mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 16:01:14 +07:00
b84b1d522f
'0' is now used as the default cmd_per_lun value, so there's no need to explicitly set it to '1' in the host template. Signed-off-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: James Bottomley <JBottomley@Odin.com>
1268 lines
29 KiB
C
1268 lines
29 KiB
C
/* imm.c -- low level driver for the IOMEGA MatchMaker
|
|
* parallel port SCSI host adapter.
|
|
*
|
|
* (The IMM is the embedded controller in the ZIP Plus drive.)
|
|
*
|
|
* My unofficial company acronym list is 21 pages long:
|
|
* FLA: Four letter acronym with built in facility for
|
|
* future expansion to five letters.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/parport.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
|
|
/* The following #define is to avoid a clash with hosts.c */
|
|
#define IMM_PROBE_SPP 0x0001
|
|
#define IMM_PROBE_PS2 0x0002
|
|
#define IMM_PROBE_ECR 0x0010
|
|
#define IMM_PROBE_EPP17 0x0100
|
|
#define IMM_PROBE_EPP19 0x0200
|
|
|
|
|
|
typedef struct {
|
|
struct pardevice *dev; /* Parport device entry */
|
|
int base; /* Actual port address */
|
|
int base_hi; /* Hi Base address for ECP-ISA chipset */
|
|
int mode; /* Transfer mode */
|
|
struct scsi_cmnd *cur_cmd; /* Current queued command */
|
|
struct delayed_work imm_tq; /* Polling interrupt stuff */
|
|
unsigned long jstart; /* Jiffies at start */
|
|
unsigned failed:1; /* Failure flag */
|
|
unsigned dp:1; /* Data phase present */
|
|
unsigned rd:1; /* Read data in data phase */
|
|
unsigned wanted:1; /* Parport sharing busy flag */
|
|
wait_queue_head_t *waiting;
|
|
struct Scsi_Host *host;
|
|
struct list_head list;
|
|
} imm_struct;
|
|
|
|
static void imm_reset_pulse(unsigned int base);
|
|
static int device_check(imm_struct *dev);
|
|
|
|
#include "imm.h"
|
|
|
|
static inline imm_struct *imm_dev(struct Scsi_Host *host)
|
|
{
|
|
return *(imm_struct **)&host->hostdata;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(arbitration_lock);
|
|
|
|
static void got_it(imm_struct *dev)
|
|
{
|
|
dev->base = dev->dev->port->base;
|
|
if (dev->cur_cmd)
|
|
dev->cur_cmd->SCp.phase = 1;
|
|
else
|
|
wake_up(dev->waiting);
|
|
}
|
|
|
|
static void imm_wakeup(void *ref)
|
|
{
|
|
imm_struct *dev = (imm_struct *) ref;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&arbitration_lock, flags);
|
|
if (dev->wanted) {
|
|
parport_claim(dev->dev);
|
|
got_it(dev);
|
|
dev->wanted = 0;
|
|
}
|
|
spin_unlock_irqrestore(&arbitration_lock, flags);
|
|
}
|
|
|
|
static int imm_pb_claim(imm_struct *dev)
|
|
{
|
|
unsigned long flags;
|
|
int res = 1;
|
|
spin_lock_irqsave(&arbitration_lock, flags);
|
|
if (parport_claim(dev->dev) == 0) {
|
|
got_it(dev);
|
|
res = 0;
|
|
}
|
|
dev->wanted = res;
|
|
spin_unlock_irqrestore(&arbitration_lock, flags);
|
|
return res;
|
|
}
|
|
|
|
static void imm_pb_dismiss(imm_struct *dev)
|
|
{
|
|
unsigned long flags;
|
|
int wanted;
|
|
spin_lock_irqsave(&arbitration_lock, flags);
|
|
wanted = dev->wanted;
|
|
dev->wanted = 0;
|
|
spin_unlock_irqrestore(&arbitration_lock, flags);
|
|
if (!wanted)
|
|
parport_release(dev->dev);
|
|
}
|
|
|
|
static inline void imm_pb_release(imm_struct *dev)
|
|
{
|
|
parport_release(dev->dev);
|
|
}
|
|
|
|
/* This is to give the imm driver a way to modify the timings (and other
|
|
* parameters) by writing to the /proc/scsi/imm/0 file.
|
|
* Very simple method really... (Too simple, no error checking :( )
|
|
* Reason: Kernel hackers HATE having to unload and reload modules for
|
|
* testing...
|
|
* Also gives a method to use a script to obtain optimum timings (TODO)
|
|
*/
|
|
static int imm_write_info(struct Scsi_Host *host, char *buffer, int length)
|
|
{
|
|
imm_struct *dev = imm_dev(host);
|
|
|
|
if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) {
|
|
dev->mode = simple_strtoul(buffer + 5, NULL, 0);
|
|
return length;
|
|
}
|
|
printk("imm /proc: invalid variable\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int imm_show_info(struct seq_file *m, struct Scsi_Host *host)
|
|
{
|
|
imm_struct *dev = imm_dev(host);
|
|
|
|
seq_printf(m, "Version : %s\n", IMM_VERSION);
|
|
seq_printf(m, "Parport : %s\n", dev->dev->port->name);
|
|
seq_printf(m, "Mode : %s\n", IMM_MODE_STRING[dev->mode]);
|
|
return 0;
|
|
}
|
|
|
|
#if IMM_DEBUG > 0
|
|
#define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\
|
|
y, __func__, __LINE__); imm_fail_func(x,y);
|
|
static inline void
|
|
imm_fail_func(imm_struct *dev, int error_code)
|
|
#else
|
|
static inline void
|
|
imm_fail(imm_struct *dev, int error_code)
|
|
#endif
|
|
{
|
|
/* If we fail a device then we trash status / message bytes */
|
|
if (dev->cur_cmd) {
|
|
dev->cur_cmd->result = error_code << 16;
|
|
dev->failed = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for the high bit to be set.
