linux_dsm_epyc7002/arch/x86/kernel/kvm.c
Wanpeng Li 858a43aae2 KVM: X86: use paravirtualized TLB Shootdown
Remote TLB flush does a busy wait which is fine in bare-metal
scenario. But with-in the guest, the vcpus might have been pre-empted or
blocked. In this scenario, the initator vcpu would end up busy-waiting
for a long amount of time; it also consumes CPU unnecessarily to wake
up the target of the shootdown.

This patch set adds support for KVM's new paravirtualized TLB flush;
remote TLB flush does not wait for vcpus that are sleeping, instead
KVM will flush the TLB as soon as the vCPU starts running again.

The improvement is clearly visible when the host is overcommitted; in this
case, the PV TLB flush (in addition to avoiding the wait on the main CPU)
prevents preempted vCPUs from stealing precious execution time from the
running ones.

Testing on a Xeon Gold 6142 2.6GHz 2 sockets, 32 cores, 64 threads,
so 64 pCPUs, and each VM is 64 vCPUs.

ebizzy -M
              vanilla    optimized     boost
1VM            46799       48670         4%
2VM            23962       42691        78%
3VM            16152       37539       132%

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:34:13 +01:00

744 lines
17 KiB
C

/*
* KVM paravirt_ops implementation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright IBM Corporation, 2007
* Authors: Anthony Liguori <aliguori@us.ibm.com>
*/
#include <linux/context_tracking.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kvm_para.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hardirq.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/hash.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/kprobes.h>
#include <linux/debugfs.h>
#include <linux/nmi.h>
#include <linux/swait.h>
#include <asm/timer.h>
#include <asm/cpu.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
#include <asm/apic.h>
#include <asm/apicdef.h>
#include <asm/hypervisor.h>
#include <asm/kvm_guest.h>
static int kvmapf = 1;
static int parse_no_kvmapf(char *arg)
{
kvmapf = 0;
return 0;
}
early_param("no-kvmapf", parse_no_kvmapf);
static int steal_acc = 1;
static int parse_no_stealacc(char *arg)
{
steal_acc = 0;
return 0;
}
early_param("no-steal-acc", parse_no_stealacc);
static int kvmclock_vsyscall = 1;
static int parse_no_kvmclock_vsyscall(char *arg)
{
kvmclock_vsyscall = 0;
return 0;
}
early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
static DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64);
static int has_steal_clock = 0;
/*
* No need for any "IO delay" on KVM
*/
static void kvm_io_delay(void)
{
}
#define KVM_TASK_SLEEP_HASHBITS 8
#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
struct kvm_task_sleep_node {
struct hlist_node link;
struct swait_queue_head wq;
u32 token;
int cpu;
bool halted;
};
static struct kvm_task_sleep_head {
raw_spinlock_t lock;
struct hlist_head list;
} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
u32 token)
{
struct hlist_node *p;
hlist_for_each(p, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->token == token)
return n;
}
return NULL;
}
/*
* @interrupt_kernel: Is this called from a routine which interrupts the kernel
* (other than user space)?
*/
void kvm_async_pf_task_wait(u32 token, int interrupt_kernel)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node n, *e;
DECLARE_SWAITQUEUE(wait);
rcu_irq_enter();
raw_spin_lock(&b->lock);
e = _find_apf_task(b, token);
if (e) {
/* dummy entry exist -> wake up was delivered ahead of PF */
hlist_del(&e->link);
kfree(e);
raw_spin_unlock(&b->lock);
rcu_irq_exit();
return;
}
n.token = token;
n.cpu = smp_processor_id();
n.halted = is_idle_task(current) ||
(IS_ENABLED(CONFIG_PREEMPT_COUNT)
? preempt_count() > 1 || rcu_preempt_depth()
: interrupt_kernel);
init_swait_queue_head(&n.wq);
hlist_add_head(&n.link, &b->list);
raw_spin_unlock(&b->lock);
for (;;) {
if (!n.halted)
prepare_to_swait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
if (hlist_unhashed(&n.link))
break;
rcu_irq_exit();
if (!n.halted) {
local_irq_enable();
schedule();
local_irq_disable();
