mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 22:56:02 +07:00
6da2ec5605
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
1351 lines
37 KiB
C
1351 lines
37 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright © 2001-2007 Red Hat, Inc.
|
|
* Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
* Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/writeback.h>
|
|
|
|
#include "nodelist.h"
|
|
|
|
/* For testing write failures */
|
|
#undef BREAKME
|
|
#undef BREAKMEHEADER
|
|
|
|
#ifdef BREAKME
|
|
static unsigned char *brokenbuf;
|
|
#endif
|
|
|
|
#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
|
|
#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
|
|
|
|
/* max. erase failures before we mark a block bad */
|
|
#define MAX_ERASE_FAILURES 2
|
|
|
|
struct jffs2_inodirty {
|
|
uint32_t ino;
|
|
struct jffs2_inodirty *next;
|
|
};
|
|
|
|
static struct jffs2_inodirty inodirty_nomem;
|
|
|
|
static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
struct jffs2_inodirty *this = c->wbuf_inodes;
|
|
|
|
/* If a malloc failed, consider _everything_ dirty */
|
|
if (this == &inodirty_nomem)
|
|
return 1;
|
|
|
|
/* If ino == 0, _any_ non-GC writes mean 'yes' */
|
|
if (this && !ino)
|
|
return 1;
|
|
|
|
/* Look to see if the inode in question is pending in the wbuf */
|
|
while (this) {
|
|
if (this->ino == ino)
|
|
return 1;
|
|
this = this->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
|
|
{
|
|
struct jffs2_inodirty *this;
|
|
|
|
this = c->wbuf_inodes;
|
|
|
|
if (this != &inodirty_nomem) {
|
|
while (this) {
|
|
struct jffs2_inodirty *next = this->next;
|
|
kfree(this);
|
|
this = next;
|
|
}
|
|
}
|
|
c->wbuf_inodes = NULL;
|
|
}
|
|
|
|
static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
struct jffs2_inodirty *new;
|
|
|
|
/* Schedule delayed write-buffer write-out */
|
|
jffs2_dirty_trigger(c);
|
|
|
|
if (jffs2_wbuf_pending_for_ino(c, ino))
|
|
return;
|
|
|
|
new = kmalloc(sizeof(*new), GFP_KERNEL);
|
|
if (!new) {
|
|
jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
|
|
jffs2_clear_wbuf_ino_list(c);
|
|
c->wbuf_inodes = &inodirty_nomem;
|
|
return;
|
|
}
|
|
new->ino = ino;
|
|
new->next = c->wbuf_inodes;
|
|
c->wbuf_inodes = new;
|
|
return;
|
|
}
|
|
|
|
static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
|
|
{
|
|
struct list_head *this, *next;
|
|
static int n;
|
|
|
|
if (list_empty(&c->erasable_pending_wbuf_list))
|
|
return;
|
|
|
|
list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
|
|
|
jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
|
|
jeb->offset);
|
|
list_del(this);
|
|
if ((jiffies + (n++)) & 127) {
|
|
/* Most of the time, we just erase it immediately. Otherwise we
|
|
spend ages scanning it on mount, etc. */
|
|
jffs2_dbg(1, "...and adding to erase_pending_list\n");
|
|
list_add_tail(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
jffs2_garbage_collect_trigger(c);
|
|
} else {
|
|
/* Sometimes, however, we leave it elsewhere so it doesn't get
|
|
immediately reused, and we spread the load a bit. */
|
|
jffs2_dbg(1, "...and adding to erasable_list\n");
|
|
list_add_tail(&jeb->list, &c->erasable_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define REFILE_NOTEMPTY 0
|
|
#define REFILE_ANYWAY 1
|
|
|
|
static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
|
|
{
|
|
jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
|
|
|
|
/* File the existing block on the bad_used_list.... */
|
|
if (c->nextblock == jeb)
|
|
c->nextblock = NULL;
|
|
else /* Not sure this should ever happen... need more coffee */
|
|
list_del(&jeb->list);
|
|
if (jeb->first_node) {
|
|
jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
|
|
jeb->offset);
|
|
list_add(&jeb->list, &c->bad_used_list);
|
|
} else {
|
|
BUG_ON(allow_empty == REFILE_NOTEMPTY);
|
|
/* It has to have had some nodes or we couldn't be here */
|
|
jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
|
|
jeb->offset);
|
|
list_add(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
jffs2_garbage_collect_trigger(c);
|
|
}
|
|
|
|
if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
|
|
uint32_t oldfree = jeb->free_size;
|
|
|
|
jffs2_link_node_ref(c, jeb,
|
|
(jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
|
|
oldfree, NULL);
|
|
/* convert to wasted */
|
|
c->wasted_size += oldfree;
|
|
jeb->wasted_size += oldfree;
|
|
c->dirty_size -= oldfree;
|
|
jeb->dirty_size -= oldfree;
|
|
}
|
|
|
|
jffs2_dbg_dump_block_lists_nolock(c);
|
|
jffs2_dbg_acct_sanity_check_nolock(c,jeb);
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
