linux_dsm_epyc7002/drivers/i2c/busses/i2c-ocores.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

377 lines
8.5 KiB
C

/*
* i2c-ocores.c: I2C bus driver for OpenCores I2C controller
* (http://www.opencores.org/projects.cgi/web/i2c/overview).
*
* Peter Korsgaard <jacmet@sunsite.dk>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/i2c-ocores.h>
#include <linux/slab.h>
#include <asm/io.h>
struct ocores_i2c {
void __iomem *base;
int regstep;
wait_queue_head_t wait;
struct i2c_adapter adap;
struct i2c_msg *msg;
int pos;
int nmsgs;
int state; /* see STATE_ */
int clock_khz;
};
/* registers */
#define OCI2C_PRELOW 0
#define OCI2C_PREHIGH 1
#define OCI2C_CONTROL 2
#define OCI2C_DATA 3
#define OCI2C_CMD 4 /* write only */
#define OCI2C_STATUS 4 /* read only, same address as OCI2C_CMD */
#define OCI2C_CTRL_IEN 0x40
#define OCI2C_CTRL_EN 0x80
#define OCI2C_CMD_START 0x91
#define OCI2C_CMD_STOP 0x41
#define OCI2C_CMD_READ 0x21
#define OCI2C_CMD_WRITE 0x11
#define OCI2C_CMD_READ_ACK 0x21
#define OCI2C_CMD_READ_NACK 0x29
#define OCI2C_CMD_IACK 0x01
#define OCI2C_STAT_IF 0x01
#define OCI2C_STAT_TIP 0x02
#define OCI2C_STAT_ARBLOST 0x20
#define OCI2C_STAT_BUSY 0x40
#define OCI2C_STAT_NACK 0x80
#define STATE_DONE 0
#define STATE_START 1
#define STATE_WRITE 2
#define STATE_READ 3
#define STATE_ERROR 4
static inline void oc_setreg(struct ocores_i2c *i2c, int reg, u8 value)
{
iowrite8(value, i2c->base + reg * i2c->regstep);
}
static inline u8 oc_getreg(struct ocores_i2c *i2c, int reg)
{
return ioread8(i2c->base + reg * i2c->regstep);
}
static void ocores_process(struct ocores_i2c *i2c)
{
struct i2c_msg *msg = i2c->msg;
u8 stat = oc_getreg(i2c, OCI2C_STATUS);
if ((i2c->state == STATE_DONE) || (i2c->state == STATE_ERROR)) {
/* stop has been sent */
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_IACK);
wake_up(&i2c->wait);
return;
}
/* error? */
if (stat & OCI2C_STAT_ARBLOST) {
i2c->state = STATE_ERROR;
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);
return;
}
if ((i2c->state == STATE_START) || (i2c->state == STATE_WRITE)) {
i2c->state =
(msg->flags & I2C_M_RD) ? STATE_READ : STATE_WRITE;
if (stat & OCI2C_STAT_NACK) {
i2c->state = STATE_ERROR;
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);
return;
}
} else
msg->buf[i2c->pos++] = oc_getreg(i2c, OCI2C_DATA);
/* end of msg? */
if (i2c->pos == msg->len) {
i2c->nmsgs--;
i2c->msg++;
i2c->pos = 0;
msg = i2c->msg;
if (i2c->nmsgs) { /* end? */
/* send start? */
if (!(msg->flags & I2C_M_NOSTART)) {
u8 addr = (msg->addr << 1);
if (msg->flags & I2C_M_RD)
addr |= 1;
i2c->state = STATE_START;
oc_setreg(i2c, OCI2C_DATA, addr);
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);
return;
} else
i2c->state = (msg->flags & I2C_M_RD)
? STATE_READ : STATE_WRITE;
} else {
i2c->state = STATE_DONE;
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);
return;
}
}
if (i2c->state == STATE_READ) {
oc_setreg(i2c, OCI2C_CMD, i2c->pos == (msg->len-1) ?
