mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 09:54:43 +07:00
4fb158f65a
Total 32 keys are available on power7 and above. However pkey 0,1 are reserved. So effectively we have 30 pkeys. On 4K kernels, we do not have 5 bits in the PTE to represent all the keys; we only have 3bits. Two of those keys are reserved; pkey 0 and pkey 1. So effectively we have 6 pkeys. This patch keeps track of reserved keys, allocated keys and keys that are currently free. Also it adds skeletal functions and macros, that the architecture-independent code expects to be available. Reviewed-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
266 lines
6.1 KiB
C
266 lines
6.1 KiB
C
/*
|
|
* MMU context allocation for 64-bit kernels.
|
|
*
|
|
* Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
static DEFINE_SPINLOCK(mmu_context_lock);
|
|
static DEFINE_IDA(mmu_context_ida);
|
|
|
|
static int alloc_context_id(int min_id, int max_id)
|
|
{
|
|
int index, err;
|
|
|
|
again:
|
|
if (!ida_pre_get(&mmu_context_ida, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&mmu_context_lock);
|
|
err = ida_get_new_above(&mmu_context_ida, min_id, &index);
|
|
spin_unlock(&mmu_context_lock);
|
|
|
|
if (err == -EAGAIN)
|
|
goto again;
|
|
else if (err)
|
|
return err;
|
|
|
|
if (index > max_id) {
|
|
spin_lock(&mmu_context_lock);
|
|
ida_remove(&mmu_context_ida, index);
|
|
spin_unlock(&mmu_context_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
void hash__reserve_context_id(int id)
|
|
{
|
|
int rc, result = 0;
|
|
|
|
do {
|
|
if (!ida_pre_get(&mmu_context_ida, GFP_KERNEL))
|
|
break;
|
|
|
|
spin_lock(&mmu_context_lock);
|
|
rc = ida_get_new_above(&mmu_context_ida, id, &result);
|
|
spin_unlock(&mmu_context_lock);
|
|
} while (rc == -EAGAIN);
|
|
|
|
WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
|
|
}
|
|
|
|
int hash__alloc_context_id(void)
|
|
{
|
|
unsigned long max;
|
|
|
|
if (mmu_has_feature(MMU_FTR_68_BIT_VA))
|
|
max = MAX_USER_CONTEXT;
|
|
else
|
|
max = MAX_USER_CONTEXT_65BIT_VA;
|
|
|
|
return alloc_context_id(MIN_USER_CONTEXT, max);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hash__alloc_context_id);
|
|
|
|
static int hash__init_new_context(struct mm_struct *mm)
|
|
{
|
|
int index;
|
|
|
|
index = hash__alloc_context_id();
|
|
if (index < 0)
|
|
return index;
|
|
|
|
/*
|
|
* In the case of exec, use the default limit,
|
|
* otherwise inherit it from the mm we are duplicating.
|
|
*/
|
|
if (!mm->context.slb_addr_limit)
|
|
mm->context.slb_addr_limit = DEFAULT_MAP_WINDOW_USER64;
|
|
|
|
/*
|
|
* The old code would re-promote on fork, we don't do that when using
|
|
* slices as it could cause problem promoting slices that have been
|
|
* forced down to 4K.
|
|
*
|
|
* For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
|
|
* explicitly against context.id == 0. This ensures that we properly
|
|
* initialize context slice details for newly allocated mm's (which will
|
|
* have id == 0) and don't alter context slice inherited via fork (which
|
|
* will have id != 0).
|
|
*
|
|
* We should not be calling init_new_context() on init_mm. Hence a
|
|
* check against 0 is OK.
