mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-03 11:26:46 +07:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
557 lines
13 KiB
C
557 lines
13 KiB
C
/*
|
|
* IDE DMA support (including IDE PCI BM-DMA).
|
|
*
|
|
* Copyright (C) 1995-1998 Mark Lord
|
|
* Copyright (C) 1999-2000 Andre Hedrick <andre@linux-ide.org>
|
|
* Copyright (C) 2004, 2007 Bartlomiej Zolnierkiewicz
|
|
*
|
|
* May be copied or modified under the terms of the GNU General Public License
|
|
*
|
|
* DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
|
|
*/
|
|
|
|
/*
|
|
* Special Thanks to Mark for his Six years of work.
|
|
*/
|
|
|
|
/*
|
|
* Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
|
|
* fixing the problem with the BIOS on some Acer motherboards.
|
|
*
|
|
* Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
|
|
* "TX" chipset compatibility and for providing patches for the "TX" chipset.
|
|
*
|
|
* Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
|
|
* at generic DMA -- his patches were referred to when preparing this code.
|
|
*
|
|
* Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
|
|
* for supplying a Promise UDMA board & WD UDMA drive for this work!
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
static const struct drive_list_entry drive_whitelist[] = {
|
|
{ "Micropolis 2112A" , NULL },
|
|
{ "CONNER CTMA 4000" , NULL },
|
|
{ "CONNER CTT8000-A" , NULL },
|
|
{ "ST34342A" , NULL },
|
|
{ NULL , NULL }
|
|
};
|
|
|
|
static const struct drive_list_entry drive_blacklist[] = {
|
|
{ "WDC AC11000H" , NULL },
|
|
{ "WDC AC22100H" , NULL },
|
|
{ "WDC AC32500H" , NULL },
|
|
{ "WDC AC33100H" , NULL },
|
|
{ "WDC AC31600H" , NULL },
|
|
{ "WDC AC32100H" , "24.09P07" },
|
|
{ "WDC AC23200L" , "21.10N21" },
|
|
{ "Compaq CRD-8241B" , NULL },
|
|
{ "CRD-8400B" , NULL },
|
|
{ "CRD-8480B", NULL },
|
|
{ "CRD-8482B", NULL },
|
|
{ "CRD-84" , NULL },
|
|
{ "SanDisk SDP3B" , NULL },
|
|
{ "SanDisk SDP3B-64" , NULL },
|
|
{ "SANYO CD-ROM CRD" , NULL },
|
|
{ "HITACHI CDR-8" , NULL },
|
|
{ "HITACHI CDR-8335" , NULL },
|
|
{ "HITACHI CDR-8435" , NULL },
|
|
{ "Toshiba CD-ROM XM-6202B" , NULL },
|
|
{ "TOSHIBA CD-ROM XM-1702BC", NULL },
|
|
{ "CD-532E-A" , NULL },
|
|
{ "E-IDE CD-ROM CR-840", NULL },
|
|
{ "CD-ROM Drive/F5A", NULL },
|
|
{ "WPI CDD-820", NULL },
|
|
{ "SAMSUNG CD-ROM SC-148C", NULL },
|
|
{ "SAMSUNG CD-ROM SC", NULL },
|
|
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
|
|
{ "_NEC DV5800A", NULL },
|
|
{ "SAMSUNG CD-ROM SN-124", "N001" },
|
|
{ "Seagate STT20000A", NULL },
|
|
{ "CD-ROM CDR_U200", "1.09" },
|
|
{ NULL , NULL }
|
|
|
|
};
|
|
|
|
/**
|
|
* ide_dma_intr - IDE DMA interrupt handler
|
|
* @drive: the drive the interrupt is for
|
|
*
|
|
* Handle an interrupt completing a read/write DMA transfer on an
|
|
* IDE device
|
|
*/
|
|
|
|
ide_startstop_t ide_dma_intr(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct ide_cmd *cmd = &hwif->cmd;