} else {
/*
* We cannot reschedule. So halt.
*/
native_safe_halt();
local_irq_disable();
}
rcu_irq_enter();
}
if (!n.halted)
finish_swait(&n.wq, &wait);
rcu_irq_exit();
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
static void apf_task_wake_one(struct kvm_task_sleep_node *n)
{
hlist_del_init(&n->link);
if (n->halted)
smp_send_reschedule(n->cpu);
else if (swq_has_sleeper(&n->wq))
swake_up(&n->wq);
}
static void apf_task_wake_all(void)
{
int i;
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
struct hlist_node *p, *next;
struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
raw_spin_lock(&b->lock);
hlist_for_each_safe(p, next, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->cpu == smp_processor_id())
apf_task_wake_one(n);
}
raw_spin_unlock(&b->lock);
}
}
void kvm_async_pf_task_wake(u32 token)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node *n;
if (token == ~0) {
apf_task_wake_all();
return;
}
again:
raw_spin_lock(&b->lock);
n = _find_apf_task(b, token);
if (!n) {
/*
* async PF was not yet handled.
* Add dummy entry for the token.
*/
n = kzalloc(sizeof(*n), GFP_ATOMIC);
if (!n) {
/*
* Allocation failed! Busy wait while other cpu
* handles async PF.
*/
raw_spin_unlock(&b->lock);
cpu_relax();
goto again;
}
n->token = token;
n->cpu = smp_processor_id();
init_swait_queue_head(&n->wq);
hlist_add_head(&n->link, &b->list);
} else
apf_task_wake_one(n);
raw_spin_unlock(&b->lock);
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
u32 kvm_read_and_reset_pf_reason(void)
{
u32 reason = 0;
if (__this_cpu_read(apf_reason.enabled)) {
reason = __this_cpu_read(apf_reason.reason);
__this_cpu_write(apf_reason.reason, 0);
}
return reason;
}
EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
dotraplinkage void
do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
{
enum ctx_state prev_state;
switch (kvm_read_and_reset_pf_reason()) {
default:
do_page_fault(regs, error_code);
break;
case KVM_PV_REASON_PAGE_NOT_PRESENT:
/* page is swapped out by the host. */
prev_state = exception_enter();
kvm_async_pf_task_wait((u32)read_cr2(), !user_mode(regs));
exception_exit(prev_state);
break;
case KVM_PV_REASON_PAGE_READY:
rcu_irq_enter();
kvm_async_pf_task_wake((u32)read_cr2());
rcu_irq_exit();
break;
}
}
NOKPROBE_SYMBOL(do_async_page_fault);
static void __init paravirt_ops_setup(void)
{
pv_info.name = "KVM";
if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
pv_cpu_ops.io_delay = kvm_io_delay;
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
}
static void kvm_register_steal_time(void)
{
int cpu = smp_processor_id();
struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
if (!has_steal_clock)
return;
wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
pr_info("kvm-stealtime: cpu %d, msr %llx\n",
cpu, (unsigned long long) slow_virt_to_phys(st));
}
static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
{
/**
* This relies on __test_and_clear_bit to modify the memory
* in a way that is atomic with respect to the local CPU.
* The hypervisor only accesses this memory from the local CPU so
* there's no need for lock or memory barriers.
* An optimization barrier is implied in apic write.
*/
if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
return;
apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
}
static void kvm_guest_cpu_init(void)
{
if (!kvm_para_available())
return;
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
#ifdef CONFIG_PREEMPT
pa |= KVM_ASYNC_PF_SEND_ALWAYS;
#endif
pa |= KVM_ASYNC_PF_ENABLED;
/* Async page fault support for L1 hypervisor is optional */
if (wrmsr_safe(MSR_KVM_ASYNC_PF_EN,
(pa | KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT) & 0xffffffff, pa >> 32) < 0)
wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
__this_cpu_write(apf_reason.enabled, 1);
printk(KERN_INFO"KVM setup async PF for cpu %d\n",
smp_processor_id());
}
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
unsigned long pa;
/* Size alignment is implied but just to make it explicit. */
BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
