linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_guc_ads.c
Chris Wilson f18819a3c8 drm/i915/guc: Avoid reclaim locks during reset
During reset, we must be very selective in which locks we take as most
are tainted by being held across a wait or reclaim (kmalloc) which
implicitly waits. Inside the guc reset path, we reset the ADS to sane
defaults, but must keep it pinned from initialisation to avoid having to
pin it during reset.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Michal Wajdeczko <michal.wajdeczko@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190701100502.15639-1-chris@chris-wilson.co.uk
2019-07-01 16:21:43 +01:00

203 lines
6.3 KiB
C

/*
* Copyright © 2014-2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "intel_guc_ads.h"
#include "intel_uc.h"
#include "i915_drv.h"
/*
* The Additional Data Struct (ADS) has pointers for different buffers used by
* the GuC. One single gem object contains the ADS struct itself (guc_ads), the
* scheduling policies (guc_policies), a structure describing a collection of
* register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
* its internal state for sleep.
*/
static void guc_policy_init(struct guc_policy *policy)
{
policy->execution_quantum = POLICY_DEFAULT_EXECUTION_QUANTUM_US;
policy->preemption_time = POLICY_DEFAULT_PREEMPTION_TIME_US;
policy->fault_time = POLICY_DEFAULT_FAULT_TIME_US;
policy->policy_flags = 0;
}
static void guc_policies_init(struct guc_policies *policies)
{
struct guc_policy *policy;
u32 p, i;
policies->dpc_promote_time = POLICY_DEFAULT_DPC_PROMOTE_TIME_US;
policies->max_num_work_items = POLICY_MAX_NUM_WI;
for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
for (i = 0; i < GUC_MAX_ENGINE_CLASSES; i++) {
policy = &policies->policy[p][i];
guc_policy_init(policy);
}
}
policies->is_valid = 1;
}
static void guc_ct_pool_entries_init(struct guc_ct_pool_entry *pool, u32 num)
{
memset(pool, 0, num * sizeof(*pool));
}
/*
* The first 80 dwords of the register state context, containing the
* execlists and ppgtt registers.
*/
#define LR_HW_CONTEXT_SIZE (80 * sizeof(u32))
/* The ads obj includes the struct itself and buffers passed to GuC */
struct __guc_ads_blob {
struct guc_ads ads;
struct guc_policies policies;
struct guc_mmio_reg_state reg_state;
struct guc_gt_system_info system_info;
struct guc_clients_info clients_info;
struct guc_ct_pool_entry ct_pool[GUC_CT_POOL_SIZE];
u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
} __packed;
static void __guc_ads_init(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct __guc_ads_blob *blob = guc->ads_blob;
const u32 skipped_size = LRC_PPHWSP_SZ * PAGE_SIZE + LR_HW_CONTEXT_SIZE;
u32 base;
u8 engine_class;
/* GuC scheduling policies */
guc_policies_init(&blob->policies);
/*
* GuC expects a per-engine-class context image and size
* (minus hwsp and ring context). The context image will be
* used to reinitialize engines after a reset. It must exist
* and be pinned in the GGTT, so that the address won't change after
* we have told GuC where to find it. The context size will be used
* to validate that the LRC base + size fall within allowed GGTT.
*/
for (engine_class = 0; engine_class <= MAX_ENGINE_CLASS; ++engine_class) {
if (engine_class == OTHER_CLASS)
continue;
/*
* TODO: Set context pointer to default state to allow
* GuC to re-init guilty contexts after internal reset.
*/
blob->ads.golden_context_lrca[engine_class] = 0;
blob->ads.eng_state_size[engine_class] =
intel_engine_context_size(dev_priv, engine_class) -
skipped_size;
}
/* System info */
blob->system_info.slice_enabled = hweight8(RUNTIME_INFO(dev_priv)->sseu.slice_mask);
blob->system_info.rcs_enabled = 1;
blob->system_info.bcs_enabled = 1;
blob->system_info.vdbox_enable_mask = VDBOX_MASK(dev_priv);
blob->system_info.vebox_enable_mask = VEBOX_MASK(dev_priv);
blob->system_info.vdbox_sfc_support_mask = RUNTIME_INFO(dev_priv)->vdbox_sfc_access;
base = intel_guc_ggtt_offset(guc, guc->ads_vma);
/* Clients info */
guc_ct_pool_entries_init(blob->ct_pool, ARRAY_SIZE(blob->ct_pool));
blob->clients_info.clients_num = 1;
blob->clients_info.ct_pool_addr = base + ptr_offset(blob, ct_pool);
blob->clients_info.ct_pool_count = ARRAY_SIZE(blob->ct_pool);
/* ADS */
blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
blob->ads.gt_system_info = base + ptr_offset(blob, system_info);
blob->ads.clients_info = base + ptr_offset(blob, clients_info);
i915_gem_object_flush_map(guc->ads_vma->obj);
}
/**
* intel_guc_ads_create() - allocates and initializes GuC ADS.
* @guc: intel_guc struct
*
* GuC needs memory block (Additional Data Struct), where it will store
* some data. Allocate and initialize such memory block for GuC use.
*/
int intel_guc_ads_create(struct intel_guc *guc)
{
const u32 size = PAGE_ALIGN(sizeof(struct __guc_ads_blob));
struct i915_vma *vma;
void *blob;
int ret;
GEM_BUG_ON(guc->ads_vma);
vma = intel_guc_allocate_vma(guc, size);
if (IS_ERR(vma))
return PTR_ERR(vma);
blob = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(blob)) {
ret = PTR_ERR(blob);
goto err_vma;
}
guc->ads_vma = vma;
guc->ads_blob = blob;
__guc_ads_init(guc);
return 0;
err_vma:
i915_vma_unpin_and_release(&guc->ads_vma, 0);
return ret;
}
void intel_guc_ads_destroy(struct intel_guc *guc)
{
i915_vma_unpin_and_release(&guc->ads_vma, I915_VMA_RELEASE_MAP);
}
/**
* intel_guc_ads_reset() - prepares GuC Additional Data Struct for reuse
* @guc: intel_guc struct
*
* GuC stores some data in ADS, which might be stale after a reset.
* Reinitialize whole ADS in case any part of it was corrupted during
* previous GuC run.
*/
void intel_guc_ads_reset(struct intel_guc *guc)
{
if (!guc->ads_vma)
return;
__guc_ads_init(guc);
}