linux_dsm_epyc7002/kernel/trace/bpf_trace.c
David S. Miller 59436c9ee1 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2017-12-18

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) Allow arbitrary function calls from one BPF function to another BPF function.
   As of today when writing BPF programs, __always_inline had to be used in
   the BPF C programs for all functions, unnecessarily causing LLVM to inflate
   code size. Handle this more naturally with support for BPF to BPF calls
   such that this __always_inline restriction can be overcome. As a result,
   it allows for better optimized code and finally enables to introduce core
   BPF libraries in the future that can be reused out of different projects.
   x86 and arm64 JIT support was added as well, from Alexei.

2) Add infrastructure for tagging functions as error injectable and allow for
   BPF to return arbitrary error values when BPF is attached via kprobes on
   those. This way of injecting errors generically eases testing and debugging
   without having to recompile or restart the kernel. Tags for opting-in for
   this facility are added with BPF_ALLOW_ERROR_INJECTION(), from Josef.

3) For BPF offload via nfp JIT, add support for bpf_xdp_adjust_head() helper
   call for XDP programs. First part of this work adds handling of BPF
   capabilities included in the firmware, and the later patches add support
   to the nfp verifier part and JIT as well as some small optimizations,
   from Jakub.

4) The bpftool now also gets support for basic cgroup BPF operations such
   as attaching, detaching and listing current BPF programs. As a requirement
   for the attach part, bpftool can now also load object files through
   'bpftool prog load'. This reuses libbpf which we have in the kernel tree
   as well. bpftool-cgroup man page is added along with it, from Roman.

5) Back then commit e87c6bc385 ("bpf: permit multiple bpf attachments for
   a single perf event") added support for attaching multiple BPF programs
   to a single perf event. Given they are configured through perf's ioctl()
   interface, the interface has been extended with a PERF_EVENT_IOC_QUERY_BPF
   command in this work in order to return an array of one or multiple BPF
   prog ids that are currently attached, from Yonghong.

6) Various minor fixes and cleanups to the bpftool's Makefile as well
   as a new 'uninstall' and 'doc-uninstall' target for removing bpftool
   itself or prior installed documentation related to it, from Quentin.

7) Add CONFIG_CGROUP_BPF=y to the BPF kernel selftest config file which is
   required for the test_dev_cgroup test case to run, from Naresh.

8) Fix reporting of XDP prog_flags for nfp driver, from Jakub.

9) Fix libbpf's exit code from the Makefile when libelf was not found in
   the system, also from Jakub.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-18 10:51:06 -05:00

