mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
ec744270c9
Common pattern of handling deferred probe can be simplified with dev_err_probe(). Less code and also it prints the error value. Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org> Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
954 lines
25 KiB
C
954 lines
25 KiB
C
/*
|
|
* Battery driver for CPCAP PMIC
|
|
*
|
|
* Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
|
|
*
|
|
* Some parts of the code based on earlie Motorola mapphone Linux kernel
|
|
* drivers:
|
|
*
|
|
* Copyright (C) 2009-2010 Motorola, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/power_supply.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/regmap.h>
|
|
|
|
#include <linux/iio/consumer.h>
|
|
#include <linux/iio/types.h>
|
|
#include <linux/mfd/motorola-cpcap.h>
|
|
|
|
/*
|
|
* Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
|
|
* map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
|
|
* to enable BATTDETEN, LOBAT and EOL features. We currently use
|
|
* LOBAT interrupts instead of EOL.
|
|
*/
|
|
#define CPCAP_REG_BPEOL_BIT_EOL9 BIT(9) /* Set for EOL irq */
|
|
#define CPCAP_REG_BPEOL_BIT_EOL8 BIT(8) /* Set for EOL irq */
|
|
#define CPCAP_REG_BPEOL_BIT_UNKNOWN7 BIT(7)
|
|
#define CPCAP_REG_BPEOL_BIT_UNKNOWN6 BIT(6)
|
|
#define CPCAP_REG_BPEOL_BIT_UNKNOWN5 BIT(5)
|
|
#define CPCAP_REG_BPEOL_BIT_EOL_MULTI BIT(4) /* Set for multiple EOL irqs */
|
|
#define CPCAP_REG_BPEOL_BIT_UNKNOWN3 BIT(3)
|
|
#define CPCAP_REG_BPEOL_BIT_UNKNOWN2 BIT(2)
|
|
#define CPCAP_REG_BPEOL_BIT_BATTDETEN BIT(1) /* Enable battery detect */
|
|
#define CPCAP_REG_BPEOL_BIT_EOLSEL BIT(0) /* BPDET = 0, EOL = 1 */
|
|
|
|
/*
|
|
* Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
|
|
* coulomb counter registers rather than the mc13892 registers. Both twl6030
|
|
* and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
|
|
* sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
|
|
* the coulomb counter like cpcap does. So for now, we use the twl6030 style
|
|
* naming for the registers.
|
|
*/
|
|
#define CPCAP_REG_CCC1_ACTIVE_MODE1 BIT(4) /* Update rate */
|
|
#define CPCAP_REG_CCC1_ACTIVE_MODE0 BIT(3) /* Update rate */
|
|
#define CPCAP_REG_CCC1_AUTOCLEAR BIT(2) /* Resets sample registers */
|
|
#define CPCAP_REG_CCC1_CAL_EN BIT(1) /* Clears after write in 1s */
|
|
#define CPCAP_REG_CCC1_PAUSE BIT(0) /* Stop counters, allow write */
|
|
#define CPCAP_REG_CCC1_RESET_MASK (CPCAP_REG_CCC1_AUTOCLEAR | \
|
|
CPCAP_REG_CCC1_CAL_EN)
|
|
|
|
#define CPCAP_REG_CCCC2_RATE1 BIT(5)
|
|
#define CPCAP_REG_CCCC2_RATE0 BIT(4)
|
|
#define CPCAP_REG_CCCC2_ENABLE BIT(3)
|
|
|
|
#define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS 250
|
|
|
|
enum {
|
|
CPCAP_BATTERY_IIO_BATTDET,
|
|
CPCAP_BATTERY_IIO_VOLTAGE,
|
|
CPCAP_BATTERY_IIO_CHRG_CURRENT,
|
|
CPCAP_BATTERY_IIO_BATT_CURRENT,
|
|
CPCAP_BATTERY_IIO_NR,
|
|
};
|
|
|
|
enum cpcap_battery_irq_action {
|
|
CPCAP_BATTERY_IRQ_ACTION_NONE,
|
|
CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
|
|
CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
|
|
CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
|
|
};
|
|
|
|
struct cpcap_interrupt_desc {
|
|
const char *name;
|
|
struct list_head node;
|
|
int irq;
|
|
enum cpcap_battery_irq_action action;
|
|
};
|
|
|
|
struct cpcap_battery_config {
|
|
int cd_factor;
|
|
struct power_supply_info info;
|
|
struct power_supply_battery_info bat;
|
|
};
|
|
|
|
