mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 22:39:20 +07:00
5756f2e8da
The Denali IP have several registers to specify how many clock cycles should be waited between falling/rising signals. You can improve the NAND access performance by programming these registers with optimized values. Because struct nand_sdr_timings represents the device requirement in pico seconds, denali_setup_data_interface() computes the register values by dividing the device timings with the clock period. Marek Vasut reported this driver in the latest kernel does not work on his SOCFPGA board. (The on-board NAND chip is mode 5) The suspicious parameter is acc_clks, so this commit relaxes it. The Denali NAND Flash Memory Controller User's Guide describes this register as follows: acc_clks signifies the number of bus interface clk_x clock cycles, controller should wait from read enable going low to sending out a strobe of clk_x for capturing of incoming data. Currently, acc_clks is calculated only based on tREA, the delay on the chip side. This does not include additional delays that come from the data path on the PCB and in the SoC, load capacity of the pins, etc. This relatively becomes a big factor on faster timing modes like mode 5. Before supporting the ->setup_data_interface() hook (e.g. Linux 4.12), the Denali driver hacks acc_clks in a couple of ways [1] [2] to support the timing mode 5. We would not go back to the hard-coded acc_clks, but we need to include this factor into the delay somehow. Let's say the amount of the additional delay is 10000 pico sec. In the new calculation, acc_clks is determined by timings->tREA_max + data_setup_on_host. Also, prolong the RE# low period to make sure the data hold is met. Finally, re-center the data latch timing for extra safety. [1] https://github.com/torvalds/linux/blob/v4.12/drivers/mtd/nand/denali.c#L276 [2] https://github.com/torvalds/linux/blob/v4.12/drivers/mtd/nand/denali.c#L282 Reported-by: Marek Vasut <marex@denx.de> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Tested-by: Marek Vasut <marex@denx.de> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20200317071821.9916-1-yamada.masahiro@socionext.com |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.