|
|
u8 stat = 0, dma_stat = 0;
|
|
|
|
drive->waiting_for_dma = 0;
|
|
dma_stat = hwif->dma_ops->dma_end(drive);
|
|
ide_dma_unmap_sg(drive, cmd);
|
|
stat = hwif->tp_ops->read_status(hwif);
|
|
|
|
if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | ATA_DRQ)) {
|
|
if (!dma_stat) {
|
|
if ((cmd->tf_flags & IDE_TFLAG_FS) == 0)
|
|
ide_finish_cmd(drive, cmd, stat);
|
|
else
|
|
ide_complete_rq(drive, 0,
|
|
blk_rq_sectors(cmd->rq) << 9);
|
|
return ide_stopped;
|
|
}
|
|
printk(KERN_ERR "%s: %s: bad DMA status (0x%02x)\n",
|
|
drive->name, __func__, dma_stat);
|
|
}
|
|
return ide_error(drive, "dma_intr", stat);
|
|
}
|
|
|
|
int ide_dma_good_drive(ide_drive_t *drive)
|
|
{
|
|
return ide_in_drive_list(drive->id, drive_whitelist);
|
|
}
|
|
|
|
/**
|
|
* ide_dma_map_sg - map IDE scatter gather for DMA I/O
|
|
* @drive: the drive to map the DMA table for
|
|
* @cmd: command
|
|
*
|
|
* Perform the DMA mapping magic necessary to access the source or
|
|
* target buffers of a request via DMA. The lower layers of the
|
|
* kernel provide the necessary cache management so that we can
|
|
* operate in a portable fashion.
|
|
*/
|
|
|
|
static int ide_dma_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct scatterlist *sg = hwif->sg_table;
|
|
int i;
|
|
|
|
if (cmd->tf_flags & IDE_TFLAG_WRITE)
|
|
cmd->sg_dma_direction = DMA_TO_DEVICE;
|
|
else
|
|
cmd->sg_dma_direction = DMA_FROM_DEVICE;
|
|
|
|
i = dma_map_sg(hwif->dev, sg, cmd->sg_nents, cmd->sg_dma_direction);
|
|
if (i) {
|
|
cmd->orig_sg_nents = cmd->sg_nents;
|
|
cmd->sg_nents = i;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* ide_dma_unmap_sg - clean up DMA mapping
|
|
* @drive: The drive to unmap
|
|
*
|
|
* Teardown mappings after DMA has completed. This must be called
|
|
* after the completion of each use of ide_build_dmatable and before
|
|
* the next use of ide_build_dmatable. Failure to do so will cause
|
|
* an oops as only one mapping can be live for each target at a given
|
|
* time.
|
|
*/
|
|
|
|
void ide_dma_unmap_sg(ide_drive_t *drive, struct ide_cmd *cmd)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
|
|
dma_unmap_sg(hwif->dev, hwif->sg_table, cmd->orig_sg_nents,
|
|
cmd->sg_dma_direction);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_dma_unmap_sg);
|
|
|
|
/**
|
|
* ide_dma_off_quietly - Generic DMA kill
|
|
* @drive: drive to control
|
|
*
|
|
* Turn off the current DMA on this IDE controller.
|
|
*/
|
|
|
|
void ide_dma_off_quietly(ide_drive_t *drive)
|
|
{
|
|
drive->dev_flags &= ~IDE_DFLAG_USING_DMA;
|
|
ide_toggle_bounce(drive, 0);
|
|
|
|
drive->hwif->dma_ops->dma_host_set(drive, 0);
|
|
}
|
|
EXPORT_SYMBOL(ide_dma_off_quietly);
|
|
|
|
/**
|
|
* ide_dma_off - disable DMA on a device
|
|
* @drive: drive to disable DMA on
|
|
*
|
|
* Disable IDE DMA for a device on this IDE controller.
