel(sport, ucr2, UCR2);
|
|
}
|
|
|
|
/* Make sure Rx is enabled in case Tx is active with Rx disabled */
|
|
if (!(rs485conf->flags & SER_RS485_ENABLED) ||
|
|
rs485conf->flags & SER_RS485_RX_DURING_TX)
|
|
imx_uart_start_rx(port);
|
|
|
|
port->rs485 = *rs485conf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct uart_ops imx_uart_pops = {
|
|
.tx_empty = imx_uart_tx_empty,
|
|
.set_mctrl = imx_uart_set_mctrl,
|
|
.get_mctrl = imx_uart_get_mctrl,
|
|
.stop_tx = imx_uart_stop_tx,
|
|
.start_tx = imx_uart_start_tx,
|
|
.stop_rx = imx_uart_stop_rx,
|
|
.enable_ms = imx_uart_enable_ms,
|
|
.break_ctl = imx_uart_break_ctl,
|
|
.startup = imx_uart_startup,
|
|
.shutdown = imx_uart_shutdown,
|
|
.flush_buffer = imx_uart_flush_buffer,
|
|
.set_termios = imx_uart_set_termios,
|
|
.type = imx_uart_type,
|
|
.config_port = imx_uart_config_port,
|
|
.verify_port = imx_uart_verify_port,
|
|
#if defined(CONFIG_CONSOLE_POLL)
|
|
.poll_init = imx_uart_poll_init,
|
|
.poll_get_char = imx_uart_poll_get_char,
|
|
.poll_put_char = imx_uart_poll_put_char,
|
|
#endif
|
|
};
|
|
|
|
static struct imx_port *imx_uart_ports[UART_NR];
|
|
|
|
#if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
|
|
static void imx_uart_console_putchar(struct uart_port *port, int ch)
|
|
{
|
|
struct imx_port *sport = (struct imx_port *)port;
|
|
|
|
while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
|
|
barrier();
|
|
|
|
imx_uart_writel(sport, ch, URTX0);
|
|
}
|
|
|
|
/*
|
|
* Interrupts are disabled on entering
|
|
*/
|
|
static void
|
|
imx_uart_console_write(struct console *co, const char *s, unsigned int count)
|
|
{
|
|
struct imx_port *sport = imx_uart_ports[co->index];
|
|
struct imx_port_ucrs old_ucr;
|
|
unsigned int ucr1;
|
|
unsigned long flags = 0;
|
|
int locked = 1;
|
|
int retval;
|
|
|
|
retval = clk_enable(sport->clk_per);
|
|
if (retval)
|
|
return;
|
|
retval = clk_enable(sport->clk_ipg);
|
|
if (retval) {
|
|
clk_disable(sport->clk_per);
|
|
return;
|
|
}
|
|
|
|
if (sport->port.sysrq)
|
|
locked = 0;
|
|
else if (oops_in_progress)
|
|
locked = spin_trylock_irqsave(&sport->port.lock, flags);
|
|
else
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
|
|
/*
|
|
* First, save UCR1/2/3 and then disable interrupts
|
|
*/
|
|
imx_uart_ucrs_save(sport, &old_ucr);
|
|
ucr1 = old_ucr.ucr1;
|
|
|
|
if (imx_uart_is_imx1(sport))
|
|
ucr1 |= IMX1_UCR1_UARTCLKEN;
|
|
ucr1 |= UCR1_UARTEN;
|
|
ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
|
|
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
|
|
|
|
uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
|
|
|
|
/*
|
|
* Finally, wait for transmitter to become empty
|
|
* and restore UCR1/2/3
|
|
*/
|
|
while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
|
|
|
|
imx_uart_ucrs_restore(sport, &old_ucr);
|
|
|
|
if (locked)
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
clk_disable(sport->clk_ipg);
|
|
clk_disable(sport->clk_per);
|
|
}
|
|
|
|
/*
|
|
* If the port was already initialised (eg, by a boot loader),
|
|
* try to determine the current setup.
