mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 08:27:48 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
131 lines
4.1 KiB
C
131 lines
4.1 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_RTNETLINK_H
|
|
#define __LINUX_RTNETLINK_H
|
|
|
|
|
|
#include <linux/mutex.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/wait.h>
|
|
#include <uapi/linux/rtnetlink.h>
|
|
|
|
extern int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, u32 group, int echo);
|
|
extern int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid);
|
|
extern void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid,
|
|
u32 group, struct nlmsghdr *nlh, gfp_t flags);
|
|
extern void rtnl_set_sk_err(struct net *net, u32 group, int error);
|
|
extern int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics);
|
|
extern int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst,
|
|
u32 id, long expires, u32 error);
|
|
|
|
void rtmsg_ifinfo(int type, struct net_device *dev, unsigned change, gfp_t flags);
|
|
struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
|
|
unsigned change, u32 event,
|
|
gfp_t flags);
|
|
void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev,
|
|
gfp_t flags);
|
|
|
|
|
|
/* RTNL is used as a global lock for all changes to network configuration */
|
|
extern void rtnl_lock(void);
|
|
extern void rtnl_unlock(void);
|
|
extern int rtnl_trylock(void);
|
|
extern int rtnl_is_locked(void);
|
|
|
|
extern wait_queue_head_t netdev_unregistering_wq;
|
|
extern struct mutex net_mutex;
|
|
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
extern bool lockdep_rtnl_is_held(void);
|
|
#else
|
|
static inline bool lockdep_rtnl_is_held(void)
|
|
{
|
|
return true;
|
|
}
|
|
#endif /* #ifdef CONFIG_PROVE_LOCKING */
|
|
|
|
/**
|
|
* rcu_dereference_rtnl - rcu_dereference with debug checking
|
|
* @p: The pointer to read, prior to dereferencing
|
|
*
|
|
* Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
|
|
* or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference()
|
|
*/
|
|
#define rcu_dereference_rtnl(p) \
|
|
rcu_dereference_check(p, lockdep_rtnl_is_held())
|
|
|
|
/**
|
|
* rcu_dereference_bh_rtnl - rcu_dereference_bh with debug checking
|
|
* @p: The pointer to read, prior to dereference
|
|
*
|
|
* Do an rcu_dereference_bh(p), but check caller either holds rcu_read_lock_bh()
|
|
* or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference_bh()
|
|
*/
|
|
#define rcu_dereference_bh_rtnl(p) \
|
|
rcu_dereference_bh_check(p, lockdep_rtnl_is_held())
|
|
|
|
/**
|
|
* rtnl_dereference - fetch RCU pointer when updates are prevented by RTNL
|
|
* @p: The pointer to read, prior to dereferencing
|
|
*
|
|
* Return the value of the specified RCU-protected pointer, but omit
|
|
* both the smp_read_barrier_depends() and the ACCESS_ONCE(), because
|
|
* caller holds RTNL.
|
|
*/
|
|
#define rtnl_dereference(p) \
|
|
rcu_dereference_protected(p, lockdep_rtnl_is_held())
|
|
|
|
static inline struct netdev_queue *dev_ingress_queue(struct net_device *dev)
|
|
{
|
|
return rtnl_dereference(dev->ingress_queue);
|
|
}
|
|
|
|
struct netdev_queue *dev_ingress_queue_create(struct net_device *dev);
|
|
|
|
#ifdef CONFIG_NET_INGRESS
|
|
void net_inc_ingress_queue(void);
|
|
void net_dec_ingress_queue(void);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NET_EGRESS
|
|
void net_inc_egress_queue(void);
|
|
void net_dec_egress_queue(void);
|
|
#endif
|
|
|
|
void rtnetlink_init(void);
|
|
void __rtnl_unlock(void);
|
|
void rtnl_kfree_skbs(struct sk_buff *head, struct sk_buff *tail);
|
|
|
|
#define ASSERT_RTNL() do { \
|
|
if (unlikely(!rtnl_is_locked())) { \
|
|
printk(KERN_ERR "RTNL: assertion failed at %s (%d)\n", \
|
|
__FILE__, __LINE__); \
|
|
dump_stack(); \
|
|
} \
|
|
} while(0)
|
|
|
|
extern int ndo_dflt_fdb_dump(struct sk_buff *skb,
|
|
struct netlink_callback *cb,
|
|
struct net_device *dev,
|
|
struct net_device *filter_dev,
|
|
int *idx);
|
|
extern int ndo_dflt_fdb_add(struct ndmsg *ndm,
|
|
struct nlattr *tb[],
|
|
struct net_device *dev,
|
|
const unsigned char *addr,
|
|
u16 vid,
|
|
u16 flags);
|
|
extern int ndo_dflt_fdb_del(struct ndmsg *ndm,
|
|
struct nlattr *tb[],
|
|
struct net_device *dev,
|
|
const unsigned char *addr,
|
|
u16 vid);
|
|
|
|
extern int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
|
|
struct net_device *dev, u16 mode,
|
|
u32 flags, u32 mask, int nlflags,
|
|
u32 filter_mask,
|
|
int (*vlan_fill)(struct sk_buff *skb,
|
|
struct net_device *dev,
|
|
u32 filter_mask));
|
|
#endif /* __LINUX_RTNETLINK_H */
|