struct cpcap_coulomb_counter_data {
|
|
s32 sample; /* 24 or 32 bits */
|
|
s32 accumulator;
|
|
s16 offset; /* 9 bits */
|
|
s16 integrator; /* 13 or 16 bits */
|
|
};
|
|
|
|
enum cpcap_battery_state {
|
|
CPCAP_BATTERY_STATE_PREVIOUS,
|
|
CPCAP_BATTERY_STATE_LATEST,
|
|
CPCAP_BATTERY_STATE_NR,
|
|
};
|
|
|
|
struct cpcap_battery_state_data {
|
|
int voltage;
|
|
int current_ua;
|
|
int counter_uah;
|
|
int temperature;
|
|
ktime_t time;
|
|
struct cpcap_coulomb_counter_data cc;
|
|
};
|
|
|
|
struct cpcap_battery_ddata {
|
|
struct device *dev;
|
|
struct regmap *reg;
|
|
struct list_head irq_list;
|
|
struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
|
|
struct power_supply *psy;
|
|
struct cpcap_battery_config config;
|
|
struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
|
|
u32 cc_lsb; /* μAms per LSB */
|
|
atomic_t active;
|
|
int status;
|
|
u16 vendor;
|
|
};
|
|
|
|
#define CPCAP_NO_BATTERY -400
|
|
|
|
static struct cpcap_battery_state_data *
|
|
cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
|
|
enum cpcap_battery_state state)
|
|
{
|
|
if (state >= CPCAP_BATTERY_STATE_NR)
|
|
return NULL;
|
|
|
|
return &ddata->state[state];
|
|
}
|
|
|
|
static struct cpcap_battery_state_data *
|
|
cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
|
|
}
|
|
|
|
static struct cpcap_battery_state_data *
|
|
cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
|
|
}
|
|
|
|
static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
|
|
int *value)
|
|
{
|
|
struct iio_channel *channel;
|
|
int error;
|
|
|
|
channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
|
|
error = iio_read_channel_processed(channel, value);
|
|
if (error < 0) {
|
|
dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
|
|
*value = CPCAP_NO_BATTERY;
|
|
|
|
return error;
|
|
}
|
|
|
|
*value /= 100;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
struct iio_channel *channel;
|
|
int error, value = 0;
|
|
|
|
channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
|
|
error = iio_read_channel_processed(channel, &value);
|
|
if (error < 0) {
|
|
dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return value * 1000;
|
|
}
|
|
|
|
static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
struct iio_channel *channel;
|
|
int error, value = 0;
|
|
|
|
channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
|
|
error = iio_read_channel_processed(channel, &value);
|
|
if (error < 0) {
|
|
dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return value * 1000;
|
|
}
|
|
|
|
/**
|
|
* cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
|
|
* @ddata: device driver data
|
|
* @sample: coulomb counter sample value
|
|
* @accumulator: coulomb counter integrator value
|
|
* @offset: coulomb counter offset value
|
|
* @divider: conversion divider
|
|
*
|
|
* Note that cc_lsb and cc_dur values are from Motorola Linux kernel
|
|
* function data_get_avg_curr_ua() and seem to be based on measured test
|
|
* results. It also has the following comment:
|
|
*
|
|
* Adjustment factors are applied here as a temp solution per the test
|
|
* results. Need to work out a formal solution for this adjustment.
|
|
*
|
|
* A coulomb counter for similar hardware seems to be documented in
|
|
* "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
|
|
* "10 Calculating Accumulated Current". We however follow what the
|
|
* Motorola mapphone Linux kernel is doing as there may be either a
|
|
* TI or ST coulomb counter in the PMIC.
