linux_dsm_epyc7002/drivers/mmc/core/queue.c
Adrian Hunter c077dc5e06 mmc: block: Fix request completion in the CQE timeout path
First, it should be noted that the CQE timeout (60 seconds) is substantial
so a CQE request that times out is really stuck, and the race between
timeout and completion is extremely unlikely. Nevertheless this patch
fixes an issue with it.

Commit ad73d6fead ("mmc: complete requests from ->timeout")
preserved the existing functionality, to complete the request.
However that had only been necessary because the block layer
timeout handler had been marking the request to prevent it from being
completed normally. That restriction was removed at the same time, the
result being that a request that has gone will have been completed anyway.
That is, the completion was unnecessary.

At the time, the unnecessary completion was harmless because the block
layer would ignore it, although that changed in kernel v5.0.

Note for stable, this patch will not apply cleanly without patch "mmc:
core: Fix recursive locking issue in CQE recovery path"

Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Fixes: ad73d6fead ("mmc: complete requests from ->timeout")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200508062227.23144-1-adrian.hunter@intel.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2020-05-08 10:15:51 +02:00

539 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2003 Russell King, All Rights Reserved.
* Copyright 2006-2007 Pierre Ossman
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/backing-dev.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include "queue.h"
#include "block.h"
#include "core.h"
#include "card.h"
#include "host.h"
#define MMC_DMA_MAP_MERGE_SEGMENTS 512
static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq)
{
/* Allow only 1 DCMD at a time */
return mq->in_flight[MMC_ISSUE_DCMD];
}
void mmc_cqe_check_busy(struct mmc_queue *mq)
{
if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq))
mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY;
mq->cqe_busy &= ~MMC_CQE_QUEUE_FULL;
}
static inline bool mmc_cqe_can_dcmd(struct mmc_host *host)
{
return host->caps2 & MMC_CAP2_CQE_DCMD;
}
static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host,
struct request *req)
{
switch (req_op(req)) {
case REQ_OP_DRV_IN:
case REQ_OP_DRV_OUT:
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
return MMC_ISSUE_SYNC;
case REQ_OP_FLUSH:
return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC;
default:
return MMC_ISSUE_ASYNC;
}
}
enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req)
{
struct mmc_host *host = mq->card->host;
if (mq->use_cqe && !host->hsq_enabled)
return mmc_cqe_issue_type(host, req);
if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE)
return MMC_ISSUE_ASYNC;
return MMC_ISSUE_SYNC;
}
static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq)
{
if (!mq->recovery_needed) {
mq->recovery_needed = true;
schedule_work(&mq->recovery_work);
}
}
void mmc_cqe_recovery_notifier(struct mmc_request *mrq)
{
struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
brq.mrq);
struct request *req = mmc_queue_req_to_req(mqrq);
struct request_queue *q = req->q;
struct mmc_queue *mq = q->queuedata;
unsigned long flags;
spin_lock_irqsave(&mq->lock, flags);
__mmc_cqe_recovery_notifier(mq);
spin_unlock_irqrestore(&mq->lock, flags);
}
static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req)
{
struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
struct mmc_request *mrq = &mqrq->brq.mrq;
struct mmc_queue *mq = req->q->queuedata;
struct mmc_host *host = mq->card->host;
enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
bool recovery_needed = false;
switch (issue_type) {
case MMC_ISSUE_ASYNC:
case MMC_ISSUE_DCMD:
if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) {
if (recovery_needed)
mmc_cqe_recovery_notifier(mrq);
return BLK_EH_RESET_TIMER;
}
/* The request has gone already */
return BLK_EH_DONE;
default:
/* Timeout is handled by mmc core */
return BLK_EH_RESET_TIMER;
}
}
static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req,
bool reserved)
{
struct request_queue *q = req->q;
struct mmc_queue *mq = q->queuedata;
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
unsigned long flags;
bool ignore_tout;
spin_lock_irqsave(&mq->lock, flags);
ignore_tout = mq->recovery_needed || !mq->use_cqe || host->hsq_enabled;
spin_unlock_irqrestore(&mq->lock, flags);
return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req);
}
static void mmc_mq_recovery_handler(struct work_struct *work)