|
|
*/
|
|
static void __init
|
|
imx_uart_console_get_options(struct imx_port *sport, int *baud,
|
|
int *parity, int *bits)
|
|
{
|
|
|
|
if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
|
|
/* ok, the port was enabled */
|
|
unsigned int ucr2, ubir, ubmr, uartclk;
|
|
unsigned int baud_raw;
|
|
unsigned int ucfr_rfdiv;
|
|
|
|
ucr2 = imx_uart_readl(sport, UCR2);
|
|
|
|
*parity = 'n';
|
|
if (ucr2 & UCR2_PREN) {
|
|
if (ucr2 & UCR2_PROE)
|
|
*parity = 'o';
|
|
else
|
|
*parity = 'e';
|
|
}
|
|
|
|
if (ucr2 & UCR2_WS)
|
|
*bits = 8;
|
|
else
|
|
*bits = 7;
|
|
|
|
ubir = imx_uart_readl(sport, UBIR) & 0xffff;
|
|
ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
|
|
|
|
ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
|
|
if (ucfr_rfdiv == 6)
|
|
ucfr_rfdiv = 7;
|
|
else
|
|
ucfr_rfdiv = 6 - ucfr_rfdiv;
|
|
|
|
uartclk = clk_get_rate(sport->clk_per);
|
|
uartclk /= ucfr_rfdiv;
|
|
|
|
{ /*
|
|
* The next code provides exact computation of
|
|
* baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
|
|
* without need of float support or long long division,
|
|
* which would be required to prevent 32bit arithmetic overflow
|
|
*/
|
|
unsigned int mul = ubir + 1;
|
|
unsigned int div = 16 * (ubmr + 1);
|
|
unsigned int rem = uartclk % div;
|
|
|
|
baud_raw = (uartclk / div) * mul;
|
|
baud_raw += (rem * mul + div / 2) / div;
|
|
*baud = (baud_raw + 50) / 100 * 100;
|
|
}
|
|
|
|
if (*baud != baud_raw)
|
|
dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
|
|
baud_raw, *baud);
|
|
}
|
|
}
|
|
|
|
static int __init
|
|
imx_uart_console_setup(struct console *co, char *options)
|
|
{
|
|
struct imx_port *sport;
|
|
int baud = 9600;
|
|
int bits = 8;
|
|
int parity = 'n';
|
|
int flow = 'n';
|
|
int retval;
|
|
|
|
/*
|
|
* Check whether an invalid uart number has been specified, and
|
|
* if so, search for the first available port that does have
|
|
* console support.
|
|
*/
|
|
if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
|
|
co->index = 0;
|
|
sport = imx_uart_ports[co->index];
|
|
if (sport == NULL)
|
|
return -ENODEV;
|
|
|
|
/* For setting the registers, we only need to enable the ipg clock. */
|
|
retval = clk_prepare_enable(sport->clk_ipg);
|
|
if (retval)
|
|
goto error_console;
|
|
|
|
if (options)
|
|
uart_parse_options(options, &baud, &parity, &bits, &flow);
|
|
else
|
|
imx_uart_console_get_options(sport, &baud, &parity, &bits);
|
|
|
|
imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
|
|
|
|
retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
|
|
|
|
clk_disable(sport->clk_ipg);
|
|
if (retval) {
|
|
clk_unprepare(sport->clk_ipg);
|
|
goto error_console;
|
|
}
|
|
|
|
retval = clk_prepare(sport->clk_per);
|
|
if (retval)
|
|
clk_unprepare(sport->clk_ipg);
|
|
|
|
error_console:
|
|
return retval;
|
|
}
|
|
|
|
static struct uart_driver imx_uart_uart_driver;
|
|
static struct console imx_uart_console = {
|
|
.name = DEV_NAME,
|
|
.write = imx_uart_console_write,
|
|
.device = uart_console_device,
|
|
.setup = imx_uart_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
.data = &imx_uart_uart_driver,
|
|
};
|
|
|
|
#define IMX_CONSOLE &imx_uart_console
|
|
|
|
#else
|
|
#define IMX_CONSOLE NULL
|
|
#endif
|
|
|
|
static struct uart_driver imx_uart_uart_driver = {
|
|
.owner = THIS_MODULE,
|
|
.driver_name = DRIVER_NAME,
|
|
.dev_name = DEV_NAME,
|
|
.major = SERIAL_IMX_MAJOR,
|
|
.minor = MINOR_START,
|
|
.nr = ARRAY_SIZE(imx_uart_ports),
|
|
.cons = IMX_CONSOLE,
|
|
};
|
|
|
|
#ifdef CONFIG_OF
|
|
/*
|
|
* This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
|
|
* could successfully get all information from dt or a negative errno.