|
|
*/
|
|
if (mm->context.id == 0)
|
|
slice_set_user_psize(mm, mmu_virtual_psize);
|
|
|
|
subpage_prot_init_new_context(mm);
|
|
|
|
pkey_mm_init(mm);
|
|
return index;
|
|
}
|
|
|
|
static int radix__init_new_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long rts_field;
|
|
int index, max_id;
|
|
|
|
max_id = (1 << mmu_pid_bits) - 1;
|
|
index = alloc_context_id(mmu_base_pid, max_id);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
/*
|
|
* set the process table entry,
|
|
*/
|
|
rts_field = radix__get_tree_size();
|
|
process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
|
|
|
|
/*
|
|
* Order the above store with subsequent update of the PID
|
|
* register (at which point HW can start loading/caching
|
|
* the entry) and the corresponding load by the MMU from
|
|
* the L2 cache.
|
|
*/
|
|
asm volatile("ptesync;isync" : : : "memory");
|
|
|
|
mm->context.npu_context = NULL;
|
|
|
|
return index;
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
int index;
|
|
|
|
if (radix_enabled())
|
|
index = radix__init_new_context(mm);
|
|
else
|
|
index = hash__init_new_context(mm);
|
|
|
|
if (index < 0)
|
|
return index;
|
|
|
|
mm->context.id = index;
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
mm->context.pte_frag = NULL;
|
|
#endif
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
mm_iommu_init(mm);
|
|
#endif
|
|
atomic_set(&mm->context.active_cpus, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __destroy_context(int context_id)
|
|
{
|
|
spin_lock(&mmu_context_lock);
|
|
ida_remove(&mmu_context_ida, context_id);
|
|
spin_unlock(&mmu_context_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__destroy_context);
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
static void destroy_pagetable_page(struct mm_struct *mm)
|
|
{
|
|
int count;
|
|
void *pte_frag;
|
|
struct page *page;
|
|
|
|
pte_frag = mm->context.pte_frag;
|
|
if (!pte_frag)
|
|
return;
|
|
|
|
page = virt_to_page(pte_frag);
|
|
/* drop all the pending references */
|
|
count = ((unsigned long)pte_frag & ~PAGE_MASK) >> PTE_FRAG_SIZE_SHIFT;
|
|
/* We allow PTE_FRAG_NR fragments from a PTE page */
|
|
if (page_ref_sub_and_test(page, PTE_FRAG_NR - count)) {
|
|
pgtable_page_dtor(page);
|
|
free_unref_page(page);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void destroy_pagetable_page(struct mm_struct *mm)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_SPAPR_TCE_IOMMU
|
|
WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
|
|
#endif
|
|
if (radix_enabled())
|
|
WARN_ON(process_tb[mm->context.id].prtb0 != 0);
|
|
else
|
|
subpage_prot_free(mm);
|
|
destroy_pagetable_page(mm);
|
|
__destroy_context(mm->context.id);
|
|
mm->context.id = MMU_NO_CONTEXT;
|
|
}
|
|
|
|
void arch_exit_mmap(struct mm_struct *mm)
|
|
{
|
|
if (radix_enabled()) {
|
|
/*
|
|
* Radix doesn't have a valid bit in the process table
|
|
* entries. However we know that at least P9 implementation
|
|
* will avoid caching an entry with an invalid RTS field,
|
|
* and 0 is invalid. So this will do.
|
|
*
|
|
* This runs before the "fullmm" tlb flush in exit_mmap,
|
|
* which does a RIC=2 tlbie to clear the process table
|
|
* entry. See the "fullmm" comments in tlb-radix.c.
|
|
*
|
|
* No barrier required here after the store because
|
|
* this process will do the invalidate, which starts with
|
|
* ptesync.
|
|
*/
|
|
process_tb[mm->context.id].prtb0 = 0;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_RADIX_MMU
|
|
void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
|
|
{
|
|
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
|
|
isync();
|
|
mtspr(SPRN_PID, next->context.id);
|
|
isync();
|
|
asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
|
|
} else {
|
|
mtspr(SPRN_PID, next->context.id);
|
|
isync();
|
|
}
|
|
}
|
|
#endif
|