__this_cpu_write(kvm_apic_eoi, 0);
pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
| KVM_MSR_ENABLED;
wrmsrl(MSR_KVM_PV_EOI_EN, pa);
}
if (has_steal_clock)
kvm_register_steal_time();
}
static void kvm_pv_disable_apf(void)
{
if (!__this_cpu_read(apf_reason.enabled))
return;
wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
__this_cpu_write(apf_reason.enabled, 0);
printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
smp_processor_id());
}
static void kvm_pv_guest_cpu_reboot(void *unused)
{
/*
* We disable PV EOI before we load a new kernel by kexec,
* since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
* New kernel can re-enable when it boots.
*/
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
kvm_disable_steal_time();
}
static int kvm_pv_reboot_notify(struct notifier_block *nb,
unsigned long code, void *unused)
{
if (code == SYS_RESTART)
on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
return NOTIFY_DONE;
}
static struct notifier_block kvm_pv_reboot_nb = {
.notifier_call = kvm_pv_reboot_notify,
};
static u64 kvm_steal_clock(int cpu)
{
u64 steal;
struct kvm_steal_time *src;
int version;
src = &per_cpu(steal_time, cpu);
do {
version = src->version;
virt_rmb();
steal = src->steal;
virt_rmb();
} while ((version & 1) || (version != src->version));
return steal;
}
void kvm_disable_steal_time(void)
{
if (!has_steal_clock)
return;
wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
}
static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
{
early_set_memory_decrypted((unsigned long) ptr, size);
}
/*
* Iterate through all possible CPUs and map the memory region pointed
* by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
*
* Note: we iterate through all possible CPUs to ensure that CPUs
* hotplugged will have their per-cpu variable already mapped as
* decrypted.
*/
static void __init sev_map_percpu_data(void)
{
int cpu;
if (!sev_active())
return;
for_each_possible_cpu(cpu) {
__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
}
}
#ifdef CONFIG_SMP
static void __init kvm_smp_prepare_boot_cpu(void)
{
/*
* Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
* shares the guest physical address with the hypervisor.
*/
sev_map_percpu_data();
kvm_guest_cpu_init();
native_smp_prepare_boot_cpu();
kvm_spinlock_init();
}
static void kvm_guest_cpu_offline(void)
{
kvm_disable_steal_time();
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
wrmsrl(MSR_KVM_PV_EOI_EN, 0);
kvm_pv_disable_apf();
apf_task_wake_all();
}
static int kvm_cpu_online(unsigned int cpu)
{
local_irq_disable();
kvm_guest_cpu_init();
local_irq_enable();
return 0;
}
static int kvm_cpu_down_prepare(unsigned int cpu)
{
local_irq_disable();
kvm_guest_cpu_offline();
local_irq_enable();
return 0;
}
#endif
static void __init kvm_apf_trap_init(void)
{
update_intr_gate(X86_TRAP_PF, async_page_fault);
}
static DEFINE_PER_CPU(cpumask_var_t, __pv_tlb_mask);
static void kvm_flush_tlb_others(const struct cpumask *cpumask,
const struct flush_tlb_info *info)
{
u8 state;
int cpu;
struct kvm_steal_time *src;
struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_tlb_mask);
cpumask_copy(flushmask, cpumask);
/*
* We have to call flush only on online vCPUs. And
* queue flush_on_enter for pre-empted vCPUs
*/
for_each_cpu(cpu, flushmask) {
src = &per_cpu(steal_time, cpu);
state = READ_ONCE(src->preempted);
if ((state & KVM_VCPU_PREEMPTED)) {
if (try_cmpxchg(&src->preempted, &state,
state | KVM_VCPU_FLUSH_TLB))
__cpumask_clear_cpu(cpu, flushmask);
}
}
native_flush_tlb_others(flushmask, info);
}
static void __init kvm_guest_init(void)
{
int i;
if (!kvm_para_available())
return;
paravirt_ops_setup();
register_reboot_notifier(&kvm_pv_reboot_nb);
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
raw_spin_lock_init(&async_pf_sleepers[i].lock);
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
x86_init.irqs.trap_init = kvm_apf_trap_init;
if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
has_steal_clock = 1;
pv_time_ops.steal_clock = kvm_steal_clock;
}
if (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH))