|
|
*/
|
|
static int imx_uart_probe_dt(struct imx_port *sport,
|
|
struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
int ret;
|
|
|
|
sport->devdata = of_device_get_match_data(&pdev->dev);
|
|
if (!sport->devdata)
|
|
/* no device tree device */
|
|
return 1;
|
|
|
|
ret = of_alias_get_id(np, "serial");
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
|
|
return ret;
|
|
}
|
|
sport->port.line = ret;
|
|
|
|
if (of_get_property(np, "uart-has-rtscts", NULL) ||
|
|
of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
|
|
sport->have_rtscts = 1;
|
|
|
|
if (of_get_property(np, "fsl,dte-mode", NULL))
|
|
sport->dte_mode = 1;
|
|
|
|
if (of_get_property(np, "rts-gpios", NULL))
|
|
sport->have_rtsgpio = 1;
|
|
|
|
if (of_get_property(np, "fsl,inverted-tx", NULL))
|
|
sport->inverted_tx = 1;
|
|
|
|
if (of_get_property(np, "fsl,inverted-rx", NULL))
|
|
sport->inverted_rx = 1;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int imx_uart_probe_dt(struct imx_port *sport,
|
|
struct platform_device *pdev)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void imx_uart_probe_pdata(struct imx_port *sport,
|
|
struct platform_device *pdev)
|
|
{
|
|
struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
|
|
|
|
sport->port.line = pdev->id;
|
|
sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data;
|
|
|
|
if (!pdata)
|
|
return;
|
|
|
|
if (pdata->flags & IMXUART_HAVE_RTSCTS)
|
|
sport->have_rtscts = 1;
|
|
}
|
|
|
|
static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
|
|
{
|
|
struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
if (sport->tx_state == WAIT_AFTER_RTS)
|
|
imx_uart_start_tx(&sport->port);
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
|
|
{
|
|
struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
if (sport->tx_state == WAIT_AFTER_SEND)
|
|
imx_uart_stop_tx(&sport->port);
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static int imx_uart_probe(struct platform_device *pdev)
|
|
{
|
|
struct imx_port *sport;
|
|
void __iomem *base;
|
|
int ret = 0;
|
|
u32 ucr1;
|
|
struct resource *res;
|
|
int txirq, rxirq, rtsirq;
|
|
|
|
sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
|
|
if (!sport)
|
|
return -ENOMEM;
|
|
|
|
ret = imx_uart_probe_dt(sport, pdev);
|
|
if (ret > 0)
|
|
imx_uart_probe_pdata(sport, pdev);
|
|
else if (ret < 0)
|
|
return ret;
|
|
|
|
if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
|
|
dev_err(&pdev->dev, "serial%d out of range\n",
|
|
sport->port.line);
|
|
return -EINVAL;
|
|
}
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
rxirq = platform_get_irq(pdev, 0);
|
|
if (rxirq < 0)
|
|
return rxirq;
|
|
txirq = platform_get_irq_optional(pdev, 1);
|
|
rtsirq = platform_get_irq_optional(pdev, 2);
|
|
|
|
sport->port.dev = &pdev->dev;
|
|
sport->port.mapbase = res->start;
|
|
sport->port.membase = base;
|
|
sport->port.type = PORT_IMX,
|
|
sport->port.iotype = UPIO_MEM;
|
|
sport->port.irq = rxirq;
|
|
sport->port.fifosize = 32;
|
|
sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