}
|
|
|
|
static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_info *f,
|
|
struct jffs2_raw_node_ref *raw,
|
|
union jffs2_node_union *node)
|
|
{
|
|
struct jffs2_node_frag *frag;
|
|
struct jffs2_full_dirent *fd;
|
|
|
|
dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
|
|
node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
|
|
|
|
BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
|
|
je16_to_cpu(node->u.magic) != 0);
|
|
|
|
switch (je16_to_cpu(node->u.nodetype)) {
|
|
case JFFS2_NODETYPE_INODE:
|
|
if (f->metadata && f->metadata->raw == raw) {
|
|
dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
|
|
return &f->metadata->raw;
|
|
}
|
|
frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
|
|
BUG_ON(!frag);
|
|
/* Find a frag which refers to the full_dnode we want to modify */
|
|
while (!frag->node || frag->node->raw != raw) {
|
|
frag = frag_next(frag);
|
|
BUG_ON(!frag);
|
|
}
|
|
dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
|
|
return &frag->node->raw;
|
|
|
|
case JFFS2_NODETYPE_DIRENT:
|
|
for (fd = f->dents; fd; fd = fd->next) {
|
|
if (fd->raw == raw) {
|
|
dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
|
|
return &fd->raw;
|
|
}
|
|
}
|
|
BUG();
|
|
|
|
default:
|
|
dbg_noderef("Don't care about replacing raw for nodetype %x\n",
|
|
je16_to_cpu(node->u.nodetype));
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
|
|
uint32_t ofs)
|
|
{
|
|
int ret;
|
|
size_t retlen;
|
|
char *eccstr;
|
|
|
|
ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
|
|
if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
|
|
pr_warn("%s(): Read back of page at %08x failed: %d\n",
|
|
__func__, c->wbuf_ofs, ret);
|
|
return ret;
|
|
} else if (retlen != c->wbuf_pagesize) {
|
|
pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
|
|
__func__, ofs, retlen, c->wbuf_pagesize);
|
|
return -EIO;
|
|
}
|
|
if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
|
|
return 0;
|
|
|
|
if (ret == -EUCLEAN)
|
|
eccstr = "corrected";
|
|
else if (ret == -EBADMSG)
|
|
eccstr = "correction failed";
|
|
else
|
|
eccstr = "OK or unused";
|
|
|
|
pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
|
|
eccstr, c->wbuf_ofs);
|
|
print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
|
|
c->wbuf, c->wbuf_pagesize, 0);
|
|
|
|
pr_warn("Read back:\n");
|
|
print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
|
|
c->wbuf_verify, c->wbuf_pagesize, 0);
|
|
|
|
return -EIO;
|
|
}
|
|
#else
|
|
#define jffs2_verify_write(c,b,o) (0)
|
|
#endif
|
|
|
|
/* Recover from failure to write wbuf. Recover the nodes up to the
|
|
* wbuf, not the one which we were starting to try to write. */
|
|
|
|
static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
|
|
{
|
|
struct jffs2_eraseblock *jeb, *new_jeb;
|
|
struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
|
|
size_t retlen;
|
|
int ret;
|
|
int nr_refile = 0;
|
|
unsigned char *buf;
|
|
uint32_t start, end, ofs, len;
|
|
|
|
jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
if (c->wbuf_ofs % c->mtd->erasesize)
|
|
jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
|
|
else
|
|
jffs2_block_refile(c, jeb, REFILE_ANYWAY);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
BUG_ON(!ref_obsolete(jeb->last_node));
|
|
|
|
/* Find the first node to be recovered, by skipping over every
|
|
node which ends before the wbuf starts, or which is obsolete. */
|
|
for (next = raw = jeb->first_node; next; raw = next) {
|
|
next = ref_next(raw);
|
|
|
|
if (ref_obsolete(raw) ||
|
|
(next && ref_offset(next) <= c->wbuf_ofs)) {
|
|
dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
|
|
ref_offset(raw), ref_flags(raw),
|
|
(ref_offset(raw) + ref_totlen(c, jeb, raw)),
|
|
c->wbuf_ofs);
|
|
continue;
|
|
}
|
|
dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
|
|
ref_offset(raw), ref_flags(raw),
|
|
(ref_offset(raw) + ref_totlen(c, jeb, raw)));
|
|
|
|
first_raw = raw;
|
|
break;
|
|
}
|
|
|
|
if (!first_raw) {
|
|
/* All nodes were obsolete. Nothing to recover. */
|
|
jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
|
|
c->wbuf_len = 0;
|
|
return;
|
|
}
|
|
|
|
start = ref_offset(first_raw);
|
|
end = ref_offset(jeb->last_node);
|
|
nr_refile = 1;
|
|
|
|
/* Count the number of refs which need to be copied */
|
|
while ((raw = ref_next(raw)) != jeb->last_node)
|
|
nr_refile++;
|
|
|
|
dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
|
|
start, end, end - start, nr_refile);
|
|
|
|
buf = NULL;
|
|
if (start < c->wbuf_ofs) {
|
|
/* First affected node was already partially written.