|
|
*
|
|
* In principle, this could be tied to an interrupt, but the adapter
|
|
* doesn't appear to be designed to support interrupts. We spin on
|
|
* the 0x80 ready bit.
|
|
*/
|
|
static unsigned char imm_wait(imm_struct *dev)
|
|
{
|
|
int k;
|
|
unsigned short ppb = dev->base;
|
|
unsigned char r;
|
|
|
|
w_ctr(ppb, 0x0c);
|
|
|
|
k = IMM_SPIN_TMO;
|
|
do {
|
|
r = r_str(ppb);
|
|
k--;
|
|
udelay(1);
|
|
}
|
|
while (!(r & 0x80) && (k));
|
|
|
|
/*
|
|
* STR register (LPT base+1) to SCSI mapping:
|
|
*
|
|
* STR imm imm
|
|
* ===================================
|
|
* 0x80 S_REQ S_REQ
|
|
* 0x40 !S_BSY (????)
|
|
* 0x20 !S_CD !S_CD
|
|
* 0x10 !S_IO !S_IO
|
|
* 0x08 (????) !S_BSY
|
|
*
|
|
* imm imm meaning
|
|
* ==================================
|
|
* 0xf0 0xb8 Bit mask
|
|
* 0xc0 0x88 ZIP wants more data
|
|
* 0xd0 0x98 ZIP wants to send more data
|
|
* 0xe0 0xa8 ZIP is expecting SCSI command data
|
|
* 0xf0 0xb8 end of transfer, ZIP is sending status
|
|
*/
|
|
w_ctr(ppb, 0x04);
|
|
if (k)
|
|
return (r & 0xb8);
|
|
|
|
/* Counter expired - Time out occurred */
|
|
imm_fail(dev, DID_TIME_OUT);
|
|
printk("imm timeout in imm_wait\n");
|
|
return 0; /* command timed out */
|
|
}
|
|
|
|
static int imm_negotiate(imm_struct * tmp)
|
|
{
|
|
/*
|
|
* The following is supposedly the IEEE 1284-1994 negotiate
|
|
* sequence. I have yet to obtain a copy of the above standard
|
|
* so this is a bit of a guess...
|
|
*
|
|
* A fair chunk of this is based on the Linux parport implementation
|
|
* of IEEE 1284.
|
|
*
|
|
* Return 0 if data available
|
|
* 1 if no data available
|
|
*/
|
|
|
|
unsigned short base = tmp->base;
|
|
unsigned char a, mode;
|
|
|
|
switch (tmp->mode) {
|
|
case IMM_NIBBLE:
|
|
mode = 0x00;
|
|
break;
|
|
case IMM_PS2:
|
|
mode = 0x01;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
w_ctr(base, 0x04);
|
|
udelay(5);
|
|
w_dtr(base, mode);
|
|
udelay(100);
|
|
w_ctr(base, 0x06);
|
|
udelay(5);
|
|
a = (r_str(base) & 0x20) ? 0 : 1;
|
|
udelay(5);
|
|
w_ctr(base, 0x07);
|
|
udelay(5);
|
|
w_ctr(base, 0x06);
|
|
|
|
if (a) {
|
|
printk
|
|
("IMM: IEEE1284 negotiate indicates no data available.\n");
|
|
imm_fail(tmp, DID_ERROR);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Clear EPP timeout bit.
|
|
*/
|
|
static inline void epp_reset(unsigned short ppb)
|
|
{
|
|
int i;
|
|
|
|
i = r_str(ppb);
|
|
w_str(ppb, i);
|
|
w_str(ppb, i & 0xfe);
|
|
}
|
|
|
|
/*
|
|
* Wait for empty ECP fifo (if we are in ECP fifo mode only)
|
|
*/
|
|
static inline void ecp_sync(imm_struct *dev)
|
|
{
|
|
int i, ppb_hi = dev->base_hi;
|
|
|
|
if (ppb_hi == 0)
|
|
return;
|
|
|
|
if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */
|
|
for (i = 0; i < 100; i++) {
|
|
if (r_ecr(ppb_hi) & 0x01)
|
|
return;
|
|
udelay(5);
|
|
}
|
|
printk("imm: ECP sync failed as data still present in FIFO.\n");
|
|
}
|
|
}
|
|
|
|
static int imm_byte_out(unsigned short base, const char *buffer, int len)
|
|
{
|
|
int i;
|
|
|
|
w_ctr(base, 0x4); /* apparently a sane mode */
|
|
for (i = len >> 1; i; i--) {
|
|
w_dtr(base, *buffer++);
|
|
w_ctr(base, 0x5); /* Drop STROBE low */
|
|
w_dtr(base, *buffer++);
|
|
w_ctr(base, 0x0); /* STROBE high + INIT low */
|
|
}
|
|
w_ctr(base, 0x4); /* apparently a sane mode */
|
|
return 1; /* All went well - we hope! */
|
|
}
|
|
|
|
static int imm_nibble_in(unsigned short base, char *buffer, int len)
|
|
{
|
|
unsigned char l;
|
|
int i;
|
|
|
|
/*
|
|
* The following is based on documented timing signals
|
|
*/
|
|
w_ctr(base, 0x4);
|
|
for (i = len; i; i--) {
|
|
w_ctr(base, 0x6);
|
|
l = (r_str(base) & 0xf0) >> 4;
|
|
w_ctr(base, 0x5);
|
|
*buffer++ = (r_str(base) & 0xf0) | l;
|
|
w_ctr(base, 0x4);
|
|
}
|
|
return 1; /* All went well - we hope! */
|
|
}
|
|
|
|
static int imm_byte_in(unsigned short base, char *buffer, int len)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* The following is based on documented timing signals
|
|
*/