|
|
*/
|
|
static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
|
|
s32 sample, s32 accumulator,
|
|
s16 offset, u32 divider)
|
|
{
|
|
s64 acc;
|
|
|
|
if (!divider)
|
|
return 0;
|
|
|
|
acc = accumulator;
|
|
acc -= (s64)sample * offset;
|
|
acc *= ddata->cc_lsb;
|
|
acc *= -1;
|
|
acc = div_s64(acc, divider);
|
|
|
|
return acc;
|
|
}
|
|
|
|
/* 3600000μAms = 1μAh */
|
|
static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
|
|
s32 sample, s32 accumulator,
|
|
s16 offset)
|
|
{
|
|
return cpcap_battery_cc_raw_div(ddata, sample,
|
|
accumulator, offset,
|
|
3600000);
|
|
}
|
|
|
|
static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
|
|
s32 sample, s32 accumulator,
|
|
s16 offset)
|
|
{
|
|
return cpcap_battery_cc_raw_div(ddata, sample,
|
|
accumulator, offset,
|
|
sample *
|
|
CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
|
|
}
|
|
|
|
/**
|
|
* cpcap_battery_read_accumulated - reads cpcap coulomb counter
|
|
* @ddata: device driver data
|
|
* @ccd: coulomb counter values
|
|
*
|
|
* Based on Motorola mapphone kernel function data_read_regs().
|
|
* Looking at the registers, the coulomb counter seems similar to
|
|
* the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
|
|
* (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
|
|
*
|
|
* Note that swca095a.pdf instructs to stop the coulomb counter
|
|
* before reading to avoid values changing. Motorola mapphone
|
|
* Linux kernel does not do it, so let's assume they've verified
|
|
* the data produced is correct.
|
|
*/
|
|
static int
|
|
cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
|
|
struct cpcap_coulomb_counter_data *ccd)
|
|
{
|
|
u16 buf[7]; /* CPCAP_REG_CCS1 to CCI */
|
|
int error;
|
|
|
|
ccd->sample = 0;
|
|
ccd->accumulator = 0;
|
|
ccd->offset = 0;
|
|
ccd->integrator = 0;
|
|
|
|
/* Read coulomb counter register range */
|
|
error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
|
|
buf, ARRAY_SIZE(buf));
|
|
if (error)
|
|
return 0;
|
|
|
|
/* Sample value CPCAP_REG_CCS1 & 2 */
|
|
ccd->sample = (buf[1] & 0x0fff) << 16;
|
|
ccd->sample |= buf[0];
|
|
if (ddata->vendor == CPCAP_VENDOR_TI)
|
|
ccd->sample = sign_extend32(24, ccd->sample);
|
|
|
|
/* Accumulator value CPCAP_REG_CCA1 & 2 */
|
|
ccd->accumulator = ((s16)buf[3]) << 16;
|
|
ccd->accumulator |= buf[2];
|
|
|
|
/*
|
|
* Coulomb counter calibration offset is CPCAP_REG_CCM,
|
|
* REG_CCO seems unused
|
|
*/
|
|
ccd->offset = buf[4];
|
|
ccd->offset = sign_extend32(ccd->offset, 9);
|
|
|
|
/* Integrator register CPCAP_REG_CCI */
|
|
if (ddata->vendor == CPCAP_VENDOR_TI)
|
|
ccd->integrator = sign_extend32(buf[6], 13);
|
|
else
|
|
ccd->integrator = (s16)buf[6];
|
|
|
|
return cpcap_battery_cc_to_uah(ddata,
|
|
ccd->sample,
|
|
ccd->accumulator,
|
|
ccd->offset);
|
|
}
|
|
|
|
/**
|
|
* cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
|
|
* @ddata: cpcap battery driver device data
|
|
*/
|
|
static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
int value, acc, error;
|
|
s32 sample;
|
|
s16 offset;
|
|
|
|
/* Coulomb counter integrator */
|
|
error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
|
|
if (error)
|
|
return error;
|
|
|
|
if (ddata->vendor == CPCAP_VENDOR_TI) {
|
|
acc = sign_extend32(value, 13);
|
|
sample = 1;
|
|
} else {
|
|
acc = (s16)value;
|
|
sample = 4;
|
|
}
|
|
|
|
/* Coulomb counter calibration offset */
|
|
error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
|
|
if (error)
|
|
return error;
|
|
|
|
offset = sign_extend32(value, 9);
|
|
|
|
return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
|
|
}
|
|
|
|
static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
|
|
|
|
if (state->voltage >=
|
|
(ddata->config.bat.constant_charge_voltage_max_uv - 18000))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
struct cpcap_battery_state_data state, *latest, *previous;
|
|
ktime_t now;
|
|
int error;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
