mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
59c1dcbed5
A frequent cause of #GP exceptions are memory accesses to non-canonical addresses. Unlike #PF, #GP doesn't report a fault address in CR2, so the kernel doesn't currently print the fault address for a #GP. Luckily, the necessary infrastructure for decoding x86 instructions and computing the memory address being accessed is already present. Hook it up to the #GP handler so that the address operand of the faulting instruction can be figured out and printed. Distinguish two cases: a) (Part of) the memory range being accessed lies in the non-canonical address range; in this case, it is likely that the decoded address is actually the one that caused the #GP. b) The entire memory range of the decoded operand lies in canonical address space; the #GP may or may not be related in some way to the computed address. Print it, but with hedging language in the message. While it is already possible to compute the faulting address manually by disassembling the opcode dump and evaluating the instruction against the register dump, this should make it slightly easier to identify crashes at a glance. Note that the operand length which comes from the instruction decoder and is used to determine whether the access straddles into non-canonical address space, is currently somewhat unreliable; but it should be good enough, considering that Linux on x86-64 never maps the page directly before the start of the non-canonical range anyway, and therefore the case where a memory range begins in that page and potentially straddles into the non-canonical range should be fairly uncommon. In the case the address is still computed wrongly, it only influences whether the error message claims that the access is canonical. [ bp: Remove ambiguous "we", massage, reflow comments and spacing. ] Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Tested-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: kasan-dev@googlegroups.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191218231150.12139-2-jannh@google.com |
||
---|---|---|
.. | ||
alpha | ||
arc | ||
arm | ||
arm64 | ||
c6x | ||
csky | ||
h8300 | ||
hexagon | ||
ia64 | ||
m68k | ||
microblaze | ||
mips | ||
nds32 | ||
nios2 | ||
openrisc | ||
parisc | ||
powerpc | ||
riscv | ||
s390 | ||
sh | ||
sparc | ||
um | ||
unicore32 | ||
x86 | ||
xtensa | ||
.gitignore | ||
Kconfig |