|
|
w_ctr(base, 0x4);
|
|
for (i = len; i; i--) {
|
|
w_ctr(base, 0x26);
|
|
*buffer++ = r_dtr(base);
|
|
w_ctr(base, 0x25);
|
|
}
|
|
return 1; /* All went well - we hope! */
|
|
}
|
|
|
|
static int imm_out(imm_struct *dev, char *buffer, int len)
|
|
{
|
|
unsigned short ppb = dev->base;
|
|
int r = imm_wait(dev);
|
|
|
|
/*
|
|
* Make sure that:
|
|
* a) the SCSI bus is BUSY (device still listening)
|
|
* b) the device is listening
|
|
*/
|
|
if ((r & 0x18) != 0x08) {
|
|
imm_fail(dev, DID_ERROR);
|
|
printk("IMM: returned SCSI status %2x\n", r);
|
|
return 0;
|
|
}
|
|
switch (dev->mode) {
|
|
case IMM_EPP_32:
|
|
case IMM_EPP_16:
|
|
case IMM_EPP_8:
|
|
epp_reset(ppb);
|
|
w_ctr(ppb, 0x4);
|
|
#ifdef CONFIG_SCSI_IZIP_EPP16
|
|
if (!(((long) buffer | len) & 0x01))
|
|
outsw(ppb + 4, buffer, len >> 1);
|
|
#else
|
|
if (!(((long) buffer | len) & 0x03))
|
|
outsl(ppb + 4, buffer, len >> 2);
|
|
#endif
|
|
else
|
|
outsb(ppb + 4, buffer, len);
|
|
w_ctr(ppb, 0xc);
|
|
r = !(r_str(ppb) & 0x01);
|
|
w_ctr(ppb, 0xc);
|
|
ecp_sync(dev);
|
|
break;
|
|
|
|
case IMM_NIBBLE:
|
|
case IMM_PS2:
|
|
/* 8 bit output, with a loop */
|
|
r = imm_byte_out(ppb, buffer, len);
|
|
break;
|
|
|
|
default:
|
|
printk("IMM: bug in imm_out()\n");
|
|
r = 0;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int imm_in(imm_struct *dev, char *buffer, int len)
|
|
{
|
|
unsigned short ppb = dev->base;
|
|
int r = imm_wait(dev);
|
|
|
|
/*
|
|
* Make sure that:
|
|
* a) the SCSI bus is BUSY (device still listening)
|
|
* b) the device is sending data
|
|
*/
|
|
if ((r & 0x18) != 0x18) {
|
|
imm_fail(dev, DID_ERROR);
|
|
return 0;
|
|
}
|
|
switch (dev->mode) {
|
|
case IMM_NIBBLE:
|
|
/* 4 bit input, with a loop */
|
|
r = imm_nibble_in(ppb, buffer, len);
|
|
w_ctr(ppb, 0xc);
|
|
break;
|
|
|
|
case IMM_PS2:
|
|
/* 8 bit input, with a loop */
|
|
r = imm_byte_in(ppb, buffer, len);
|
|
w_ctr(ppb, 0xc);
|
|
break;
|
|
|
|
case IMM_EPP_32:
|
|
case IMM_EPP_16:
|
|
case IMM_EPP_8:
|
|
epp_reset(ppb);
|
|
w_ctr(ppb, 0x24);
|
|
#ifdef CONFIG_SCSI_IZIP_EPP16
|
|
if (!(((long) buffer | len) & 0x01))
|
|
insw(ppb + 4, buffer, len >> 1);
|
|
#else
|
|
if (!(((long) buffer | len) & 0x03))
|
|
insl(ppb + 4, buffer, len >> 2);
|
|
#endif
|
|
else
|
|
insb(ppb + 4, buffer, len);
|
|
w_ctr(ppb, 0x2c);
|
|
r = !(r_str(ppb) & 0x01);
|
|
w_ctr(ppb, 0x2c);
|
|
ecp_sync(dev);
|
|
break;
|
|
|
|
default:
|
|
printk("IMM: bug in imm_ins()\n");
|
|
r = 0;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int imm_cpp(unsigned short ppb, unsigned char b)
|
|
{
|
|
/*
|
|
* Comments on udelay values refer to the
|
|
* Command Packet Protocol (CPP) timing diagram.
|
|
*/
|
|
|
|
unsigned char s1, s2, s3;
|
|
w_ctr(ppb, 0x0c);
|
|
udelay(2); /* 1 usec - infinite */
|
|
w_dtr(ppb, 0xaa);
|
|
udelay(10); /* 7 usec - infinite */
|
|
w_dtr(ppb, 0x55);
|
|
udelay(10); /* 7 usec - infinite */
|
|
w_dtr(ppb, 0x00);
|
|
udelay(10); /* 7 usec - infinite */
|
|
w_dtr(ppb, 0xff);
|
|
udelay(10); /* 7 usec - infinite */
|
|
s1 = r_str(ppb) & 0xb8;
|
|
w_dtr(ppb, 0x87);
|
|
udelay(10); /* 7 usec - infinite */
|
|
s2 = r_str(ppb) & 0xb8;
|
|
w_dtr(ppb, 0x78);
|
|
udelay(10); /* 7 usec - infinite */
|
|
s3 = r_str(ppb) & 0x38;
|
|
/*
|
|
* Values for b are:
|
|
* 0000 00aa Assign address aa to current device
|
|
* 0010 00aa Select device aa in EPP Winbond mode
|
|
* 0010 10aa Select device aa in EPP mode
|
|
* 0011 xxxx Deselect all devices
|
|
* 0110 00aa Test device aa
|
|
* 1101 00aa Select device aa in ECP mode
|
|
* 1110 00aa Select device aa in Compatible mode
|
|
*/
|
|
w_dtr(ppb, b);
|
|
udelay(2); /* 1 usec - infinite */
|
|
w_ctr(ppb, 0x0c);
|
|
udelay(10); /* 7 usec - infinite */
|
|
w_ctr(ppb, 0x0d);
|
|
udelay(2); /* 1 usec - infinite */
|
|
w_ctr(ppb, 0x0c);
|
|
udelay(10); /* 7 usec - infinite */
|
|
w_dtr(ppb, 0xff);
|
|
udelay(10); /* 7 usec - infinite */
|
|
|
|
/*
|
|
* The following table is electrical pin values.