|
|
* Attempt to reread the old data into our buffer. */
|
|
|
|
buf = kmalloc(end - start, GFP_KERNEL);
|
|
if (!buf) {
|
|
pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
|
|
|
|
goto read_failed;
|
|
}
|
|
|
|
/* Do the read... */
|
|
ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
|
|
buf);
|
|
|
|
/* ECC recovered ? */
|
|
if ((ret == -EUCLEAN || ret == -EBADMSG) &&
|
|
(retlen == c->wbuf_ofs - start))
|
|
ret = 0;
|
|
|
|
if (ret || retlen != c->wbuf_ofs - start) {
|
|
pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
|
|
|
|
kfree(buf);
|
|
buf = NULL;
|
|
read_failed:
|
|
first_raw = ref_next(first_raw);
|
|
nr_refile--;
|
|
while (first_raw && ref_obsolete(first_raw)) {
|
|
first_raw = ref_next(first_raw);
|
|
nr_refile--;
|
|
}
|
|
|
|
/* If this was the only node to be recovered, give up */
|
|
if (!first_raw) {
|
|
c->wbuf_len = 0;
|
|
return;
|
|
}
|
|
|
|
/* It wasn't. Go on and try to recover nodes complete in the wbuf */
|
|
start = ref_offset(first_raw);
|
|
dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
|
|
start, end, end - start, nr_refile);
|
|
|
|
} else {
|
|
/* Read succeeded. Copy the remaining data from the wbuf */
|
|
memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
|
|
}
|
|
}
|
|
/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
|
|
Either 'buf' contains the data, or we find it in the wbuf */
|
|
|
|
/* ... and get an allocation of space from a shiny new block instead */
|
|
ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
|
|
if (ret) {
|
|
pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
|
|
/* The summary is not recovered, so it must be disabled for this erase block */
|
|
jffs2_sum_disable_collecting(c->summary);
|
|
|
|
ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
|
|
if (ret) {
|
|
pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
|
|
ofs = write_ofs(c);
|
|
|
|
if (end-start >= c->wbuf_pagesize) {
|
|
/* Need to do another write immediately, but it's possible
|
|
that this is just because the wbuf itself is completely
|
|
full, and there's nothing earlier read back from the
|
|
flash. Hence 'buf' isn't necessarily what we're writing
|
|
from. */
|
|
unsigned char *rewrite_buf = buf?:c->wbuf;
|
|
uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
|
|
|
|
jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
|
|
towrite, ofs);
|
|
|
|
#ifdef BREAKMEHEADER
|
|
static int breakme;
|
|
if (breakme++ == 20) {
|
|
pr_notice("Faking write error at 0x%08x\n", ofs);
|
|
breakme = 0;
|
|
mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
|
|
ret = -EIO;
|
|
} else
|
|
#endif
|
|
ret = mtd_write(c->mtd, ofs, towrite, &retlen,
|
|
rewrite_buf);
|
|
|
|
if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
|
|
/* Argh. We tried. Really we did. */
|
|
pr_crit("Recovery of wbuf failed due to a second write error\n");
|
|
kfree(buf);
|
|
|
|
if (retlen)
|
|
jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
|
|
|
|
return;
|
|
}
|
|
pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
|
|
|
|
c->wbuf_len = (end - start) - towrite;
|
|
c->wbuf_ofs = ofs + towrite;
|
|
memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
|
|
/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
|
|
} else {
|
|
/* OK, now we're left with the dregs in whichever buffer we're using */
|
|
if (buf) {
|
|
memcpy(c->wbuf, buf, end-start);
|
|
} else {
|
|
memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
|
|
}
|
|
c->wbuf_ofs = ofs;
|
|
c->wbuf_len = end - start;
|
|
}
|
|
|
|
/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
|
|
new_jeb = &c->blocks[ofs / c->sector_size];
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
|
|
uint32_t rawlen = ref_totlen(c, jeb, raw);
|
|
struct jffs2_inode_cache *ic;
|
|
struct jffs2_raw_node_ref *new_ref;
|
|
struct jffs2_raw_node_ref **adjust_ref = NULL;
|
|
struct jffs2_inode_info *f = NULL;
|
|
|
|
jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
|
|
rawlen, ref_offset(raw), ref_flags(raw), ofs);
|
|
|
|
ic = jffs2_raw_ref_to_ic(raw);
|
|
|
|
/* Ick. This XATTR mess should be fixed shortly... */
|
|
if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
|
|
struct jffs2_xattr_datum *xd = (void *)ic;
|
|
BUG_ON(xd->node != raw);
|
|
adjust_ref = &xd->node;
|
|
raw->next_in_ino = NULL;
|
|
ic = NULL;
|
|
} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
|
|
struct jffs2_xattr_datum *xr = (void *)ic;
|
|
BUG_ON(xr->node != raw);
|
|
adjust_ref = &xr->node;
|
|
raw->next_in_ino = NULL;
|
|
ic = NULL;
|
|
} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
|
|
struct jffs2_raw_node_ref **p = &ic->nodes;
|
|
|
|
/* Remove the old node from the per-inode list */
|
|
while (*p && *p != (void *)ic) {
|
|
if (*p == raw) {
|
|
(*p) = (raw->next_in_ino);
|
|
raw->next_in_ino = NULL;
|
|
break;
|
|
}
|
|
p = &((*p)->next_in_ino);
|
|
}
|
|
|
|
if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
|
|
/* If it's an in-core inode, then we have to adjust any
|
|
full_dirent or full_dnode structure to point to the
|
|
new version instead of the old */
|
|
f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
|
|
if (IS_ERR(f)) {
|
|
/* Should never happen; it _must_ be present */
|
|
JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
|
|
ic->ino, PTR_ERR(f));
|
|
BUG();
|
|
}
|
|
/* We don't lock f->sem. There's a number of ways we could
|
|
end up in here with it already being locked, and nobody's
|
|