now = ktime_get();
|
|
|
|
latest = cpcap_battery_latest(ddata);
|
|
if (latest) {
|
|
s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
|
|
|
|
if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
|
|
return delta_ms;
|
|
}
|
|
|
|
state.time = now;
|
|
state.voltage = cpcap_battery_get_voltage(ddata);
|
|
state.current_ua = cpcap_battery_get_current(ddata);
|
|
state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
|
|
|
|
error = cpcap_charger_battery_temperature(ddata,
|
|
&state.temperature);
|
|
if (error)
|
|
return error;
|
|
|
|
previous = cpcap_battery_previous(ddata);
|
|
memcpy(previous, latest, sizeof(*previous));
|
|
memcpy(latest, &state, sizeof(*latest));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum power_supply_property cpcap_battery_props[] = {
|
|
POWER_SUPPLY_PROP_STATUS,
|
|
POWER_SUPPLY_PROP_PRESENT,
|
|
POWER_SUPPLY_PROP_TECHNOLOGY,
|
|
POWER_SUPPLY_PROP_VOLTAGE_NOW,
|
|
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
|
|
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
|
|
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
|
|
POWER_SUPPLY_PROP_CURRENT_AVG,
|
|
POWER_SUPPLY_PROP_CURRENT_NOW,
|
|
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
|
|
POWER_SUPPLY_PROP_CHARGE_COUNTER,
|
|
POWER_SUPPLY_PROP_POWER_NOW,
|
|
POWER_SUPPLY_PROP_POWER_AVG,
|
|
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
|
|
POWER_SUPPLY_PROP_SCOPE,
|
|
POWER_SUPPLY_PROP_TEMP,
|
|
};
|
|
|
|
static int cpcap_battery_get_property(struct power_supply *psy,
|
|
enum power_supply_property psp,
|
|
union power_supply_propval *val)
|
|
{
|
|
struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
|
|
struct cpcap_battery_state_data *latest, *previous;
|
|
u32 sample;
|
|
s32 accumulator;
|
|
int cached;
|
|
s64 tmp;
|
|
|
|
cached = cpcap_battery_update_status(ddata);
|
|
if (cached < 0)
|
|
return cached;
|
|
|
|
latest = cpcap_battery_latest(ddata);
|
|
previous = cpcap_battery_previous(ddata);
|
|
|
|
switch (psp) {
|
|
case POWER_SUPPLY_PROP_PRESENT:
|
|
if (latest->temperature > CPCAP_NO_BATTERY)
|
|
val->intval = 1;
|
|
else
|
|
val->intval = 0;
|
|
break;
|
|
case POWER_SUPPLY_PROP_STATUS:
|
|
if (cpcap_battery_full(ddata)) {
|
|
val->intval = POWER_SUPPLY_STATUS_FULL;
|
|
break;
|
|
}
|
|
if (cpcap_battery_cc_get_avg_current(ddata) < 0)
|
|
val->intval = POWER_SUPPLY_STATUS_CHARGING;
|
|
else
|
|
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
|
|
break;
|
|
case POWER_SUPPLY_PROP_TECHNOLOGY:
|
|
val->intval = ddata->config.info.technology;
|
|
break;
|
|
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
|
|
val->intval = cpcap_battery_get_voltage(ddata);
|
|
break;
|
|
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
|
|
val->intval = ddata->config.info.voltage_max_design;
|
|
break;
|
|
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
|
|
val->intval = ddata->config.info.voltage_min_design;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
|
|
val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CURRENT_AVG:
|
|
sample = latest->cc.sample - previous->cc.sample;
|
|
if (!sample) {
|
|
val->intval = cpcap_battery_cc_get_avg_current(ddata);
|
|
break;
|
|
}
|
|
accumulator = latest->cc.accumulator - previous->cc.accumulator;
|
|
val->intval = cpcap_battery_cc_to_ua(ddata, sample,
|
|
accumulator,
|
|
latest->cc.offset);
|
|
break;
|
|
case POWER_SUPPLY_PROP_CURRENT_NOW:
|
|
val->intval = latest->current_ua;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
|
|
val->intval = latest->counter_uah;
|
|
break;
|
|
case POWER_SUPPLY_PROP_POWER_NOW:
|
|
tmp = (latest->voltage / 10000) * latest->current_ua;
|
|
val->intval = div64_s64(tmp, 100);
|
|
break;
|
|
case POWER_SUPPLY_PROP_POWER_AVG:
|
|
sample = latest->cc.sample - previous->cc.sample;
|
|
if (!sample) {
|
|
tmp = cpcap_battery_cc_get_avg_current(ddata);
|
|
tmp *= (latest->voltage / 10000);