{
struct mmc_queue *mq = container_of(work, struct mmc_queue,
recovery_work);
struct request_queue *q = mq->queue;
struct mmc_host *host = mq->card->host;
mmc_get_card(mq->card, &mq->ctx);
mq->in_recovery = true;
if (mq->use_cqe && !host->hsq_enabled)
mmc_blk_cqe_recovery(mq);
else
mmc_blk_mq_recovery(mq);
mq->in_recovery = false;
spin_lock_irq(&mq->lock);
mq->recovery_needed = false;
spin_unlock_irq(&mq->lock);
if (host->hsq_enabled)
host->cqe_ops->cqe_recovery_finish(host);
mmc_put_card(mq->card, &mq->ctx);
blk_mq_run_hw_queues(q, true);
}
static struct scatterlist *mmc_alloc_sg(int sg_len, gfp_t gfp)
{
struct scatterlist *sg;
sg = kmalloc_array(sg_len, sizeof(*sg), gfp);
if (sg)
sg_init_table(sg, sg_len);
return sg;
}
static void mmc_queue_setup_discard(struct request_queue *q,
struct mmc_card *card)
{
unsigned max_discard;
max_discard = mmc_calc_max_discard(card);
if (!max_discard)
return;
blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
blk_queue_max_discard_sectors(q, max_discard);
q->limits.discard_granularity = card->pref_erase << 9;
/* granularity must not be greater than max. discard */
if (card->pref_erase > max_discard)
q->limits.discard_granularity = 0;
if (mmc_can_secure_erase_trim(card))
blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
}
static unsigned int mmc_get_max_segments(struct mmc_host *host)
{
return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS :
host->max_segs;
}
/**
* mmc_init_request() - initialize the MMC-specific per-request data
* @q: the request queue
* @req: the request
* @gfp: memory allocation policy
*/
static int __mmc_init_request(struct mmc_queue *mq, struct request *req,
gfp_t gfp)
{
struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), gfp);
if (!mq_rq->sg)
return -ENOMEM;
return 0;
}
static void mmc_exit_request(struct request_queue *q, struct request *req)
{
struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
kfree(mq_rq->sg);
mq_rq->sg = NULL;
}
static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req,
unsigned int hctx_idx, unsigned int numa_node)
{
return __mmc_init_request(set->driver_data, req, GFP_KERNEL);
}
static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req,
unsigned int hctx_idx)
{
struct mmc_queue *mq = set->driver_data;
mmc_exit_request(mq->queue, req);
}
static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct request *req = bd->rq;
struct request_queue *q = req->q;
struct mmc_queue *mq = q->queuedata;
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
enum mmc_issue_type issue_type;
enum mmc_issued issued;
bool get_card, cqe_retune_ok;
int ret;
if (mmc_card_removed(mq->card)) {
req->rq_flags |= RQF_QUIET;
return BLK_STS_IOERR;
}
issue_type = mmc_issue_type(mq, req);
spin_lock_irq(&mq->lock);
if (mq->recovery_needed || mq->busy) {
spin_unlock_irq(&mq->lock);
return BLK_STS_RESOURCE;
}
switch (issue_type) {
case MMC_ISSUE_DCMD:
if (mmc_cqe_dcmd_busy(mq)) {
mq->cqe_busy |= MMC_CQE_DCMD_BUSY;
spin_unlock_irq(&mq->lock);
return BLK_STS_RESOURCE;
}
break;
case MMC_ISSUE_ASYNC:
/*
* For MMC host software queue, we only allow 2 requests in
* flight to avoid a long latency.
*/
if (host->hsq_enabled && mq->in_flight[issue_type] > 2) {
spin_unlock_irq(&mq->lock);
return BLK_STS_RESOURCE;
}
break;
default:
/*
* Timeouts are handled by mmc core, and we don't have a host
* API to abort requests, so we can't handle the timeout anyway.
* However, when the timeout happens, blk_mq_complete_request()
* no longer works (to stop the request disappearing under us).
* To avoid racing with that, set a large timeout.
*/
req->timeout = 600 * HZ;
break;
}
/* Parallel dispatch of requests is not supported at the moment */
mq->busy = true;
mq->in_flight[issue_type] += 1;
get_card = (mmc_tot_in_flight(mq) == 1);
cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1);
spin_unlock_irq(&mq->lock);
if (!(req->rq_flags & RQF_DONTPREP)) {
req_to_mmc_queue_req(req)->retries = 0;
req->rq_flags |= RQF_DONTPREP;
}
if (get_card)
mmc_get_card(card, &mq->ctx);
if (mq->use_cqe) {
host->retune_now = host->need_retune && cqe_retune_ok &&
!host->hold_retune;
}
blk_mq_start_request(req);
issued = mmc_blk_mq_issue_rq(mq, req);
switch (issued) {
case MMC_REQ_BUSY:
ret = BLK_STS_RESOURCE;
break;
case MMC_REQ_FAILED_TO_START:
ret = BLK_STS_IOERR;
break;
default:
ret = BLK_STS_OK;
break;
}
if (issued != MMC_REQ_STARTED) {
bool put_card = false;
spin_lock_irq(&mq->lock);
mq->in_flight[issue_type] -= 1;
if (mmc_tot_in_flight(mq) == 0)
put_card = true;
mq->busy = false;
spin_unlock_irq(&mq->lock);