|
|
* (BSY is inverted at the CTR register)
|
|
*
|
|
* BSY ACK POut SEL Fault
|
|
* S1 0 X 1 1 1
|
|
* S2 1 X 0 1 1
|
|
* S3 L X 1 1 S
|
|
*
|
|
* L => Last device in chain
|
|
* S => Selected
|
|
*
|
|
* Observered values for S1,S2,S3 are:
|
|
* Disconnect => f8/58/78
|
|
* Connect => f8/58/70
|
|
*/
|
|
if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30))
|
|
return 1; /* Connected */
|
|
if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38))
|
|
return 0; /* Disconnected */
|
|
|
|
return -1; /* No device present */
|
|
}
|
|
|
|
static inline int imm_connect(imm_struct *dev, int flag)
|
|
{
|
|
unsigned short ppb = dev->base;
|
|
|
|
imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
|
|
imm_cpp(ppb, 0x30); /* Disconnect all devices */
|
|
|
|
if ((dev->mode == IMM_EPP_8) ||
|
|
(dev->mode == IMM_EPP_16) ||
|
|
(dev->mode == IMM_EPP_32))
|
|
return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */
|
|
return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
|
|
}
|
|
|
|
static void imm_disconnect(imm_struct *dev)
|
|
{
|
|
imm_cpp(dev->base, 0x30); /* Disconnect all devices */
|
|
}
|
|
|
|
static int imm_select(imm_struct *dev, int target)
|
|
{
|
|
int k;
|
|
unsigned short ppb = dev->base;
|
|
|
|
/*
|
|
* Firstly we want to make sure there is nothing
|
|
* holding onto the SCSI bus.
|
|
*/
|
|
w_ctr(ppb, 0xc);
|
|
|
|
k = IMM_SELECT_TMO;
|
|
do {
|
|
k--;
|
|
} while ((r_str(ppb) & 0x08) && (k));
|
|
|
|
if (!k)
|
|
return 0;
|
|
|
|
/*
|
|
* Now assert the SCSI ID (HOST and TARGET) on the data bus
|
|
*/
|
|
w_ctr(ppb, 0x4);
|
|
w_dtr(ppb, 0x80 | (1 << target));
|
|
udelay(1);
|
|
|
|
/*
|
|
* Deassert SELIN first followed by STROBE
|
|
*/
|
|
w_ctr(ppb, 0xc);
|
|
w_ctr(ppb, 0xd);
|
|
|
|
/*
|
|
* ACK should drop low while SELIN is deasserted.
|
|
* FAULT should drop low when the SCSI device latches the bus.
|
|
*/
|
|
k = IMM_SELECT_TMO;
|
|
do {
|
|
k--;
|
|
}
|
|
while (!(r_str(ppb) & 0x08) && (k));
|
|
|
|
/*
|
|
* Place the interface back into a sane state (status mode)
|
|
*/
|
|
w_ctr(ppb, 0xc);
|
|
return (k) ? 1 : 0;
|
|
}
|
|
|
|
static int imm_init(imm_struct *dev)
|
|
{
|
|
if (imm_connect(dev, 0) != 1)
|
|
return -EIO;
|
|
imm_reset_pulse(dev->base);
|
|
mdelay(1); /* Delay to allow devices to settle */
|
|
imm_disconnect(dev);
|
|
mdelay(1); /* Another delay to allow devices to settle */
|
|
return device_check(dev);
|
|
}
|
|
|
|
static inline int imm_send_command(struct scsi_cmnd *cmd)
|
|
{
|
|
imm_struct *dev = imm_dev(cmd->device->host);
|
|
int k;
|
|
|
|
/* NOTE: IMM uses byte pairs */
|
|
for (k = 0; k < cmd->cmd_len; k += 2)
|
|
if (!imm_out(dev, &cmd->cmnd[k], 2))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The bulk flag enables some optimisations in the data transfer loops,
|
|
* it should be true for any command that transfers data in integral
|
|
* numbers of sectors.
|
|
*
|
|
* The driver appears to remain stable if we speed up the parallel port
|
|
* i/o in this function, but not elsewhere.
|
|
*/
|
|
static int imm_completion(struct scsi_cmnd *cmd)
|
|
{
|
|
/* Return codes:
|
|
* -1 Error
|
|
* 0 Told to schedule
|
|
* 1 Finished data transfer
|
|
*/
|
|
imm_struct *dev = imm_dev(cmd->device->host);
|
|
unsigned short ppb = dev->base;
|
|
unsigned long start_jiffies = jiffies;
|
|
|
|
unsigned char r, v;
|
|
int fast, bulk, status;
|
|
|
|
v = cmd->cmnd[0];
|
|
bulk = ((v == READ_6) ||
|
|
(v == READ_10) || (v == WRITE_6) || (v == WRITE_10));
|
|
|
|
/*
|
|
* We only get here if the drive is ready to comunicate,
|
|
* hence no need for a full imm_wait.