going to modify it on us anyway because we hold the
|
|
alloc_sem. We're only changing one ->raw pointer too,
|
|
which we can get away with without upsetting readers. */
|
|
adjust_ref = jffs2_incore_replace_raw(c, f, raw,
|
|
(void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
|
|
} else if (unlikely(ic->state != INO_STATE_PRESENT &&
|
|
ic->state != INO_STATE_CHECKEDABSENT &&
|
|
ic->state != INO_STATE_GC)) {
|
|
JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
|
|
|
|
if (adjust_ref) {
|
|
BUG_ON(*adjust_ref != raw);
|
|
*adjust_ref = new_ref;
|
|
}
|
|
if (f)
|
|
jffs2_gc_release_inode(c, f);
|
|
|
|
if (!ref_obsolete(raw)) {
|
|
jeb->dirty_size += rawlen;
|
|
jeb->used_size -= rawlen;
|
|
c->dirty_size += rawlen;
|
|
c->used_size -= rawlen;
|
|
raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
|
|
BUG_ON(raw->next_in_ino);
|
|
}
|
|
ofs += rawlen;
|
|
}
|
|
|
|
kfree(buf);
|
|
|
|
/* Fix up the original jeb now it's on the bad_list */
|
|
if (first_raw == jeb->first_node) {
|
|
jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
|
|
jeb->offset);
|
|
list_move(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
jffs2_garbage_collect_trigger(c);
|
|
}
|
|
|
|
jffs2_dbg_acct_sanity_check_nolock(c, jeb);
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
|
|
jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
|
|
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
|
|
c->wbuf_ofs, c->wbuf_len);
|
|
|
|
}
|
|
|
|
/* Meaning of pad argument:
|
|
0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
|
|
1: Pad, do not adjust nextblock free_size
|
|
2: Pad, adjust nextblock free_size
|
|
*/
|
|
#define NOPAD 0
|
|
#define PAD_NOACCOUNT 1
|
|
#define PAD_ACCOUNTING 2
|
|
|
|
static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
|
|
{
|
|
struct jffs2_eraseblock *wbuf_jeb;
|
|
int ret;
|
|
size_t retlen;
|
|
|
|
/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
|
|
del_timer() the timer we never initialised. */
|
|
if (!jffs2_is_writebuffered(c))
|
|
return 0;
|
|
|
|
if (!mutex_is_locked(&c->alloc_sem)) {
|
|
pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
|
|
BUG();
|
|
}
|
|
|
|
if (!c->wbuf_len) /* already checked c->wbuf above */
|
|
return 0;
|
|
|
|
wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
|
|
if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
|
|
return -ENOMEM;
|
|
|
|
/* claim remaining space on the page
|
|
this happens, if we have a change to a new block,
|
|
or if fsync forces us to flush the writebuffer.
|
|
if we have a switch to next page, we will not have
|
|
enough remaining space for this.
|
|
*/
|
|
if (pad ) {
|
|
c->wbuf_len = PAD(c->wbuf_len);
|
|
|
|
/* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
|
|
with 8 byte page size */
|
|
memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
|
|
|
|
if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
|
|
struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
|
|
padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
|
|
padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
|
|
padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
|
|
}
|
|
}
|
|
/* else jffs2_flash_writev has actually filled in the rest of the
|
|
buffer for us, and will deal with the node refs etc. later. */
|
|
|
|
#ifdef BREAKME
|
|
static int breakme;
|
|
if (breakme++ == 20) {
|
|
pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
|
|
breakme = 0;
|
|
mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
|
|
brokenbuf);
|
|
ret = -EIO;
|
|
} else
|
|
#endif
|
|
|
|
ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
|
|
&retlen, c->wbuf);
|
|
|
|
if (ret) {
|
|
pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
|
|
goto wfail;
|
|
} else if (retlen != c->wbuf_pagesize) {
|
|
pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
|
|
retlen, c->wbuf_pagesize);
|
|
ret = -EIO;
|
|
goto wfail;
|
|
} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
|
|
wfail:
|
|
jffs2_wbuf_recover(c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Adjust free size of the block if we padded. */
|
|
if (pad) {
|
|
uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
|
|
|
|
jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
|
|
(wbuf_jeb == c->nextblock) ? "next" : "",
|
|
wbuf_jeb->offset);
|
|
|
|
/* wbuf_pagesize - wbuf_len is the amount of space that's to be
|
|
padded. If there is less free space in the block than that,
|
|
something screwed up */
|
|
if (wbuf_jeb->free_size < waste) {
|
|
pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
|
|
c->wbuf_ofs, c->wbuf_len, waste);
|
|
pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
|
|
wbuf_jeb->offset, wbuf_jeb->free_size);
|
|
BUG();
|
|
}
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
|
|
/* FIXME: that made it count as dirty. Convert to wasted */
|
|
wbuf_jeb->dirty_size -= waste;
|
|
c->dirty_size -= waste;
|
|
wbuf_jeb->wasted_size += waste;
|
|
c->wasted_size += waste;
|
|
} else
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
/* Stick any now-obsoleted blocks on the erase_pending_list */
|
|
jffs2_refile_wbuf_blocks(c);
|
|
jffs2_clear_wbuf_ino_list(c);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
memset(c->wbuf,0xff,c->wbuf_pagesize);
|
|
/* adjust write buffer offset, else we get a non contiguous write bug */
|
|
c->wbuf_ofs += c->wbuf_pagesize;
|
|
c->wbuf_len = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Trigger garbage collection to flush the write-buffer.