886 lines
23 KiB
C

/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/bpf_perf_event.h>
#include <linux/filter.h>
#include <linux/uaccess.h>
#include <linux/ctype.h>
#include <linux/kprobes.h>
#include <asm/kprobes.h>
#include "trace_probe.h"
#include "trace.h"
u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
/**
* trace_call_bpf - invoke BPF program
* @call: tracepoint event
* @ctx: opaque context pointer
*
* kprobe handlers execute BPF programs via this helper.
* Can be used from static tracepoints in the future.
*
* Return: BPF programs always return an integer which is interpreted by
* kprobe handler as:
* 0 - return from kprobe (event is filtered out)
* 1 - store kprobe event into ring buffer
* Other values are reserved and currently alias to 1
*/
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
{
unsigned int ret;
if (in_nmi()) /* not supported yet */
return 1;
preempt_disable();
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
/*
* since some bpf program is already running on this cpu,
* don't call into another bpf program (same or different)
* and don't send kprobe event into ring-buffer,
* so return zero here
*/
ret = 0;
goto out;
}
/*
* Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
* to all call sites, we did a bpf_prog_array_valid() there to check
* whether call->prog_array is empty or not, which is
* a heurisitc to speed up execution.
*
* If bpf_prog_array_valid() fetched prog_array was
* non-NULL, we go into trace_call_bpf() and do the actual
* proper rcu_dereference() under RCU lock.
* If it turns out that prog_array is NULL then, we bail out.
* For the opposite, if the bpf_prog_array_valid() fetched pointer
* was NULL, you'll skip the prog_array with the risk of missing
* out of events when it was updated in between this and the
* rcu_dereference() which is accepted risk.
*/
ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
out:
__this_cpu_dec(bpf_prog_active);
preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(trace_call_bpf);
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
{
__this_cpu_write(bpf_kprobe_override, 1);
regs_set_return_value(regs, rc);
arch_ftrace_kprobe_override_function(regs);
return 0;
}
static const struct bpf_func_proto bpf_override_return_proto = {
.func = bpf_override_return,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_ANYTHING,
};
#endif
BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
{
int ret;
ret = probe_kernel_read(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_proto = {
.func = bpf_probe_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
u32, size)
{
/*
* Ensure we're in user context which is safe for the helper to
* run. This helper has no business in a kthread.
*
* access_ok() should prevent writing to non-user memory, but in
* some situations (nommu, temporary switch, etc) access_ok() does
* not provide enough validation, hence the check on KERNEL_DS.
*/
if (unlikely(in_interrupt() ||
current->flags & (PF_KTHREAD | PF_EXITING)))
return -EPERM;
if (unlikely(uaccess_kernel()))
return -EPERM;
if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
return -EPERM;
return probe_kernel_write(unsafe_ptr, src, size);
}
static const struct bpf_func_proto bpf_probe_write_user_proto = {
.func = bpf_probe_write_user,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE,
};
static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
{
pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
current->comm, task_pid_nr(current));
return &bpf_probe_write_user_proto;
}
/*
* Only limited trace_printk() conversion specifiers allowed:
* %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
*/
BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
u64, arg2, u64, arg3)
{
bool str_seen = false;
int mod[3] = {};
int fmt_cnt = 0;
u64 unsafe_addr;
char buf[64];
int i;
/*
* bpf_check()->check_func_arg()->check_stack_boundary()
* guarantees that fmt points to bpf program stack,
* fmt_size bytes of it were initialized and fmt_size > 0
*/
if (fmt[--fmt_size] != 0)
return -EINVAL;
/* check format string for allowed specifiers */
for (i = 0; i < fmt_size; i++) {
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
return -EINVAL;
if (fmt[i] != '%')
continue;
if (fmt_cnt >= 3)
return -EINVAL;
/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
i++;
if (fmt[i] == 'l') {
mod[fmt_cnt]++;
i++;
} else if (fmt[i] == 'p' || fmt[i] == 's') {
mod[fmt_cnt]++;
i++;
if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
return -EINVAL;
fmt_cnt++;
if (fmt[i - 1] == 's') {
if (str_seen)
/* allow only one '%s' per fmt string */
return -EINVAL;
str_seen = true;
switch (fmt_cnt) {
case 1:
unsafe_addr = arg1;
arg1 = (long) buf;
break;
case 2:
unsafe_addr = arg2;
arg2 = (long) buf;
break;
case 3:
unsafe_addr = arg3;
arg3 = (long) buf;
break;
}
buf[0] = 0;
strncpy_from_unsafe(buf,
(void *) (long) unsafe_addr,
sizeof(buf));
}
continue;
}
if (fmt[i] == 'l') {
mod[fmt_cnt]++;
i++;
}
if (fmt[i] != 'i' && fmt[i] != 'd' &&
fmt[i] != 'u' && fmt[i] != 'x')
return -EINVAL;
fmt_cnt++;
}
/* Horrid workaround for getting va_list handling working with different
* argument type combinations generically for 32 and 64 bit archs.
*/
#define __BPF_TP_EMIT() __BPF_ARG3_TP()
#define __BPF_TP(...) \
__trace_printk(1 /* Fake ip will not be printed. */, \
fmt, ##__VA_ARGS__)
#define __BPF_ARG1_TP(...) \
((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
? __BPF_TP(arg1, ##__VA_ARGS__) \
: ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
? __BPF_TP((long)arg1, ##__VA_ARGS__) \
: __BPF_TP((u32)arg1, ##__VA_ARGS__)))
#define __BPF_ARG2_TP(...) \
((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
: ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
: __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
#define __BPF_ARG3_TP(...) \
((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
: ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
: __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