|
|
sport->port.ops = &imx_uart_pops;
|
|
sport->port.rs485_config = imx_uart_rs485_config;
|
|
sport->port.flags = UPF_BOOT_AUTOCONF;
|
|
timer_setup(&sport->timer, imx_uart_timeout, 0);
|
|
|
|
sport->gpios = mctrl_gpio_init(&sport->port, 0);
|
|
if (IS_ERR(sport->gpios))
|
|
return PTR_ERR(sport->gpios);
|
|
|
|
sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
|
|
if (IS_ERR(sport->clk_ipg)) {
|
|
ret = PTR_ERR(sport->clk_ipg);
|
|
dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
sport->clk_per = devm_clk_get(&pdev->dev, "per");
|
|
if (IS_ERR(sport->clk_per)) {
|
|
ret = PTR_ERR(sport->clk_per);
|
|
dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
sport->port.uartclk = clk_get_rate(sport->clk_per);
|
|
|
|
/* For register access, we only need to enable the ipg clock. */
|
|
ret = clk_prepare_enable(sport->clk_ipg);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* initialize shadow register values */
|
|
sport->ucr1 = readl(sport->port.membase + UCR1);
|
|
sport->ucr2 = readl(sport->port.membase + UCR2);
|
|
sport->ucr3 = readl(sport->port.membase + UCR3);
|
|
sport->ucr4 = readl(sport->port.membase + UCR4);
|
|
sport->ufcr = readl(sport->port.membase + UFCR);
|
|
|
|
ret = uart_get_rs485_mode(&sport->port);
|
|
if (ret) {
|
|
clk_disable_unprepare(sport->clk_ipg);
|
|
return ret;
|
|
}
|
|
|
|
if (sport->port.rs485.flags & SER_RS485_ENABLED &&
|
|
(!sport->have_rtscts && !sport->have_rtsgpio))
|
|
dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
|
|
|
|
/*
|
|
* If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
|
|
* signal cannot be set low during transmission in case the
|
|
* receiver is off (limitation of the i.MX UART IP).
|
|
*/
|
|
if (sport->port.rs485.flags & SER_RS485_ENABLED &&
|
|
sport->have_rtscts && !sport->have_rtsgpio &&
|
|
(!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
|
|
!(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
|
|
dev_err(&pdev->dev,
|
|
"low-active RTS not possible when receiver is off, enabling receiver\n");
|
|
|
|
imx_uart_rs485_config(&sport->port, &sport->port.rs485);
|
|
|
|
/* Disable interrupts before requesting them */
|
|
ucr1 = imx_uart_readl(sport, UCR1);
|
|
ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN |
|
|
UCR1_TRDYEN | UCR1_RTSDEN);
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
|
|
if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
|
|
/*
|
|
* The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
|
|
* and influences if UCR3_RI and UCR3_DCD changes the level of RI
|
|
* and DCD (when they are outputs) or enables the respective
|
|
* irqs. So set this bit early, i.e. before requesting irqs.
|
|
*/
|
|
u32 ufcr = imx_uart_readl(sport, UFCR);
|
|
if (!(ufcr & UFCR_DCEDTE))
|
|
imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
|
|
|
|
/*
|
|
* Disable UCR3_RI and UCR3_DCD irqs. They are also not
|
|
* enabled later because they cannot be cleared
|
|
* (confirmed on i.MX25) which makes them unusable.