|
|
If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
|
|
outstanding. If ino arg non-zero, do it only if a write for the
|
|
given inode is outstanding. */
|
|
int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
uint32_t old_wbuf_ofs;
|
|
uint32_t old_wbuf_len;
|
|
int ret = 0;
|
|
|
|
jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
|
|
|
|
if (!c->wbuf)
|
|
return 0;
|
|
|
|
mutex_lock(&c->alloc_sem);
|
|
if (!jffs2_wbuf_pending_for_ino(c, ino)) {
|
|
jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
|
|
mutex_unlock(&c->alloc_sem);
|
|
return 0;
|
|
}
|
|
|
|
old_wbuf_ofs = c->wbuf_ofs;
|
|
old_wbuf_len = c->wbuf_len;
|
|
|
|
if (c->unchecked_size) {
|
|
/* GC won't make any progress for a while */
|
|
jffs2_dbg(1, "%s(): padding. Not finished checking\n",
|
|
__func__);
|
|
down_write(&c->wbuf_sem);
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
/* retry flushing wbuf in case jffs2_wbuf_recover
|
|
left some data in the wbuf */
|
|
if (ret)
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
up_write(&c->wbuf_sem);
|
|
} else while (old_wbuf_len &&
|
|
old_wbuf_ofs == c->wbuf_ofs) {
|
|
|
|
mutex_unlock(&c->alloc_sem);
|
|
|
|
jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
|
|
|
|
ret = jffs2_garbage_collect_pass(c);
|
|
if (ret) {
|
|
/* GC failed. Flush it with padding instead */
|
|
mutex_lock(&c->alloc_sem);
|
|
down_write(&c->wbuf_sem);
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
/* retry flushing wbuf in case jffs2_wbuf_recover
|
|
left some data in the wbuf */
|
|
if (ret)
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
up_write(&c->wbuf_sem);
|
|
break;
|
|
}
|
|
mutex_lock(&c->alloc_sem);
|
|
}
|
|
|
|
jffs2_dbg(1, "%s(): ends...\n", __func__);
|
|
|
|
mutex_unlock(&c->alloc_sem);
|
|
return ret;
|
|
}
|
|
|
|
/* Pad write-buffer to end and write it, wasting space. */
|
|
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
|
|
{
|
|
int ret;
|
|
|
|
if (!c->wbuf)
|
|
return 0;
|
|
|
|
down_write(&c->wbuf_sem);
|
|
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
|
|
/* retry - maybe wbuf recover left some data in wbuf. */
|
|
if (ret)
|
|
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
|
|
up_write(&c->wbuf_sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
|
|
size_t len)
|
|
{
|
|
if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
|
|
return 0;
|
|
|
|
if (len > (c->wbuf_pagesize - c->wbuf_len))
|
|
len = c->wbuf_pagesize - c->wbuf_len;
|
|
memcpy(c->wbuf + c->wbuf_len, buf, len);
|
|
c->wbuf_len += (uint32_t) len;
|
|
return len;
|
|
}
|
|
|
|
int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
|
|
unsigned long count, loff_t to, size_t *retlen,
|
|
uint32_t ino)
|
|
{
|
|
struct jffs2_eraseblock *jeb;
|
|
size_t wbuf_retlen, donelen = 0;
|
|
uint32_t outvec_to = to;
|
|
int ret, invec;
|
|
|
|
/* If not writebuffered flash, don't bother */
|
|
if (!jffs2_is_writebuffered(c))
|
|
return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
|
|
|
|
down_write(&c->wbuf_sem);
|
|
|
|
/* If wbuf_ofs is not initialized, set it to target address */
|
|
if (c->wbuf_ofs == 0xFFFFFFFF) {
|
|
c->wbuf_ofs = PAGE_DIV(to);
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
memset(c->wbuf,0xff,c->wbuf_pagesize);
|
|
}
|
|
|
|
/*
|
|
* Sanity checks on target address. It's permitted to write
|
|
* at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
|
|
* write at the beginning of a new erase block. Anything else,
|
|
* and you die. New block starts at xxx000c (0-b = block
|
|
* header)
|
|
*/
|
|
if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
|
|
/* It's a write to a new block */
|
|
if (c->wbuf_len) {
|
|
jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
|
|
__func__, (unsigned long)to, c->wbuf_ofs);
|
|
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
|
|
if (ret)
|
|
goto outerr;
|
|
}
|
|
/* set pointer to new block */
|
|
c->wbuf_ofs = PAGE_DIV(to);
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