pv_mmu_ops.flush_tlb_others = kvm_flush_tlb_others;
if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
apic_set_eoi_write(kvm_guest_apic_eoi_write);
if (kvmclock_vsyscall)
kvm_setup_vsyscall_timeinfo();
#ifdef CONFIG_SMP
smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
kvm_cpu_online, kvm_cpu_down_prepare) < 0)
pr_err("kvm_guest: Failed to install cpu hotplug callbacks\n");
#else
sev_map_percpu_data();
kvm_guest_cpu_init();
#endif
/*
* Hard lockup detection is enabled by default. Disable it, as guests
* can get false positives too easily, for example if the host is
* overcommitted.
*/
hardlockup_detector_disable();
}
static noinline uint32_t __kvm_cpuid_base(void)
{
if (boot_cpu_data.cpuid_level < 0)
return 0; /* So we don't blow up on old processors */
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
return 0;
}
static inline uint32_t kvm_cpuid_base(void)
{
static int kvm_cpuid_base = -1;
if (kvm_cpuid_base == -1)
kvm_cpuid_base = __kvm_cpuid_base();
return kvm_cpuid_base;
}
bool kvm_para_available(void)
{
return kvm_cpuid_base() != 0;
}
EXPORT_SYMBOL_GPL(kvm_para_available);
unsigned int kvm_arch_para_features(void)
{
return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
}
static uint32_t __init kvm_detect(void)
{
return kvm_cpuid_base();
}
const __initconst struct hypervisor_x86 x86_hyper_kvm = {
.name = "KVM",
.detect = kvm_detect,
.type = X86_HYPER_KVM,
.init.guest_late_init = kvm_guest_init,
.init.x2apic_available = kvm_para_available,
};
static __init int activate_jump_labels(void)
{
if (has_steal_clock) {
static_key_slow_inc(&paravirt_steal_enabled);
if (steal_acc)
static_key_slow_inc(&paravirt_steal_rq_enabled);
}
return 0;
}
arch_initcall(activate_jump_labels);
static __init int kvm_setup_pv_tlb_flush(void)
{
int cpu;
if (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH)) {
for_each_possible_cpu(cpu) {
zalloc_cpumask_var_node(per_cpu_ptr(&__pv_tlb_mask, cpu),
GFP_KERNEL, cpu_to_node(cpu));
}
pr_info("KVM setup pv remote TLB flush\n");
}
return 0;
}
arch_initcall(kvm_setup_pv_tlb_flush);
#ifdef CONFIG_PARAVIRT_SPINLOCKS
/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
static void kvm_kick_cpu(int cpu)
{
int apicid;
unsigned long flags = 0;
apicid = per_cpu(x86_cpu_to_apicid, cpu);
kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
}
#include <asm/qspinlock.h>
static void kvm_wait(u8 *ptr, u8 val)
{
unsigned long flags;
if (in_nmi())
return;
local_irq_save(flags);
if (READ_ONCE(*ptr) != val)
goto out;
/*
* halt until it's our turn and kicked. Note that we do safe halt
* for irq enabled case to avoid hang when lock info is overwritten
* in irq spinlock slowpath and no spurious interrupt occur to save us.
*/
if (arch_irqs_disabled_flags(flags))
halt();
else
safe_halt();
out:
local_irq_restore(flags);
}
#ifdef CONFIG_X86_32
__visible bool __kvm_vcpu_is_preempted(long cpu)
{
struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
return !!(src->preempted & KVM_VCPU_PREEMPTED);
}
PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
#else
#include <asm/asm-offsets.h>
extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
/*
* Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
* restoring to/from the stack.
*/
asm(
".pushsection .text;"
".global __raw_callee_save___kvm_vcpu_is_preempted;"
".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
"__raw_callee_save___kvm_vcpu_is_preempted:"
"movq __per_cpu_offset(,%rdi,8), %rax;"
"cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
"setne %al;"
"ret;"
".popsection");
#endif
/*
* Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
*/
void __init kvm_spinlock_init(void)
{
if (!kvm_para_available())
return;
/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
return;
__pv_init_lock_hash();
pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
pv_lock_ops.wait = kvm_wait;
pv_lock_ops.kick = kvm_kick_cpu;
if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
pv_lock_ops.vcpu_is_preempted =
PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
}
}
#endif /* CONFIG_PARAVIRT_SPINLOCKS */