|
|
*/
|
|
w_ctr(ppb, 0x0c);
|
|
r = (r_str(ppb) & 0xb8);
|
|
|
|
/*
|
|
* while (device is not ready to send status byte)
|
|
* loop;
|
|
*/
|
|
while (r != (unsigned char) 0xb8) {
|
|
/*
|
|
* If we have been running for more than a full timer tick
|
|
* then take a rest.
|
|
*/
|
|
if (time_after(jiffies, start_jiffies + 1))
|
|
return 0;
|
|
|
|
/*
|
|
* FAIL if:
|
|
* a) Drive status is screwy (!ready && !present)
|
|
* b) Drive is requesting/sending more data than expected
|
|
*/
|
|
if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) {
|
|
imm_fail(dev, DID_ERROR);
|
|
return -1; /* ERROR_RETURN */
|
|
}
|
|
/* determine if we should use burst I/O */
|
|
if (dev->rd == 0) {
|
|
fast = (bulk
|
|
&& (cmd->SCp.this_residual >=
|
|
IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2;
|
|
status = imm_out(dev, cmd->SCp.ptr, fast);
|
|
} else {
|
|
fast = (bulk
|
|
&& (cmd->SCp.this_residual >=
|
|
IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1;
|
|
status = imm_in(dev, cmd->SCp.ptr, fast);
|
|
}
|
|
|
|
cmd->SCp.ptr += fast;
|
|
cmd->SCp.this_residual -= fast;
|
|
|
|
if (!status) {
|
|
imm_fail(dev, DID_BUS_BUSY);
|
|
return -1; /* ERROR_RETURN */
|
|
}
|
|
if (cmd->SCp.buffer && !cmd->SCp.this_residual) {
|
|
/* if scatter/gather, advance to the next segment */
|
|
if (cmd->SCp.buffers_residual--) {
|
|
cmd->SCp.buffer++;
|
|
cmd->SCp.this_residual =
|
|
cmd->SCp.buffer->length;
|
|
cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
|
|
|
|
/*
|
|
* Make sure that we transfer even number of bytes
|
|
* otherwise it makes imm_byte_out() messy.
|
|
*/
|
|
if (cmd->SCp.this_residual & 0x01)
|
|
cmd->SCp.this_residual++;
|
|
}
|
|
}
|
|
/* Now check to see if the drive is ready to comunicate */
|
|
w_ctr(ppb, 0x0c);
|
|
r = (r_str(ppb) & 0xb8);
|
|
|
|
/* If not, drop back down to the scheduler and wait a timer tick */
|
|
if (!(r & 0x80))
|
|
return 0;
|
|
}
|
|
return 1; /* FINISH_RETURN */
|
|
}
|
|
|
|
/*
|
|
* Since the IMM itself doesn't generate interrupts, we use
|
|
* the scheduler's task queue to generate a stream of call-backs and
|
|
* complete the request when the drive is ready.
|
|
*/
|
|
static void imm_interrupt(struct work_struct *work)
|
|
{
|
|
imm_struct *dev = container_of(work, imm_struct, imm_tq.work);
|
|
struct scsi_cmnd *cmd = dev->cur_cmd;
|
|
struct Scsi_Host *host = cmd->device->host;
|
|
unsigned long flags;
|
|
|
|
if (imm_engine(dev, cmd)) {
|
|
schedule_delayed_work(&dev->imm_tq, 1);
|
|
return;
|
|
}
|
|
/* Command must of completed hence it is safe to let go... */
|
|
#if IMM_DEBUG > 0
|
|
switch ((cmd->result >> 16) & 0xff) {
|
|
case DID_OK:
|
|
break;
|
|
case DID_NO_CONNECT:
|
|
printk("imm: no device at SCSI ID %i\n", cmd->device->id);
|
|
break;
|
|
case DID_BUS_BUSY:
|
|
printk("imm: BUS BUSY - EPP timeout detected\n");
|
|
break;
|
|
case DID_TIME_OUT:
|
|
printk("imm: unknown timeout\n");
|
|
break;
|
|
case DID_ABORT:
|
|
printk("imm: told to abort\n");
|
|
break;
|
|
case DID_PARITY:
|
|
printk("imm: parity error (???)\n");
|
|
break;
|
|
case DID_ERROR:
|
|
printk("imm: internal driver error\n");
|
|
break;
|
|
case DID_RESET:
|
|
printk("imm: told to reset device\n");
|
|
break;
|
|
case DID_BAD_INTR:
|
|
printk("imm: bad interrupt (???)\n");
|
|
break;
|
|
default:
|
|
printk("imm: bad return code (%02x)\n",
|
|
(cmd->result >> 16) & 0xff);
|
|
}
|
|
#endif
|
|
|
|
if (cmd->SCp.phase > 1)
|
|
imm_disconnect(dev);
|
|
|
|
imm_pb_dismiss(dev);
|
|
|
|
spin_lock_irqsave(host->host_lock, flags);
|
|
dev->cur_cmd = NULL;
|
|
cmd->scsi_done(cmd);
|
|
spin_unlock_irqrestore(host->host_lock, flags);
|
|
return;
|
|
}
|
|
|
|
static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd)
|
|
{
|
|
unsigned short ppb = dev->base;
|
|
unsigned char l = 0, h = 0;
|
|
int retv, x;
|
|
|
|
/* First check for any errors that may have occurred
|
|
* Here we check for internal errors