}
|
|
|
|
if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
|
|
/* We're not writing immediately after the writebuffer. Bad. */
|
|
pr_crit("%s(): Non-contiguous write to %08lx\n",
|
|
__func__, (unsigned long)to);
|
|
if (c->wbuf_len)
|
|
pr_crit("wbuf was previously %08x-%08x\n",
|
|
c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
|
|
BUG();
|
|
}
|
|
|
|
/* adjust alignment offset */
|
|
if (c->wbuf_len != PAGE_MOD(to)) {
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
/* take care of alignment to next page */
|
|
if (!c->wbuf_len) {
|
|
c->wbuf_len = c->wbuf_pagesize;
|
|
ret = __jffs2_flush_wbuf(c, NOPAD);
|
|
if (ret)
|
|
goto outerr;
|
|
}
|
|
}
|
|
|
|
for (invec = 0; invec < count; invec++) {
|
|
int vlen = invecs[invec].iov_len;
|
|
uint8_t *v = invecs[invec].iov_base;
|
|
|
|
wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
|
|
|
|
if (c->wbuf_len == c->wbuf_pagesize) {
|
|
ret = __jffs2_flush_wbuf(c, NOPAD);
|
|
if (ret)
|
|
goto outerr;
|
|
}
|
|
vlen -= wbuf_retlen;
|
|
outvec_to += wbuf_retlen;
|
|
donelen += wbuf_retlen;
|
|
v += wbuf_retlen;
|
|
|
|
if (vlen >= c->wbuf_pagesize) {
|
|
ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
|
|
&wbuf_retlen, v);
|
|
if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
|
|
goto outfile;
|
|
|
|
vlen -= wbuf_retlen;
|
|
outvec_to += wbuf_retlen;
|
|
c->wbuf_ofs = outvec_to;
|
|
donelen += wbuf_retlen;
|
|
v += wbuf_retlen;
|
|
}
|
|
|
|
wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
|
|
if (c->wbuf_len == c->wbuf_pagesize) {
|
|
ret = __jffs2_flush_wbuf(c, NOPAD);
|
|
if (ret)
|
|
goto outerr;
|
|
}
|
|
|
|
outvec_to += wbuf_retlen;
|
|
donelen += wbuf_retlen;
|
|
}
|
|
|
|
/*
|
|
* If there's a remainder in the wbuf and it's a non-GC write,
|
|
* remember that the wbuf affects this ino
|
|
*/
|
|
*retlen = donelen;
|
|
|
|
if (jffs2_sum_active()) {
|
|
int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
if (c->wbuf_len && ino)
|
|
jffs2_wbuf_dirties_inode(c, ino);
|
|
|
|
ret = 0;
|
|
up_write(&c->wbuf_sem);
|
|
return ret;
|
|
|
|
outfile:
|
|
/*
|
|
* At this point we have no problem, c->wbuf is empty. However
|
|
* refile nextblock to avoid writing again to same address.
|
|
*/
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
jeb = &c->blocks[outvec_to / c->sector_size];
|
|
jffs2_block_refile(c, jeb, REFILE_ANYWAY);
|
|
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
outerr:
|
|
*retlen = 0;
|
|
up_write(&c->wbuf_sem);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the entry for flash write.
|
|
* Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
|
|
*/
|
|
int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct kvec vecs[1];
|
|
|
|
if (!jffs2_is_writebuffered(c))
|
|
return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
|
|
|
|
vecs[0].iov_base = (unsigned char *) buf;
|
|
vecs[0].iov_len = len;
|
|
return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
|
|
}
|
|
|
|
/*
|
|
Handle readback from writebuffer and ECC failure return
|
|
*/
|
|
int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
loff_t orbf = 0, owbf = 0, lwbf = 0;
|
|
int ret;
|
|
|
|
if (!jffs2_is_writebuffered(c))
|
|
return mtd_read(c->mtd, ofs, len, retlen, buf);
|
|
|
|
/* Read flash */
|
|
down_read(&c->wbuf_sem);
|
|
ret = mtd_read(c->mtd, ofs, len, retlen, buf);
|
|
|
|
if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
|
|
if (ret == -EBADMSG)
|
|
pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
|
|
len, ofs);
|
|
/*
|
|
* We have the raw data without ECC correction in the buffer,
|
|
* maybe we are lucky and all data or parts are correct. We
|
|
* check the node. If data are corrupted node check will sort
|
|
* it out. We keep this block, it will fail on write or erase
|
|
* and the we mark it bad. Or should we do that now? But we
|
|
* should give him a chance. Maybe we had a system crash or
|
|
* power loss before the ecc write or a erase was completed.