|
|
val->intval = div64_s64(tmp, 100);
|
|
break;
|
|
}
|
|
accumulator = latest->cc.accumulator - previous->cc.accumulator;
|
|
tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
|
|
latest->cc.offset);
|
|
tmp *= ((latest->voltage + previous->voltage) / 20000);
|
|
val->intval = div64_s64(tmp, 100);
|
|
break;
|
|
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
|
|
if (cpcap_battery_full(ddata))
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
|
|
else if (latest->voltage >= 3750000)
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
|
|
else if (latest->voltage >= 3300000)
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
|
|
else if (latest->voltage > 3100000)
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
|
|
else if (latest->voltage <= 3100000)
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
|
|
else
|
|
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
|
|
break;
|
|
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
|
|
val->intval = ddata->config.info.charge_full_design;
|
|
break;
|
|
case POWER_SUPPLY_PROP_SCOPE:
|
|
val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
|
|
break;
|
|
case POWER_SUPPLY_PROP_TEMP:
|
|
val->intval = latest->temperature;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
|
|
int const_charge_voltage)
|
|
{
|
|
union power_supply_propval prop;
|
|
union power_supply_propval val;
|
|
struct power_supply *charger;
|
|
int error;
|
|
|
|
charger = power_supply_get_by_name("usb");
|
|
if (!charger)
|
|
return -ENODEV;
|
|
|
|
error = power_supply_get_property(charger,
|
|
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
|
|
&prop);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Allow charger const voltage lower than battery const voltage */
|
|
if (const_charge_voltage > prop.intval)
|
|
return 0;
|
|
|
|
val.intval = const_charge_voltage;
|
|
|
|
return power_supply_set_property(charger,
|
|
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
|
|
&val);
|
|
}
|
|
|
|
static int cpcap_battery_set_property(struct power_supply *psy,
|
|
enum power_supply_property psp,
|
|
const union power_supply_propval *val)
|
|
{
|
|
struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
|
|
|
|
switch (psp) {
|
|
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
|
|
if (val->intval < ddata->config.info.voltage_min_design)
|
|
return -EINVAL;
|
|
if (val->intval > ddata->config.info.voltage_max_design)
|
|
return -EINVAL;
|
|
|
|
ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
|
|
|
|
return cpcap_battery_update_charger(ddata, val->intval);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpcap_battery_property_is_writeable(struct power_supply *psy,
|
|
enum power_supply_property psp)
|
|
{
|
|
switch (psp) {
|
|
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
|
|
{
|
|
struct cpcap_battery_ddata *ddata = data;
|
|
struct cpcap_battery_state_data *latest;
|
|
struct cpcap_interrupt_desc *d;
|
|
|
|
if (!atomic_read(&ddata->active))
|
|
return IRQ_NONE;
|
|
|
|
list_for_each_entry(d, &ddata->irq_list, node) {
|
|
if (irq == d->irq)
|
|
break;
|
|
}
|
|
|
|
if (!d)
|
|
return IRQ_NONE;
|
|
|
|
latest = cpcap_battery_latest(ddata);
|
|
|
|
switch (d->action) {
|
|
case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
|
|
dev_info(ddata->dev, "Coulomb counter calibration done\n");
|
|
break;
|
|
case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
|
|
if (latest->current_ua >= 0)
|
|
dev_warn(ddata->dev, "Battery low at %imV!\n",
|
|
latest->voltage / 1000);
|
|
break;
|
|
case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
|
|
if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
|
|
dev_emerg(ddata->dev,
|
|
"Battery empty at %imV, powering off\n",
|
|
latest->voltage / 1000);
|
|
orderly_poweroff(true);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
power_supply_changed(ddata->psy);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int cpcap_battery_init_irq(struct platform_device *pdev,