return __BPF_TP_EMIT();
}
static const struct bpf_func_proto bpf_trace_printk_proto = {
.func = bpf_trace_printk,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
};
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
{
/*
* this program might be calling bpf_trace_printk,
* so allocate per-cpu printk buffers
*/
trace_printk_init_buffers();
return &bpf_trace_printk_proto;
}
static __always_inline int
get_map_perf_counter(struct bpf_map *map, u64 flags,
u64 *value, u64 *enabled, u64 *running)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
unsigned int cpu = smp_processor_id();
u64 index = flags & BPF_F_INDEX_MASK;
struct bpf_event_entry *ee;
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
if (index == BPF_F_CURRENT_CPU)
index = cpu;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
ee = READ_ONCE(array->ptrs[index]);
if (!ee)
return -ENOENT;
return perf_event_read_local(ee->event, value, enabled, running);
}
BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
{
u64 value = 0;
int err;
err = get_map_perf_counter(map, flags, &value, NULL, NULL);
/*
* this api is ugly since we miss [-22..-2] range of valid
* counter values, but that's uapi
*/
if (err)
return err;
return value;
}
static const struct bpf_func_proto bpf_perf_event_read_proto = {
.func = bpf_perf_event_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
struct bpf_perf_event_value *, buf, u32, size)
{
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
goto clear;
err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
&buf->running);
if (unlikely(err))
goto clear;
return 0;
clear:
memset(buf, 0, size);
return err;
}
static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
.func = bpf_perf_event_read_value,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
.arg4_type = ARG_CONST_SIZE,
};
static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
static __always_inline u64
__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
u64 flags, struct perf_sample_data *sd)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
unsigned int cpu = smp_processor_id();
u64 index = flags & BPF_F_INDEX_MASK;
struct bpf_event_entry *ee;
struct perf_event *event;
if (index == BPF_F_CURRENT_CPU)
index = cpu;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
ee = READ_ONCE(array->ptrs[index]);
if (!ee)
return -ENOENT;
event = ee->event;
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
return -EINVAL;
if (unlikely(event->oncpu != cpu))
return -EOPNOTSUPP;
perf_event_output(event, sd, regs);
return 0;
}
BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
struct perf_raw_record raw = {
.frag = {
.size = size,
.data = data,
},
};
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
perf_sample_data_init(sd, 0, 0);
sd->raw = &raw;
return __bpf_perf_event_output(regs, map, flags, sd);
}
static const struct bpf_func_proto bpf_perf_event_output_proto = {
.func = bpf_perf_event_output,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
{
struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
struct perf_raw_frag frag = {
.copy = ctx_copy,
.size = ctx_size,
.data = ctx,
};
struct perf_raw_record raw = {
.frag = {
{
.next = ctx_size ? &frag : NULL,
},
.size = meta_size,
.data = meta,
},
};
perf_fetch_caller_regs(regs);
perf_sample_data_init(sd, 0, 0);
sd->raw = &raw;
return __bpf_perf_event_output(regs, map, flags, sd);
}
BPF_CALL_0(bpf_get_current_task)
{
return (long) current;
}
static const struct bpf_func_proto bpf_get_current_task_proto = {
.func = bpf_get_current_task,
.gpl_only = true,
.ret_type = RET_INTEGER,
};
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct cgroup *cgrp;
if (unlikely(in_interrupt()))
return -EINVAL;
if (unlikely(idx >= array->map.max_entries))
return -E2BIG;
cgrp = READ_ONCE(array->ptrs[idx]);
if (unlikely(!cgrp))
return -EAGAIN;
return task_under_cgroup_hierarchy(current, cgrp);
}
static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
.func = bpf_current_task_under_cgroup,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
int ret;
/*
* The strncpy_from_unsafe() call will likely not fill the entire
* buffer, but that's okay in this circumstance as we're probing
* arbitrary memory anyway similar to bpf_probe_read() and might
* as well probe the stack. Thus, memory is explicitly cleared
* only in error case, so that improper users ignoring return
* code altogether don't copy garbage; otherwise length of string
* is returned that can be used for bpf_perf_event_output() et al.
*/
ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_str_proto = {
.func = bpf_probe_read_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_map_lookup_elem:
return &bpf_map_lookup_elem_proto;
case BPF_FUNC_map_update_elem:
return &bpf_map_update_elem_proto;
case BPF_FUNC_map_delete_elem:
return &bpf_map_delete_elem_proto;
case BPF_FUNC_probe_read:
return &bpf_probe_read_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
case BPF_FUNC_get_current_pid_tgid:
return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_current_task:
return &bpf_get_current_task_proto;
case BPF_FUNC_get_current_uid_gid:
return &bpf_get_current_uid_gid_proto;
case BPF_FUNC_get_current_comm:
return &bpf_get_current_comm_proto;
case BPF_FUNC_trace_printk:
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_smp_processor_id_proto;
case BPF_FUNC_get_numa_node_id:
return &bpf_get_numa_node_id_proto;
case BPF_FUNC_perf_event_read:
return &bpf_perf_event_read_proto;
case BPF_FUNC_probe_write_user:
return bpf_get_probe_write_proto();
case BPF_FUNC_current_task_under_cgroup:
return &bpf_current_task_under_cgroup_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
case BPF_FUNC_probe_read_str:
return &bpf_probe_read_str_proto;
default:
return NULL;
}
}
static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto;
case BPF_FUNC_perf_event_read_value:
return &bpf_perf_event_read_value_proto;
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
case BPF_FUNC_override_return:
return &bpf_override_return_proto;
#endif
default:
return tracing_func_proto(func_id);
}
}
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
if (off < 0 || off >= sizeof(struct pt_regs))
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
/*
* Assertion for 32 bit to make sure last 8 byte access
* (BPF_DW) to the last 4 byte member is disallowed.
*/
if (off + size > sizeof(struct pt_regs))
return false;
return true;
}
const struct bpf_verifier_ops kprobe_verifier_ops = {
.get_func_proto = kprobe_prog_func_proto,
.is_valid_access = kprobe_prog_is_valid_access,
};
const struct bpf_prog_ops kprobe_prog_ops = {
};
BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
/*
* r1 points to perf tracepoint buffer where first 8 bytes are hidden
* from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
* from there and call the same bpf_perf_event_output() helper inline.
*/
return ____bpf_perf_event_output(regs, map, flags, data, size);
}
static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
.func = bpf_perf_event_output_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
u64, flags)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
/*
* Same comment as in bpf_perf_event_output_tp(), only that this time
* the other helper's function body cannot be inlined due to being
* external, thus we need to call raw helper function.
*/
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
flags, 0, 0);
}
static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
.func = bpf_get_stackid_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_perf_prog_read_value_tp, struct bpf_perf_event_data_kern *, ctx,
struct bpf_perf_event_value *, buf, u32, size)
{
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
goto clear;
err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
&buf->running);
if (unlikely(err))
goto clear;
return 0;
clear:
memset(buf, 0, size);
return err;
}
static const struct bpf_func_proto bpf_perf_prog_read_value_proto_tp = {
.func = bpf_perf_prog_read_value_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE,
};
static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto_tp;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto_tp;
case BPF_FUNC_perf_prog_read_value:
return &bpf_perf_prog_read_value_proto_tp;
default:
return tracing_func_proto(func_id);
}
}
static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
return true;
}
const struct bpf_verifier_ops tracepoint_verifier_ops = {
.get_func_proto = tp_prog_func_proto,
.is_valid_access = tp_prog_is_valid_access,
};
const struct bpf_prog_ops tracepoint_prog_ops = {
};
static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data,
sample_period);
if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
switch (off) {
case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
bpf_ctx_record_field_size(info, size_sp);
if (!bpf_ctx_narrow_access_ok(off, size, size_sp))
return false;
break;
default:
if (size != sizeof(long))
return false;
}
return true;
}
static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog, u32 *target_size)
{
struct bpf_insn *insn = insn_buf;
switch (si->off) {
case offsetof(struct bpf_perf_event_data, sample_period):
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
data), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, data));
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
bpf_target_off(struct perf_sample_data, period, 8,
target_size));
break;
default:
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
regs), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, regs));
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
si->off);
break;
}
return insn - insn_buf;
}
const struct bpf_verifier_ops perf_event_verifier_ops = {
.get_func_proto = tp_prog_func_proto,
.is_valid_access = pe_prog_is_valid_access,
.convert_ctx_access = pe_prog_convert_ctx_access,
};
const struct bpf_prog_ops perf_event_prog_ops = {
};
static DEFINE_MUTEX(bpf_event_mutex);
#define BPF_TRACE_MAX_PROGS 64
int perf_event_attach_bpf_prog(struct perf_event *event,
struct bpf_prog *prog)
{
struct bpf_prog_array __rcu *old_array;
struct bpf_prog_array *new_array;
int ret = -EEXIST;
/*
* Kprobe override only works for ftrace based kprobes, and only if they
* are on the opt-in list.
*/
if (prog->kprobe_override &&
(!trace_kprobe_ftrace(event->tp_event) ||
!trace_kprobe_error_injectable(event->tp_event)))
return -EINVAL;
mutex_lock(&bpf_event_mutex);
if (event->prog)
goto unlock;
old_array = event->tp_event->prog_array;
if (old_array &&
bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
ret = -E2BIG;
goto unlock;
}
ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
if (ret < 0)
goto unlock;
/* set the new array to event->tp_event and set event->prog */
event->prog = prog;
rcu_assign_pointer(event->tp_event->prog_array, new_array);
bpf_prog_array_free(old_array);
unlock:
mutex_unlock(&bpf_event_mutex);
return ret;
}
void perf_event_detach_bpf_prog(struct perf_event *event)
{
struct bpf_prog_array __rcu *old_array;
struct bpf_prog_array *new_array;
int ret;
mutex_lock(&bpf_event_mutex);
if (!event->prog)
goto unlock;
old_array = event->tp_event->prog_array;
ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
if (ret < 0) {
bpf_prog_array_delete_safe(old_array, event->prog);
} else {
rcu_assign_pointer(event->tp_event->prog_array, new_array);
bpf_prog_array_free(old_array);
}
bpf_prog_put(event->prog);
event->prog = NULL;
unlock:
mutex_unlock(&bpf_event_mutex);
}
int perf_event_query_prog_array(struct perf_event *event, void __user *info)
{
struct perf_event_query_bpf __user *uquery = info;
struct perf_event_query_bpf query = {};
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (event->attr.type != PERF_TYPE_TRACEPOINT)
return -EINVAL;
if (copy_from_user(&query, uquery, sizeof(query)))
return -EFAULT;
mutex_lock(&bpf_event_mutex);
ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
uquery->ids,
query.ids_len,
&uquery->prog_cnt);
mutex_unlock(&bpf_event_mutex);
return ret;
}