|
|
*/
|
|
if (dev->failed)
|
|
return 0;
|
|
|
|
switch (cmd->SCp.phase) {
|
|
case 0: /* Phase 0 - Waiting for parport */
|
|
if (time_after(jiffies, dev->jstart + HZ)) {
|
|
/*
|
|
* We waited more than a second
|
|
* for parport to call us
|
|
*/
|
|
imm_fail(dev, DID_BUS_BUSY);
|
|
return 0;
|
|
}
|
|
return 1; /* wait until imm_wakeup claims parport */
|
|
/* Phase 1 - Connected */
|
|
case 1:
|
|
imm_connect(dev, CONNECT_EPP_MAYBE);
|
|
cmd->SCp.phase++;
|
|
|
|
/* Phase 2 - We are now talking to the scsi bus */
|
|
case 2:
|
|
if (!imm_select(dev, scmd_id(cmd))) {
|
|
imm_fail(dev, DID_NO_CONNECT);
|
|
return 0;
|
|
}
|
|
cmd->SCp.phase++;
|
|
|
|
/* Phase 3 - Ready to accept a command */
|
|
case 3:
|
|
w_ctr(ppb, 0x0c);
|
|
if (!(r_str(ppb) & 0x80))
|
|
return 1;
|
|
|
|
if (!imm_send_command(cmd))
|
|
return 0;
|
|
cmd->SCp.phase++;
|
|
|
|
/* Phase 4 - Setup scatter/gather buffers */
|
|
case 4:
|
|
if (scsi_bufflen(cmd)) {
|
|
cmd->SCp.buffer = scsi_sglist(cmd);
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
|
cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
|
|
} else {
|
|
cmd->SCp.buffer = NULL;
|
|
cmd->SCp.this_residual = 0;
|
|
cmd->SCp.ptr = NULL;
|
|
}
|
|
cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
|
|
cmd->SCp.phase++;
|
|
if (cmd->SCp.this_residual & 0x01)
|
|
cmd->SCp.this_residual++;
|
|
/* Phase 5 - Pre-Data transfer stage */
|
|
case 5:
|
|
/* Spin lock for BUSY */
|
|
w_ctr(ppb, 0x0c);
|
|
if (!(r_str(ppb) & 0x80))
|
|
return 1;
|
|
|
|
/* Require negotiation for read requests */
|
|
x = (r_str(ppb) & 0xb8);
|
|
dev->rd = (x & 0x10) ? 1 : 0;
|
|
dev->dp = (x & 0x20) ? 0 : 1;
|
|
|
|
if ((dev->dp) && (dev->rd))
|
|
if (imm_negotiate(dev))
|
|
return 0;
|
|
cmd->SCp.phase++;
|
|
|
|
/* Phase 6 - Data transfer stage */
|
|
case 6:
|
|
/* Spin lock for BUSY */
|
|
w_ctr(ppb, 0x0c);
|
|
if (!(r_str(ppb) & 0x80))
|
|
return 1;
|
|
|
|
if (dev->dp) {
|
|
retv = imm_completion(cmd);
|
|
if (retv == -1)
|
|
return 0;
|
|
if (retv == 0)
|
|
return 1;
|
|
}
|
|
cmd->SCp.phase++;
|
|
|
|
/* Phase 7 - Post data transfer stage */
|
|
case 7:
|
|
if ((dev->dp) && (dev->rd)) {
|
|
if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
|
|
w_ctr(ppb, 0x4);
|
|
w_ctr(ppb, 0xc);
|
|
w_ctr(ppb, 0xe);
|
|
w_ctr(ppb, 0x4);
|
|
}
|
|
}
|
|
cmd->SCp.phase++;
|
|
|
|
/* Phase 8 - Read status/message */
|
|
case 8:
|
|
/* Check for data overrun */
|
|
if (imm_wait(dev) != (unsigned char) 0xb8) {
|
|
imm_fail(dev, DID_ERROR);
|
|
return 0;
|
|
}
|
|
if (imm_negotiate(dev))
|
|
return 0;
|
|
if (imm_in(dev, &l, 1)) { /* read status byte */
|
|
/* Check for optional message byte */
|
|
if (imm_wait(dev) == (unsigned char) 0xb8)
|
|
imm_in(dev, &h, 1);
|
|
cmd->result = (DID_OK << 16) + (l & STATUS_MASK);
|
|
}
|
|
if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
|
|
w_ctr(ppb, 0x4);
|
|
w_ctr(ppb, 0xc);
|
|
w_ctr(ppb, 0xe);
|
|
w_ctr(ppb, 0x4);
|
|
}
|
|
return 0; /* Finished */
|
|
break;
|
|
|
|
default:
|
|
printk("imm: Invalid scsi phase\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int imm_queuecommand_lck(struct scsi_cmnd *cmd,
|
|
void (*done)(struct scsi_cmnd *))
|
|
{
|
|
imm_struct *dev = imm_dev(cmd->device->host);
|
|
|
|
if (dev->cur_cmd) {
|
|
printk("IMM: bug in imm_queuecommand\n");
|
|
return 0;
|
|
}
|
|
dev->failed = 0;
|
|
dev->jstart = jiffies;
|
|
dev->cur_cmd = cmd;
|
|
cmd->scsi_done = done;
|
|
cmd->result = DID_ERROR << 16; /* default return code */
|
|
cmd->SCp.phase = 0; /* bus free */
|
|
|
|
schedule_delayed_work(&dev->imm_tq, 0);
|
|
|
|
imm_pb_claim(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEF_SCSI_QCMD(imm_queuecommand)
|
|
|
|
/*
|
|
* Apparently the disk->capacity attribute is off by 1 sector
|
|
* for all disk drives. We add the one here, but it should really
|
|
* be done in sd.c. Even if it gets fixed there, this will still
|
|
* work.