|
|
* Inform the user that DMA has been disabled.
|
|
*/
|
|
|
|
void ide_dma_off(ide_drive_t *drive)
|
|
{
|
|
printk(KERN_INFO "%s: DMA disabled\n", drive->name);
|
|
ide_dma_off_quietly(drive);
|
|
}
|
|
EXPORT_SYMBOL(ide_dma_off);
|
|
|
|
/**
|
|
* ide_dma_on - Enable DMA on a device
|
|
* @drive: drive to enable DMA on
|
|
*
|
|
* Enable IDE DMA for a device on this IDE controller.
|
|
*/
|
|
|
|
void ide_dma_on(ide_drive_t *drive)
|
|
{
|
|
drive->dev_flags |= IDE_DFLAG_USING_DMA;
|
|
ide_toggle_bounce(drive, 1);
|
|
|
|
drive->hwif->dma_ops->dma_host_set(drive, 1);
|
|
}
|
|
|
|
int __ide_dma_bad_drive(ide_drive_t *drive)
|
|
{
|
|
u16 *id = drive->id;
|
|
|
|
int blacklist = ide_in_drive_list(id, drive_blacklist);
|
|
if (blacklist) {
|
|
printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
|
|
drive->name, (char *)&id[ATA_ID_PROD]);
|
|
return blacklist;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__ide_dma_bad_drive);
|
|
|
|
static const u8 xfer_mode_bases[] = {
|
|
XFER_UDMA_0,
|
|
XFER_MW_DMA_0,
|
|
XFER_SW_DMA_0,
|
|
};
|
|
|
|
static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
|
|
{
|
|
u16 *id = drive->id;
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
const struct ide_port_ops *port_ops = hwif->port_ops;
|
|
unsigned int mask = 0;
|
|
|
|
switch (base) {
|
|
case XFER_UDMA_0:
|
|
if ((id[ATA_ID_FIELD_VALID] & 4) == 0)
|
|
break;
|
|
mask = id[ATA_ID_UDMA_MODES];
|
|
if (port_ops && port_ops->udma_filter)
|
|
mask &= port_ops->udma_filter(drive);
|
|
else
|
|
mask &= hwif->ultra_mask;
|
|
|
|
/*
|
|
* avoid false cable warning from eighty_ninty_three()
|
|
*/
|
|
if (req_mode > XFER_UDMA_2) {
|
|
if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
|
|
mask &= 0x07;
|
|
}
|
|
break;
|
|
case XFER_MW_DMA_0:
|
|
mask = id[ATA_ID_MWDMA_MODES];
|
|
|
|
/* Also look for the CF specific MWDMA modes... */
|
|
if (ata_id_is_cfa(id) && (id[ATA_ID_CFA_MODES] & 0x38)) {
|
|
u8 mode = ((id[ATA_ID_CFA_MODES] & 0x38) >> 3) - 1;
|
|
|
|
mask |= ((2 << mode) - 1) << 3;
|
|
}
|
|
|
|
if (port_ops && port_ops->mdma_filter)
|
|
mask &= port_ops->mdma_filter(drive);
|
|
else
|
|
mask &= hwif->mwdma_mask;
|
|
break;
|
|
case XFER_SW_DMA_0:
|
|
mask = id[ATA_ID_SWDMA_MODES];
|
|
if (!(mask & ATA_SWDMA2) && (id[ATA_ID_OLD_DMA_MODES] >> 8)) {
|
|
u8 mode = id[ATA_ID_OLD_DMA_MODES] >> 8;
|
|
|
|
/*
|
|
* if the mode is valid convert it to the mask
|
|
* (the maximum allowed mode is XFER_SW_DMA_2)
|
|
*/
|
|
if (mode <= 2)
|
|
mask = (2 << mode) - 1;
|
|
}
|
|
mask &= hwif->swdma_mask;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* ide_find_dma_mode - compute DMA speed
|
|
* @drive: IDE device
|
|
* @req_mode: requested mode
|
|
*
|
|
* Checks the drive/host capabilities and finds the speed to use for
|
|
* the DMA transfer. The speed is then limited by the requested mode.