|
|
* So we return success. :)
|
|
*/
|
|
ret = 0;
|
|
}
|
|
|
|
/* if no writebuffer available or write buffer empty, return */
|
|
if (!c->wbuf_pagesize || !c->wbuf_len)
|
|
goto exit;
|
|
|
|
/* if we read in a different block, return */
|
|
if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
|
|
goto exit;
|
|
|
|
if (ofs >= c->wbuf_ofs) {
|
|
owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
|
|
if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
|
|
goto exit;
|
|
lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
|
|
if (lwbf > len)
|
|
lwbf = len;
|
|
} else {
|
|
orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
|
|
if (orbf > len) /* is write beyond write buffer ? */
|
|
goto exit;
|
|
lwbf = len - orbf; /* number of bytes to copy */
|
|
if (lwbf > c->wbuf_len)
|
|
lwbf = c->wbuf_len;
|
|
}
|
|
if (lwbf > 0)
|
|
memcpy(buf+orbf,c->wbuf+owbf,lwbf);
|
|
|
|
exit:
|
|
up_read(&c->wbuf_sem);
|
|
return ret;
|
|
}
|
|
|
|
#define NR_OOB_SCAN_PAGES 4
|
|
|
|
/* For historical reasons we use only 8 bytes for OOB clean marker */
|
|
#define OOB_CM_SIZE 8
|
|
|
|
static const struct jffs2_unknown_node oob_cleanmarker =
|
|
{
|
|
.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
|
|
.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
|
|
.totlen = constant_cpu_to_je32(8)
|
|
};
|
|
|
|
/*
|
|
* Check, if the out of band area is empty. This function knows about the clean
|
|
* marker and if it is present in OOB, treats the OOB as empty anyway.
|
|
*/
|
|
int jffs2_check_oob_empty(struct jffs2_sb_info *c,
|
|
struct jffs2_eraseblock *jeb, int mode)
|
|
{
|
|
int i, ret;
|
|
int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
|
|
struct mtd_oob_ops ops;
|
|
|
|
ops.mode = MTD_OPS_AUTO_OOB;
|
|
ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
|
|
ops.oobbuf = c->oobbuf;
|
|
ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
|
|
ops.datbuf = NULL;
|
|
|
|
ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
|
|
if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
|
|
pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
|
|
jeb->offset, ops.ooblen, ops.oobretlen, ret);
|
|
if (!ret || mtd_is_bitflip(ret))
|
|
ret = -EIO;
|
|
return ret;
|
|
}
|
|
|
|
for(i = 0; i < ops.ooblen; i++) {
|
|
if (mode && i < cmlen)
|
|
/* Yeah, we know about the cleanmarker */
|
|
continue;
|
|
|
|
if (ops.oobbuf[i] != 0xFF) {
|
|
jffs2_dbg(2, "Found %02x at %x in OOB for "
|
|
"%08x\n", ops.oobbuf[i], i, jeb->offset);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check for a valid cleanmarker.
|
|
* Returns: 0 if a valid cleanmarker was found
|
|
* 1 if no cleanmarker was found
|
|
* negative error code if an error occurred
|
|
*/
|
|
int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
|
|
struct jffs2_eraseblock *jeb)
|
|
{
|
|
struct mtd_oob_ops ops;
|
|
int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
|
|
|
|
ops.mode = MTD_OPS_AUTO_OOB;
|
|
ops.ooblen = cmlen;
|
|
ops.oobbuf = c->oobbuf;
|
|
ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
|
|
ops.datbuf = NULL;
|
|
|
|
ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
|
|
if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
|
|
pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
|
|
jeb->offset, ops.ooblen, ops.oobretlen, ret);
|
|
if (!ret || mtd_is_bitflip(ret))
|
|
ret = -EIO;
|
|
return ret;
|
|
}
|
|
|
|
return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
|
|
}
|
|
|
|
int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
|
|
struct jffs2_eraseblock *jeb)
|
|
{
|
|
int ret;
|
|
struct mtd_oob_ops ops;
|
|
int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
|
|
|
|
ops.mode = MTD_OPS_AUTO_OOB;
|
|
ops.ooblen = cmlen;
|
|
ops.oobbuf = (uint8_t *)&oob_cleanmarker;
|
|
ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
|
|
ops.datbuf = NULL;
|
|
|
|
ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
|
|
if (ret || ops.oobretlen != ops.ooblen) {
|
|
pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
|
|
jeb->offset, ops.ooblen, ops.oobretlen, ret);
|
|
if (!ret)
|
|
ret = -EIO;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On NAND we try to mark this block bad. If the block was erased more
|
|
* than MAX_ERASE_FAILURES we mark it finally bad.
|
|
* Don't care about failures. This block remains on the erase-pending
|
|
* or badblock list as long as nobody manipulates the flash with
|
|
* a bootloader or something like that.