|
|
*/
|
|
static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev,
|
|
sector_t capacity, int ip[])
|
|
{
|
|
ip[0] = 0x40;
|
|
ip[1] = 0x20;
|
|
ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
|
|
if (ip[2] > 1024) {
|
|
ip[0] = 0xff;
|
|
ip[1] = 0x3f;
|
|
ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int imm_abort(struct scsi_cmnd *cmd)
|
|
{
|
|
imm_struct *dev = imm_dev(cmd->device->host);
|
|
/*
|
|
* There is no method for aborting commands since Iomega
|
|
* have tied the SCSI_MESSAGE line high in the interface
|
|
*/
|
|
|
|
switch (cmd->SCp.phase) {
|
|
case 0: /* Do not have access to parport */
|
|
case 1: /* Have not connected to interface */
|
|
dev->cur_cmd = NULL; /* Forget the problem */
|
|
return SUCCESS;
|
|
break;
|
|
default: /* SCSI command sent, can not abort */
|
|
return FAILED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void imm_reset_pulse(unsigned int base)
|
|
{
|
|
w_ctr(base, 0x04);
|
|
w_dtr(base, 0x40);
|
|
udelay(1);
|
|
w_ctr(base, 0x0c);
|
|
w_ctr(base, 0x0d);
|
|
udelay(50);
|
|
w_ctr(base, 0x0c);
|
|
w_ctr(base, 0x04);
|
|
}
|
|
|
|
static int imm_reset(struct scsi_cmnd *cmd)
|
|
{
|
|
imm_struct *dev = imm_dev(cmd->device->host);
|
|
|
|
if (cmd->SCp.phase)
|
|
imm_disconnect(dev);
|
|
dev->cur_cmd = NULL; /* Forget the problem */
|
|
|
|
imm_connect(dev, CONNECT_NORMAL);
|
|
imm_reset_pulse(dev->base);
|
|
mdelay(1); /* device settle delay */
|
|
imm_disconnect(dev);
|
|
mdelay(1); /* device settle delay */
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int device_check(imm_struct *dev)
|
|
{
|
|
/* This routine looks for a device and then attempts to use EPP
|
|
to send a command. If all goes as planned then EPP is available. */
|
|
|
|
static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
int loop, old_mode, status, k, ppb = dev->base;
|
|
unsigned char l;
|
|
|
|
old_mode = dev->mode;
|
|
for (loop = 0; loop < 8; loop++) {
|
|
/* Attempt to use EPP for Test Unit Ready */
|
|
if ((ppb & 0x0007) == 0x0000)
|
|
dev->mode = IMM_EPP_32;
|
|
|
|
second_pass:
|
|
imm_connect(dev, CONNECT_EPP_MAYBE);
|
|
/* Select SCSI device */
|
|
if (!imm_select(dev, loop)) {
|
|
imm_disconnect(dev);
|
|
continue;
|
|
}
|
|
printk("imm: Found device at ID %i, Attempting to use %s\n",
|
|
loop, IMM_MODE_STRING[dev->mode]);
|
|
|
|
/* Send SCSI command */
|
|
status = 1;
|
|
w_ctr(ppb, 0x0c);
|
|
for (l = 0; (l < 3) && (status); l++)
|
|
status = imm_out(dev, &cmd[l << 1], 2);
|
|
|
|
if (!status) {
|
|
imm_disconnect(dev);
|
|
imm_connect(dev, CONNECT_EPP_MAYBE);
|
|
imm_reset_pulse(dev->base);
|
|
udelay(1000);
|
|
imm_disconnect(dev);
|
|
udelay(1000);
|
|
if (dev->mode == IMM_EPP_32) {
|
|
dev->mode = old_mode;
|
|
goto second_pass;
|
|
}
|
|
printk("imm: Unable to establish communication\n");
|
|
return -EIO;
|
|
}
|
|
w_ctr(ppb, 0x0c);
|
|
|
|
k = 1000000; /* 1 Second */
|
|
do {
|
|
l = r_str(ppb);
|
|
k--;
|
|
udelay(1);
|
|
} while (!(l & 0x80) && (k));
|
|
|
|
l &= 0xb8;
|
|
|
|
if (l != 0xb8) {
|
|
imm_disconnect(dev);
|
|
imm_connect(dev, CONNECT_EPP_MAYBE);
|
|
imm_reset_pulse(dev->base);
|
|
udelay(1000);
|
|
imm_disconnect(dev);
|
|
udelay(1000);
|
|
if (dev->mode == IMM_EPP_32) {
|
|
dev->mode = old_mode;
|
|
goto second_pass;
|
|
}
|
|
printk
|
|
("imm: Unable to establish communication\n");
|
|
return -EIO;
|
|
}
|
|
imm_disconnect(dev);
|
|
printk
|
|
("imm: Communication established at 0x%x with ID %i using %s\n",
|
|
ppb, loop, IMM_MODE_STRING[dev->mode]);
|
|
imm_connect(dev, CONNECT_EPP_MAYBE);
|
|
imm_reset_pulse(dev->base);
|
|
udelay(1000);
|
|
imm_disconnect(dev);
|
|
udelay(1000);
|
|
return 0;
|
|
}
|
|
printk("imm: No devices found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* imm cannot deal with highmem, so this causes all IO pages for this host
|
|
* to reside in low memory (hence mapped)
|
|
*/
|
|
static int imm_adjust_queue(struct scsi_device *device)
|
|
{
|
|
blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH);
|
|
return 0;
|
|
}
|
|
|
|
static struct scsi_host_template imm_template = {
|
|
.module = THIS_MODULE,
|
|
.proc_name = "imm",
|
|