|
|
*/
|
|
imx_uart_writel(sport,
|
|
IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
|
|
UCR3);
|
|
|
|
} else {
|
|
u32 ucr3 = UCR3_DSR;
|
|
u32 ufcr = imx_uart_readl(sport, UFCR);
|
|
if (ufcr & UFCR_DCEDTE)
|
|
imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
|
|
|
|
if (!imx_uart_is_imx1(sport))
|
|
ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
|
|
imx_uart_writel(sport, ucr3, UCR3);
|
|
}
|
|
|
|
clk_disable_unprepare(sport->clk_ipg);
|
|
|
|
hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
sport->trigger_start_tx.function = imx_trigger_start_tx;
|
|
sport->trigger_stop_tx.function = imx_trigger_stop_tx;
|
|
|
|
/*
|
|
* Allocate the IRQ(s) i.MX1 has three interrupts whereas later
|
|
* chips only have one interrupt.
|
|
*/
|
|
if (txirq > 0) {
|
|
ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
|
|
dev_name(&pdev->dev), sport);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to request rx irq: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
|
|
dev_name(&pdev->dev), sport);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to request tx irq: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
|
|
dev_name(&pdev->dev), sport);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to request rts irq: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
} else {
|
|
ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
|
|
dev_name(&pdev->dev), sport);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
imx_uart_ports[sport->port.line] = sport;
|
|
|
|
platform_set_drvdata(pdev, sport);
|
|
|
|
return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
|
|
}
|
|
|
|
static int imx_uart_remove(struct platform_device *pdev)
|
|
{
|
|
struct imx_port *sport = platform_get_drvdata(pdev);
|
|
|
|
return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
|
|
}
|
|
|
|
static void imx_uart_restore_context(struct imx_port *sport)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
if (!sport->context_saved) {
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
return;
|
|
}
|
|
|
|
imx_uart_writel(sport, sport->saved_reg[4], UFCR);
|
|
imx_uart_writel(sport, sport->saved_reg[5], UESC);
|
|
imx_uart_writel(sport, sport->saved_reg[6], UTIM);
|
|
imx_uart_writel(sport, sport->saved_reg[7], UBIR);
|
|
imx_uart_writel(sport, sport->saved_reg[8], UBMR);
|
|
imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
|
|
imx_uart_writel(sport, sport->saved_reg[0], UCR1);
|
|
imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
|
|
imx_uart_writel(sport, sport->saved_reg[2], UCR3);
|
|
imx_uart_writel(sport, sport->saved_reg[3], UCR4);
|
|
sport->context_saved = false;
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
}
|
|
|
|
static void imx_uart_save_context(struct imx_port *sport)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Save necessary regs */
|
|
spin_lock_irqsave(&sport->port.lock, flags);
|
|
sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
|
|
sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
|
|
sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
|
|
sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
|
|
sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
|
|
sport->saved_reg[5] = imx_uart_readl(sport, UESC);
|
|
sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
|
|
sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
|
|
sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
|
|
sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
|
|
sport->context_saved = true;
|
|
spin_unlock_irqrestore(&sport->port.lock, flags);
|
|
}
|
|
|
|
static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
|
|
{
|
|
u32 ucr3;
|
|
|
|