|
|
struct cpcap_battery_ddata *ddata,
|
|
const char *name)
|
|
{
|
|
struct cpcap_interrupt_desc *d;
|
|
int irq, error;
|
|
|
|
irq = platform_get_irq_byname(pdev, name);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
error = devm_request_threaded_irq(ddata->dev, irq, NULL,
|
|
cpcap_battery_irq_thread,
|
|
IRQF_SHARED,
|
|
name, ddata);
|
|
if (error) {
|
|
dev_err(ddata->dev, "could not get irq %s: %i\n",
|
|
name, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
|
|
if (!d)
|
|
return -ENOMEM;
|
|
|
|
d->name = name;
|
|
d->irq = irq;
|
|
|
|
if (!strncmp(name, "cccal", 5))
|
|
d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
|
|
else if (!strncmp(name, "lowbph", 6))
|
|
d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
|
|
else if (!strncmp(name, "lowbpl", 6))
|
|
d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
|
|
|
|
list_add(&d->node, &ddata->irq_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpcap_battery_init_interrupts(struct platform_device *pdev,
|
|
struct cpcap_battery_ddata *ddata)
|
|
{
|
|
static const char * const cpcap_battery_irqs[] = {
|
|
"eol", "lowbph", "lowbpl",
|
|
"chrgcurr1", "battdetb"
|
|
};
|
|
int i, error;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
|
|
error = cpcap_battery_init_irq(pdev, ddata,
|
|
cpcap_battery_irqs[i]);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Enable calibration interrupt if already available in dts */
|
|
cpcap_battery_init_irq(pdev, ddata, "cccal");
|
|
|
|
/* Enable low battery interrupts for 3.3V high and 3.1V low */
|
|
error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
|
|
0xffff,
|
|
CPCAP_REG_BPEOL_BIT_BATTDETEN);
|
|
if (error)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
const char * const names[CPCAP_BATTERY_IIO_NR] = {
|
|
"battdetb", "battp", "chg_isense", "batti",
|
|
};
|
|
int error, i;
|
|
|
|
for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
|
|
ddata->channels[i] = devm_iio_channel_get(ddata->dev,
|
|
names[i]);
|
|
if (IS_ERR(ddata->channels[i])) {
|
|
error = PTR_ERR(ddata->channels[i]);
|
|
goto out_err;
|
|
}
|
|
|
|
if (!ddata->channels[i]->indio_dev) {
|
|
error = -ENXIO;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
return dev_err_probe(ddata->dev, error,
|
|
"could not initialize VBUS or ID IIO\n");
|
|
}
|
|
|
|
/* Calibrate coulomb counter */
|
|
static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
|
|
{
|
|
int error, ccc1, value;
|
|
unsigned long timeout;
|
|
|
|
error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
|
|
if (error)
|
|
return error;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(6000);
|
|
|
|
/* Start calibration */
|
|
error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
|
|
0xffff,
|
|
CPCAP_REG_CCC1_CAL_EN);
|
|
if (error)
|
|
goto restore;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
|
|
if (error)
|
|
goto restore;
|
|
|
|
if (!(value & CPCAP_REG_CCC1_CAL_EN))
|
|
break;
|
|
|
|
error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
|
|
if (error)
|
|
goto restore;
|
|
|
|
msleep(300);
|
|
}
|
|
|
|
/* Read calibration offset from CCM */
|
|
error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
|
|
if (error)
|
|
goto restore;
|
|
|
|
dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
|
|
|
|
restore:
|
|
if (error)
|
|
dev_err(ddata->dev, "%s: error %i\n", __func__, error);
|
|
|
|
error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
|
|
0xffff, ccc1);
|
|
if (error)
|
|
dev_err(ddata->dev, "%s: restore error %i\n",
|
|
__func__, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Based on the values from Motorola mapphone Linux kernel. In the
|
|
* the Motorola mapphone Linux kernel tree the value for pm_cd_factor
|
|
* is passed to the kernel via device tree. If it turns out to be
|
|
* something device specific we can consider that too later.