|
|
*
|
|
* Returns 0 if the drive/host combination is incapable of DMA transfers
|
|
* or if the requested mode is not a DMA mode.
|
|
*/
|
|
|
|
u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
unsigned int mask;
|
|
int x, i;
|
|
u8 mode = 0;
|
|
|
|
if (drive->media != ide_disk) {
|
|
if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
|
|
if (req_mode < xfer_mode_bases[i])
|
|
continue;
|
|
mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode);
|
|
x = fls(mask) - 1;
|
|
if (x >= 0) {
|
|
mode = xfer_mode_bases[i] + x;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (hwif->chipset == ide_acorn && mode == 0) {
|
|
/*
|
|
* is this correct?
|
|
*/
|
|
if (ide_dma_good_drive(drive) &&
|
|
drive->id[ATA_ID_EIDE_DMA_TIME] < 150)
|
|
mode = XFER_MW_DMA_1;
|
|
}
|
|
|
|
mode = min(mode, req_mode);
|
|
|
|
printk(KERN_INFO "%s: %s mode selected\n", drive->name,
|
|
mode ? ide_xfer_verbose(mode) : "no DMA");
|
|
|
|
return mode;
|
|
}
|
|
|
|
static int ide_tune_dma(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
u8 speed;
|
|
|
|
if (ata_id_has_dma(drive->id) == 0 ||
|
|
(drive->dev_flags & IDE_DFLAG_NODMA))
|
|
return 0;
|
|
|
|
/* consult the list of known "bad" drives */
|
|
if (__ide_dma_bad_drive(drive))
|
|
return 0;
|
|
|
|
if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
|
|
return config_drive_for_dma(drive);
|
|
|
|
speed = ide_max_dma_mode(drive);
|
|
|
|
if (!speed)
|
|
return 0;
|
|
|
|
if (ide_set_dma_mode(drive, speed))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int ide_dma_check(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
|
|
if (ide_tune_dma(drive))
|
|
return 0;
|
|
|
|
/* TODO: always do PIO fallback */
|
|
if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
|
|
return -1;
|
|
|
|
ide_set_max_pio(drive);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int ide_set_dma(ide_drive_t *drive)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Force DMAing for the beginning of the check.
|
|
* Some chipsets appear to do interesting
|
|
* things, if not checked and cleared.
|
|
* PARANOIA!!!
|
|
*/
|
|
ide_dma_off_quietly(drive);
|
|
|
|
rc = ide_dma_check(drive);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ide_dma_on(drive);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ide_check_dma_crc(ide_drive_t *drive)
|
|
{
|
|
u8 mode;
|
|
|
|
ide_dma_off_quietly(drive);
|
|
drive->crc_count = 0;
|
|
mode = drive->current_speed;
|
|
/*
|
|
* Don't try non Ultra-DMA modes without iCRC's. Force the
|
|
* device to PIO and make the user enable SWDMA/MWDMA modes.