.show_info = imm_show_info,
|
|
.write_info = imm_write_info,
|
|
.name = "Iomega VPI2 (imm) interface",
|
|
.queuecommand = imm_queuecommand,
|
|
.eh_abort_handler = imm_abort,
|
|
.eh_bus_reset_handler = imm_reset,
|
|
.eh_host_reset_handler = imm_reset,
|
|
.bios_param = imm_biosparam,
|
|
.this_id = 7,
|
|
.sg_tablesize = SG_ALL,
|
|
.use_clustering = ENABLE_CLUSTERING,
|
|
.can_queue = 1,
|
|
.slave_alloc = imm_adjust_queue,
|
|
};
|
|
|
|
/***************************************************************************
|
|
* Parallel port probing routines *
|
|
***************************************************************************/
|
|
|
|
static LIST_HEAD(imm_hosts);
|
|
|
|
static int __imm_attach(struct parport *pb)
|
|
{
|
|
struct Scsi_Host *host;
|
|
imm_struct *dev;
|
|
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting);
|
|
DEFINE_WAIT(wait);
|
|
int ports;
|
|
int modes, ppb;
|
|
int err = -ENOMEM;
|
|
|
|
init_waitqueue_head(&waiting);
|
|
|
|
dev = kzalloc(sizeof(imm_struct), GFP_KERNEL);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
|
|
dev->base = -1;
|
|
dev->mode = IMM_AUTODETECT;
|
|
INIT_LIST_HEAD(&dev->list);
|
|
|
|
dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup,
|
|
NULL, 0, dev);
|
|
|
|
if (!dev->dev)
|
|
goto out;
|
|
|
|
|
|
/* Claim the bus so it remembers what we do to the control
|
|
* registers. [ CTR and ECP ]
|
|
*/
|
|
err = -EBUSY;
|
|
dev->waiting = &waiting;
|
|
prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE);
|
|
if (imm_pb_claim(dev))
|
|
schedule_timeout(3 * HZ);
|
|
if (dev->wanted) {
|
|
printk(KERN_ERR "imm%d: failed to claim parport because "
|
|
"a pardevice is owning the port for too long "
|
|
"time!\n", pb->number);
|
|
imm_pb_dismiss(dev);
|
|
dev->waiting = NULL;
|
|
finish_wait(&waiting, &wait);
|
|
goto out1;
|
|
}
|
|
dev->waiting = NULL;
|
|
finish_wait(&waiting, &wait);
|
|
ppb = dev->base = dev->dev->port->base;
|
|
dev->base_hi = dev->dev->port->base_hi;
|
|
w_ctr(ppb, 0x0c);
|
|
modes = dev->dev->port->modes;
|
|
|
|
/* Mode detection works up the chain of speed
|
|
* This avoids a nasty if-then-else-if-... tree
|
|
*/
|
|
dev->mode = IMM_NIBBLE;
|
|
|
|
if (modes & PARPORT_MODE_TRISTATE)
|
|
dev->mode = IMM_PS2;
|
|
|
|
/* Done configuration */
|
|
|
|
err = imm_init(dev);
|
|
|
|
imm_pb_release(dev);
|
|
|
|
if (err)
|
|
goto out1;
|
|
|
|
/* now the glue ... */
|
|
if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2)
|
|
ports = 3;
|
|
else
|
|
ports = 8;
|
|
|
|
INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt);
|
|
|
|
err = -ENOMEM;
|
|
host = scsi_host_alloc(&imm_template, sizeof(imm_struct *));
|
|
if (!host)
|
|
goto out1;
|
|
host->io_port = pb->base;
|
|
host->n_io_port = ports;
|
|
host->dma_channel = -1;
|
|
host->unique_id = pb->number;
|
|
*(imm_struct **)&host->hostdata = dev;
|
|
dev->host = host;
|
|
list_add_tail(&dev->list, &imm_hosts);
|
|
err = scsi_add_host(host, NULL);
|
|
if (err)
|
|
goto out2;
|
|
scsi_scan_host(host);
|
|
return 0;
|
|
|
|
out2:
|
|
list_del_init(&dev->list);
|
|
scsi_host_put(host);
|
|
out1:
|
|
parport_unregister_device(dev->dev);
|
|
out:
|
|
kfree(dev);
|
|
return err;
|
|
}
|
|
|
|
static void imm_attach(struct parport *pb)
|
|
{
|
|
__imm_attach(pb);
|
|
}
|
|
|
|
static void imm_detach(struct parport *pb)
|
|
{
|
|
imm_struct *dev;
|
|
list_for_each_entry(dev, &imm_hosts, list) {
|
|
if (dev->dev->port == pb) {
|
|
list_del_init(&dev->list);
|
|
scsi_remove_host(dev->host);
|
|
scsi_host_put(dev->host);
|
|
parport_unregister_device(dev->dev);
|
|
kfree(dev);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct parport_driver imm_driver = {
|
|
.name = "imm",
|
|
.attach = imm_attach,
|
|
.detach = imm_detach,
|
|
};
|
|
|
|
static int __init imm_driver_init(void)
|
|
{
|
|
printk("imm: Version %s\n", IMM_VERSION);
|
|
return parport_register_driver(&imm_driver);
|
|
}
|
|
|
|
static void __exit imm_driver_exit(void)
|
|
{
|
|
parport_unregister_driver(&imm_driver);
|
|
}
|
|
|
|
module_init(imm_driver_init);
|
|
module_exit(imm_driver_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|