ucr3 = imx_uart_readl(sport, UCR3);
|
|
if (on) {
|
|
imx_uart_writel(sport, USR1_AWAKE, USR1);
|
|
ucr3 |= UCR3_AWAKEN;
|
|
} else {
|
|
ucr3 &= ~UCR3_AWAKEN;
|
|
}
|
|
imx_uart_writel(sport, ucr3, UCR3);
|
|
|
|
if (sport->have_rtscts) {
|
|
u32 ucr1 = imx_uart_readl(sport, UCR1);
|
|
if (on)
|
|
ucr1 |= UCR1_RTSDEN;
|
|
else
|
|
ucr1 &= ~UCR1_RTSDEN;
|
|
imx_uart_writel(sport, ucr1, UCR1);
|
|
}
|
|
}
|
|
|
|
static int imx_uart_suspend_noirq(struct device *dev)
|
|
{
|
|
struct imx_port *sport = dev_get_drvdata(dev);
|
|
|
|
imx_uart_save_context(sport);
|
|
|
|
clk_disable(sport->clk_ipg);
|
|
|
|
pinctrl_pm_select_sleep_state(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imx_uart_resume_noirq(struct device *dev)
|
|
{
|
|
struct imx_port *sport = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
pinctrl_pm_select_default_state(dev);
|
|
|
|
ret = clk_enable(sport->clk_ipg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
imx_uart_restore_context(sport);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imx_uart_suspend(struct device *dev)
|
|
{
|
|
struct imx_port *sport = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
uart_suspend_port(&imx_uart_uart_driver, &sport->port);
|
|
disable_irq(sport->port.irq);
|
|
|
|
ret = clk_prepare_enable(sport->clk_ipg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* enable wakeup from i.MX UART */
|
|
imx_uart_enable_wakeup(sport, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imx_uart_resume(struct device *dev)
|
|
{
|
|
struct imx_port *sport = dev_get_drvdata(dev);
|
|
|
|
/* disable wakeup from i.MX UART */
|
|
imx_uart_enable_wakeup(sport, false);
|
|
|
|
uart_resume_port(&imx_uart_uart_driver, &sport->port);
|
|
enable_irq(sport->port.irq);
|
|
|
|
clk_disable_unprepare(sport->clk_ipg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imx_uart_freeze(struct device *dev)
|
|
{
|
|
struct imx_port *sport = dev_get_drvdata(dev);
|
|
|
|
uart_suspend_port(&imx_uart_uart_driver, &sport->port);
|
|
|
|
return clk_prepare_enable(sport->clk_ipg);
|
|
}
|
|
|
|
static int imx_uart_thaw(struct device *dev)
|
|
{
|
|
struct imx_port *sport = dev_get_drvdata(dev);
|
|
|
|
uart_resume_port(&imx_uart_uart_driver, &sport->port);
|
|
|
|
clk_disable_unprepare(sport->clk_ipg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops imx_uart_pm_ops = {
|
|
.suspend_noirq = imx_uart_suspend_noirq,
|
|
.resume_noirq = imx_uart_resume_noirq,
|
|
.freeze_noirq = imx_uart_suspend_noirq,
|
|
.restore_noirq = imx_uart_resume_noirq,
|
|
.suspend = imx_uart_suspend,
|
|
.resume = imx_uart_resume,
|
|
.freeze = imx_uart_freeze,
|
|
.thaw = imx_uart_thaw,
|
|
.restore = imx_uart_thaw,
|
|
};
|
|
|
|
static struct platform_driver imx_uart_platform_driver = {
|
|
.probe = imx_uart_probe,
|
|
.remove = imx_uart_remove,
|
|
|
|
.id_table = imx_uart_devtype,
|
|
.driver = {
|
|
.name = "imx-uart",
|
|
.of_match_table = imx_uart_dt_ids,
|
|
.pm = &imx_uart_pm_ops,
|
|
},
|
|
};
|
|
|
|
static int __init imx_uart_init(void)
|
|
{
|
|
int ret = uart_register_driver(&imx_uart_uart_driver);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = platform_driver_register(&imx_uart_platform_driver);
|
|
if (ret != 0)
|
|
uart_unregister_driver(&imx_uart_uart_driver);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit imx_uart_exit(void)
|
|
{
|
|
platform_driver_unregister(&imx_uart_platform_driver);
|
|
uart_unregister_driver(&imx_uart_uart_driver);
|
|
}
|
|
|
|
module_init(imx_uart_init);
|
|
module_exit(imx_uart_exit);
|
|
|
|
MODULE_AUTHOR("Sascha Hauer");
|
|
MODULE_DESCRIPTION("IMX generic serial port driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:imx-uart");
|