|
|
*/
|
|
if (mode > XFER_UDMA_0 && mode <= XFER_UDMA_7)
|
|
mode--;
|
|
else
|
|
mode = XFER_PIO_4;
|
|
ide_set_xfer_rate(drive, mode);
|
|
if (drive->current_speed >= XFER_SW_DMA_0)
|
|
ide_dma_on(drive);
|
|
}
|
|
|
|
void ide_dma_lost_irq(ide_drive_t *drive)
|
|
{
|
|
printk(KERN_ERR "%s: DMA interrupt recovery\n", drive->name);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_dma_lost_irq);
|
|
|
|
/*
|
|
* un-busy the port etc, and clear any pending DMA status. we want to
|
|
* retry the current request in pio mode instead of risking tossing it
|
|
* all away
|
|
*/
|
|
ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
const struct ide_dma_ops *dma_ops = hwif->dma_ops;
|
|
struct ide_cmd *cmd = &hwif->cmd;
|
|
struct request *rq;
|
|
ide_startstop_t ret = ide_stopped;
|
|
|
|
/*
|
|
* end current dma transaction
|
|
*/
|
|
|
|
if (error < 0) {
|
|
printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
|
|
drive->waiting_for_dma = 0;
|
|
(void)dma_ops->dma_end(drive);
|
|
ide_dma_unmap_sg(drive, cmd);
|
|
ret = ide_error(drive, "dma timeout error",
|
|
hwif->tp_ops->read_status(hwif));
|
|
} else {
|
|
printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
|
|
if (dma_ops->dma_clear)
|
|
dma_ops->dma_clear(drive);
|
|
printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
|
|
if (dma_ops->dma_test_irq(drive) == 0) {
|
|
ide_dump_status(drive, "DMA timeout",
|
|
hwif->tp_ops->read_status(hwif));
|
|
drive->waiting_for_dma = 0;
|
|
(void)dma_ops->dma_end(drive);
|
|
ide_dma_unmap_sg(drive, cmd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* disable dma for now, but remember that we did so because of
|
|
* a timeout -- we'll reenable after we finish this next request
|
|
* (or rather the first chunk of it) in pio.
|
|
*/
|
|
drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
|
|
drive->retry_pio++;
|
|
ide_dma_off_quietly(drive);
|
|
|
|
/*
|
|
* un-busy drive etc and make sure request is sane
|
|
*/
|
|
rq = hwif->rq;
|
|
if (rq) {
|
|
hwif->rq = NULL;
|
|
rq->errors = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ide_release_dma_engine(ide_hwif_t *hwif)
|
|
{
|
|
if (hwif->dmatable_cpu) {
|
|
int prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
|
|
|
|
dma_free_coherent(hwif->dev, prd_size,
|
|
hwif->dmatable_cpu, hwif->dmatable_dma);
|
|
hwif->dmatable_cpu = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_release_dma_engine);
|
|
|
|
int ide_allocate_dma_engine(ide_hwif_t *hwif)
|
|
{
|
|
int prd_size;
|
|
|
|
if (hwif->prd_max_nents == 0)
|
|
hwif->prd_max_nents = PRD_ENTRIES;
|
|
if (hwif->prd_ent_size == 0)
|
|
hwif->prd_ent_size = PRD_BYTES;
|
|
|
|
prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
|
|
|
|
hwif->dmatable_cpu = dma_alloc_coherent(hwif->dev, prd_size,
|
|
&hwif->dmatable_dma,
|
|
GFP_ATOMIC);
|
|
if (hwif->dmatable_cpu == NULL) {
|
|
printk(KERN_ERR "%s: unable to allocate PRD table\n",
|
|
hwif->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);
|
|
|
|
int ide_dma_prepare(ide_drive_t *drive, struct ide_cmd *cmd)
|
|
{
|
|
const struct ide_dma_ops *dma_ops = drive->hwif->dma_ops;
|
|
|
|
if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0 ||
|
|
(dma_ops->dma_check && dma_ops->dma_check(drive, cmd)))
|
|
goto out;
|
|
ide_map_sg(drive, cmd);
|
|
if (ide_dma_map_sg(drive, cmd) == 0)
|
|
goto out_map;
|
|
if (dma_ops->dma_setup(drive, cmd))
|
|
goto out_dma_unmap;
|
|
drive->waiting_for_dma = 1;
|
|
return 0;
|
|
out_dma_unmap:
|
|
ide_dma_unmap_sg(drive, cmd);
|
|
out_map:
|
|
ide_map_sg(drive, cmd);
|
|
out:
|
|
return 1;
|
|
}
|