OCI2C_CMD_READ_NACK : OCI2C_CMD_READ_ACK);
} else {
oc_setreg(i2c, OCI2C_DATA, msg->buf[i2c->pos++]);
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_WRITE);
}
}
static irqreturn_t ocores_isr(int irq, void *dev_id)
{
struct ocores_i2c *i2c = dev_id;
ocores_process(i2c);
return IRQ_HANDLED;
}
static int ocores_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct ocores_i2c *i2c = i2c_get_adapdata(adap);
i2c->msg = msgs;
i2c->pos = 0;
i2c->nmsgs = num;
i2c->state = STATE_START;
oc_setreg(i2c, OCI2C_DATA,
(i2c->msg->addr << 1) |
((i2c->msg->flags & I2C_M_RD) ? 1:0));
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);
if (wait_event_timeout(i2c->wait, (i2c->state == STATE_ERROR) ||
(i2c->state == STATE_DONE), HZ))
return (i2c->state == STATE_DONE) ? num : -EIO;
else
return -ETIMEDOUT;
}
static void ocores_init(struct ocores_i2c *i2c)
{
int prescale;
u8 ctrl = oc_getreg(i2c, OCI2C_CONTROL);
/* make sure the device is disabled */
oc_setreg(i2c, OCI2C_CONTROL, ctrl & ~(OCI2C_CTRL_EN|OCI2C_CTRL_IEN));
prescale = (i2c->clock_khz / (5*100)) - 1;
oc_setreg(i2c, OCI2C_PRELOW, prescale & 0xff);
oc_setreg(i2c, OCI2C_PREHIGH, prescale >> 8);
/* Init the device */
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_IACK);
oc_setreg(i2c, OCI2C_CONTROL, ctrl | OCI2C_CTRL_IEN | OCI2C_CTRL_EN);
}
static u32 ocores_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm ocores_algorithm = {
.master_xfer = ocores_xfer,
.functionality = ocores_func,
};
static struct i2c_adapter ocores_adapter = {
.owner = THIS_MODULE,
.name = "i2c-ocores",
.class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
.algo = &ocores_algorithm,
};
static int __devinit ocores_i2c_probe(struct platform_device *pdev)
{
struct ocores_i2c *i2c;
struct ocores_i2c_platform_data *pdata;
struct resource *res, *res2;
int ret;
int i;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
res2 = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res2)
return -ENODEV;
pdata = (struct ocores_i2c_platform_data*) pdev->dev.platform_data;
if (!pdata)
return -ENODEV;
i2c = kzalloc(sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
if (!request_mem_region(res->start, resource_size(res),
pdev->name)) {
dev_err(&pdev->dev, "Memory region busy\n");
ret = -EBUSY;
goto request_mem_failed;
}
i2c->base = ioremap(res->start, resource_size(res));
if (!i2c->base) {
dev_err(&pdev->dev, "Unable to map registers\n");
ret = -EIO;
goto map_failed;
}
i2c->regstep = pdata->regstep;
i2c->clock_khz = pdata->clock_khz;
ocores_init(i2c);
init_waitqueue_head(&i2c->wait);
ret = request_irq(res2->start, ocores_isr, 0, pdev->name, i2c);
if (ret) {
dev_err(&pdev->dev, "Cannot claim IRQ\n");
goto request_irq_failed;
}
/* hook up driver to tree */
platform_set_drvdata(pdev, i2c);
i2c->adap = ocores_adapter;
i2c_set_adapdata(&i2c->adap, i2c);
i2c->adap.dev.parent = &pdev->dev;
/* add i2c adapter to i2c tree */
ret = i2c_add_adapter(&i2c->adap);
if (ret) {
dev_err(&pdev->dev, "Failed to add adapter\n");
goto add_adapter_failed;
}
/* add in known devices to the bus */
for (i = 0; i < pdata->num_devices; i++)
i2c_new_device(&i2c->adap, pdata->devices + i);
return 0;
add_adapter_failed:
free_irq(res2->start, i2c);
request_irq_failed:
iounmap(i2c->base);
map_failed:
release_mem_region(res->start, resource_size(res));
request_mem_failed:
kfree(i2c);
return ret;
}
static int __devexit ocores_i2c_remove(struct platform_device* pdev)
{
struct ocores_i2c *i2c = platform_get_drvdata(pdev);
struct resource *res;
/* disable i2c logic */
oc_setreg(i2c, OCI2C_CONTROL, oc_getreg(i2c, OCI2C_CONTROL)
& ~(OCI2C_CTRL_EN|OCI2C_CTRL_IEN));
/* remove adapter & data */
i2c_del_adapter(&i2c->adap);
platform_set_drvdata(pdev, NULL);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res)
free_irq(res->start, i2c);
iounmap(i2c->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, resource_size(res));
kfree(i2c);
return 0;
}
#ifdef CONFIG_PM
static int ocores_i2c_suspend(struct platform_device *pdev, pm_message_t state)
{
struct ocores_i2c *i2c = platform_get_drvdata(pdev);
u8 ctrl = oc_getreg(i2c, OCI2C_CONTROL);
/* make sure the device is disabled */
oc_setreg(i2c, OCI2C_CONTROL, ctrl & ~(OCI2C_CTRL_EN|OCI2C_CTRL_IEN));
return 0;
}
static int ocores_i2c_resume(struct platform_device *pdev)
{
struct ocores_i2c *i2c = platform_get_drvdata(pdev);
ocores_init(i2c);
return 0;
}
#else
#define ocores_i2c_suspend NULL
#define ocores_i2c_resume NULL
#endif
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:ocores-i2c");
static struct platform_driver ocores_i2c_driver = {
.probe = ocores_i2c_probe,
.remove = __devexit_p(ocores_i2c_remove),
.suspend = ocores_i2c_suspend,
.resume = ocores_i2c_resume,
.driver = {
.owner = THIS_MODULE,
.name = "ocores-i2c",
},
};
static int __init ocores_i2c_init(void)
{
return platform_driver_register(&ocores_i2c_driver);
}
static void __exit ocores_i2c_exit(void)
{
platform_driver_unregister(&ocores_i2c_driver);
}
module_init(ocores_i2c_init);
module_exit(ocores_i2c_exit);
MODULE_AUTHOR("Peter Korsgaard <jacmet@sunsite.dk>");
MODULE_DESCRIPTION("OpenCores I2C bus driver");
MODULE_LICENSE("GPL");