|
|
*
|
|
* And looking at the battery full and shutdown values for the stock
|
|
* kernel on droid 4, full is 4351000 and software initiates shutdown
|
|
* at 3078000. The device will die around 2743000.
|
|
*/
|
|
static const struct cpcap_battery_config cpcap_battery_default_data = {
|
|
.cd_factor = 0x3cc,
|
|
.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
|
|
.info.voltage_max_design = 4351000,
|
|
.info.voltage_min_design = 3100000,
|
|
.info.charge_full_design = 1740000,
|
|
.bat.constant_charge_voltage_max_uv = 4200000,
|
|
};
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id cpcap_battery_id_table[] = {
|
|
{
|
|
.compatible = "motorola,cpcap-battery",
|
|
.data = &cpcap_battery_default_data,
|
|
},
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
|
|
#endif
|
|
|
|
static int cpcap_battery_probe(struct platform_device *pdev)
|
|
{
|
|
struct power_supply_desc *psy_desc;
|
|
struct cpcap_battery_ddata *ddata;
|
|
const struct of_device_id *match;
|
|
struct power_supply_config psy_cfg = {};
|
|
int error;
|
|
|
|
match = of_match_device(of_match_ptr(cpcap_battery_id_table),
|
|
&pdev->dev);
|
|
if (!match)
|
|
return -EINVAL;
|
|
|
|
if (!match->data) {
|
|
dev_err(&pdev->dev, "no configuration data found\n");
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
|
|
if (!ddata)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&ddata->irq_list);
|
|
ddata->dev = &pdev->dev;
|
|
memcpy(&ddata->config, match->data, sizeof(ddata->config));
|
|
|
|
ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
|
|
if (!ddata->reg)
|
|
return -ENODEV;
|
|
|
|
error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
|
|
if (error)
|
|
return error;
|
|
|
|
switch (ddata->vendor) {
|
|
case CPCAP_VENDOR_ST:
|
|
ddata->cc_lsb = 95374; /* μAms per LSB */
|
|
break;
|
|
case CPCAP_VENDOR_TI:
|
|
ddata->cc_lsb = 91501; /* μAms per LSB */
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
|
|
|
|
platform_set_drvdata(pdev, ddata);
|
|
|
|
error = cpcap_battery_init_interrupts(pdev, ddata);
|
|
if (error)
|
|
return error;
|
|
|
|
error = cpcap_battery_init_iio(ddata);
|
|
if (error)
|
|
return error;
|
|
|
|
psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
|
|
if (!psy_desc)
|
|
return -ENOMEM;
|
|
|
|
psy_desc->name = "battery";
|
|
psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
|
|
psy_desc->properties = cpcap_battery_props;
|
|
psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props);
|
|
psy_desc->get_property = cpcap_battery_get_property;
|
|
psy_desc->set_property = cpcap_battery_set_property;
|
|
psy_desc->property_is_writeable = cpcap_battery_property_is_writeable;
|
|
|
|
psy_cfg.of_node = pdev->dev.of_node;
|
|
psy_cfg.drv_data = ddata;
|
|
|
|
ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
|
|
&psy_cfg);
|
|
error = PTR_ERR_OR_ZERO(ddata->psy);
|
|
if (error) {
|
|
dev_err(ddata->dev, "failed to register power supply\n");
|
|
return error;
|
|
}
|
|
|
|
atomic_set(&ddata->active, 1);
|
|
|
|
error = cpcap_battery_calibrate(ddata);
|
|
if (error)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpcap_battery_remove(struct platform_device *pdev)
|
|
{
|
|
struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
|
|
int error;
|
|
|
|
atomic_set(&ddata->active, 0);
|
|
error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
|
|
0xffff, 0);
|
|
if (error)
|
|
dev_err(&pdev->dev, "could not disable: %i\n", error);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver cpcap_battery_driver = {
|
|
.driver = {
|
|
.name = "cpcap_battery",
|
|
.of_match_table = of_match_ptr(cpcap_battery_id_table),
|
|
},
|
|
.probe = cpcap_battery_probe,
|
|
.remove = cpcap_battery_remove,
|
|
};
|
|
module_platform_driver(cpcap_battery_driver);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
|
|
MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
|