|
|
*/
|
|
|
|
int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
|
|
{
|
|
int ret;
|
|
|
|
/* if the count is < max, we try to write the counter to the 2nd page oob area */
|
|
if( ++jeb->bad_count < MAX_ERASE_FAILURES)
|
|
return 0;
|
|
|
|
pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
|
|
ret = mtd_block_markbad(c->mtd, bad_offset);
|
|
|
|
if (ret) {
|
|
jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
|
|
__func__, jeb->offset, ret);
|
|
return ret;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static struct jffs2_sb_info *work_to_sb(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork;
|
|
|
|
dwork = to_delayed_work(work);
|
|
return container_of(dwork, struct jffs2_sb_info, wbuf_dwork);
|
|
}
|
|
|
|
static void delayed_wbuf_sync(struct work_struct *work)
|
|
{
|
|
struct jffs2_sb_info *c = work_to_sb(work);
|
|
struct super_block *sb = OFNI_BS_2SFFJ(c);
|
|
|
|
if (!sb_rdonly(sb)) {
|
|
jffs2_dbg(1, "%s()\n", __func__);
|
|
jffs2_flush_wbuf_gc(c, 0);
|
|
}
|
|
}
|
|
|
|
void jffs2_dirty_trigger(struct jffs2_sb_info *c)
|
|
{
|
|
struct super_block *sb = OFNI_BS_2SFFJ(c);
|
|
unsigned long delay;
|
|
|
|
if (sb_rdonly(sb))
|
|
return;
|
|
|
|
delay = msecs_to_jiffies(dirty_writeback_interval * 10);
|
|
if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay))
|
|
jffs2_dbg(1, "%s()\n", __func__);
|
|
}
|
|
|
|
int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
|
|
{
|
|
if (!c->mtd->oobsize)
|
|
return 0;
|
|
|
|
/* Cleanmarker is out-of-band, so inline size zero */
|
|
c->cleanmarker_size = 0;
|
|
|
|
if (c->mtd->oobavail == 0) {
|
|
pr_err("inconsistent device description\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
jffs2_dbg(1, "using OOB on NAND\n");
|
|
|
|
c->oobavail = c->mtd->oobavail;
|
|
|
|
/* Initialise write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
|
|
c->wbuf_pagesize = c->mtd->writesize;
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
c->oobbuf = kmalloc_array(NR_OOB_SCAN_PAGES, c->oobavail, GFP_KERNEL);
|
|
if (!c->oobbuf) {
|
|
kfree(c->wbuf);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf_verify) {
|
|
kfree(c->oobbuf);
|
|
kfree(c->wbuf);
|
|
return -ENOMEM;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
|
|
{
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
kfree(c->wbuf_verify);
|
|
#endif
|
|
kfree(c->wbuf);
|
|
kfree(c->oobbuf);
|
|
}
|
|
|
|
int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
|
|
c->cleanmarker_size = 0; /* No cleanmarkers needed */
|
|
|
|
/* Initialize write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
|
|
c->wbuf_pagesize = c->mtd->erasesize;
|
|
|
|
/* Find a suitable c->sector_size
|
|
* - Not too much sectors
|
|
* - Sectors have to be at least 4 K + some bytes
|
|
* - All known dataflashes have erase sizes of 528 or 1056
|
|
* - we take at least 8 eraseblocks and want to have at least 8K size
|
|
* - The concatenation should be a power of 2
|
|
*/
|
|
|
|
c->sector_size = 8 * c->mtd->erasesize;
|
|
|
|
while (c->sector_size < 8192) {
|
|
c->sector_size *= 2;
|
|
}
|
|
|
|
/* It may be necessary to adjust the flash size */
|
|
c->flash_size = c->mtd->size;
|
|
|
|
if ((c->flash_size % c->sector_size) != 0) {
|
|
c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
|
|
pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
|
|
}
|
|
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf_verify) {
|
|
kfree(c->wbuf);
|
|
return -ENOMEM;
|
|
}
|
|
#endif
|
|
|
|
pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
|
|
c->wbuf_pagesize, c->sector_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
kfree(c->wbuf_verify);
|
|
#endif
|
|
kfree(c->wbuf);
|
|
}
|
|
|
|
int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
|
|
/* Cleanmarker currently occupies whole programming regions,
|
|
* either one or 2 for 8Byte STMicro flashes. */
|
|
c->cleanmarker_size = max(16u, c->mtd->writesize);
|
|
|
|
/* Initialize write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
|
|
|
|
c->wbuf_pagesize = c->mtd->writesize;
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf_verify) {
|
|
kfree(c->wbuf);
|
|
return -ENOMEM;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
|
|
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
|
|
kfree(c->wbuf_verify);
|
|
#endif
|
|
kfree(c->wbuf);
|
|
}
|
|
|
|
int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
|
|
c->cleanmarker_size = 0;
|
|
|
|
if (c->mtd->writesize == 1)
|
|
/* We do not need write-buffer */
|
|
return 0;
|
|
|
|
init_rwsem(&c->wbuf_sem);
|
|
INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
|
|
|
|
c->wbuf_pagesize = c->mtd->writesize;
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
|
|
c->wbuf_pagesize, c->sector_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
|
|
kfree(c->wbuf);
|
|
}
|