if (put_card)
mmc_put_card(card, &mq->ctx);
} else {
WRITE_ONCE(mq->busy, false);
}
return ret;
}
static const struct blk_mq_ops mmc_mq_ops = {
.queue_rq = mmc_mq_queue_rq,
.init_request = mmc_mq_init_request,
.exit_request = mmc_mq_exit_request,
.complete = mmc_blk_mq_complete,
.timeout = mmc_mq_timed_out,
};
static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card)
{
struct mmc_host *host = card->host;
unsigned block_size = 512;
blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue);
if (mmc_can_erase(card))
mmc_queue_setup_discard(mq->queue, card);
if (!mmc_dev(host)->dma_mask || !*mmc_dev(host)->dma_mask)
blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH);
blk_queue_max_hw_sectors(mq->queue,
min(host->max_blk_count, host->max_req_size / 512));
if (host->can_dma_map_merge)
WARN(!blk_queue_can_use_dma_map_merging(mq->queue,
mmc_dev(host)),
"merging was advertised but not possible");
blk_queue_max_segments(mq->queue, mmc_get_max_segments(host));
if (mmc_card_mmc(card))
block_size = card->ext_csd.data_sector_size;
blk_queue_logical_block_size(mq->queue, block_size);
/*
* After blk_queue_can_use_dma_map_merging() was called with succeed,
* since it calls blk_queue_virt_boundary(), the mmc should not call
* both blk_queue_max_segment_size().
*/
if (!host->can_dma_map_merge)
blk_queue_max_segment_size(mq->queue,
round_down(host->max_seg_size, block_size));
dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue));
INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler);
INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work);
mutex_init(&mq->complete_lock);
init_waitqueue_head(&mq->wait);
}
static inline bool mmc_merge_capable(struct mmc_host *host)
{
return host->caps2 & MMC_CAP2_MERGE_CAPABLE;
}
/* Set queue depth to get a reasonable value for q->nr_requests */
#define MMC_QUEUE_DEPTH 64
/**
* mmc_init_queue - initialise a queue structure.
* @mq: mmc queue
* @card: mmc card to attach this queue
*
* Initialise a MMC card request queue.
*/
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card)
{
struct mmc_host *host = card->host;
int ret;
mq->card = card;
mq->use_cqe = host->cqe_enabled;
spin_lock_init(&mq->lock);
memset(&mq->tag_set, 0, sizeof(mq->tag_set));
mq->tag_set.ops = &mmc_mq_ops;
/*
* The queue depth for CQE must match the hardware because the request
* tag is used to index the hardware queue.
*/
if (mq->use_cqe && !host->hsq_enabled)
mq->tag_set.queue_depth =
min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth);
else
mq->tag_set.queue_depth = MMC_QUEUE_DEPTH;
mq->tag_set.numa_node = NUMA_NO_NODE;
mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
mq->tag_set.nr_hw_queues = 1;
mq->tag_set.cmd_size = sizeof(struct mmc_queue_req);
mq->tag_set.driver_data = mq;
/*
* Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops,
* the host->can_dma_map_merge should be set before to get max_segs
* from mmc_get_max_segments().
*/
if (mmc_merge_capable(host) &&
host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS &&
dma_get_merge_boundary(mmc_dev(host)))
host->can_dma_map_merge = 1;
else
host->can_dma_map_merge = 0;
ret = blk_mq_alloc_tag_set(&mq->tag_set);
if (ret)
return ret;
mq->queue = blk_mq_init_queue(&mq->tag_set);
if (IS_ERR(mq->queue)) {
ret = PTR_ERR(mq->queue);
goto free_tag_set;
}
if (mmc_host_is_spi(host) && host->use_spi_crc)
mq->queue->backing_dev_info->capabilities |=
BDI_CAP_STABLE_WRITES;
mq->queue->queuedata = mq;
blk_queue_rq_timeout(mq->queue, 60 * HZ);
mmc_setup_queue(mq, card);
return 0;
free_tag_set:
blk_mq_free_tag_set(&mq->tag_set);
return ret;
}
void mmc_queue_suspend(struct mmc_queue *mq)
{
blk_mq_quiesce_queue(mq->queue);
/*
* The host remains claimed while there are outstanding requests, so
* simply claiming and releasing here ensures there are none.
*/
mmc_claim_host(mq->card->host);
mmc_release_host(mq->card->host);
}
void mmc_queue_resume(struct mmc_queue *mq)
{
blk_mq_unquiesce_queue(mq->queue);
}
void mmc_cleanup_queue(struct mmc_queue *mq)
{
struct request_queue *q = mq->queue;
/*
* The legacy code handled the possibility of being suspended,
* so do that here too.
*/
if (blk_queue_quiesced(q))
blk_mq_unquiesce_queue(q);
blk_cleanup_queue(q);
blk_mq_free_tag_set(&mq->tag_set);
/*
* A request can be completed before the next request, potentially
* leaving a complete_work with nothing to do. Such a work item might
* still be queued at this point. Flush it.
*/
flush_work(&mq->complete_work);
mq->card = NULL;
}
/*
* Prepare the sg list(s) to be handed of to the host driver
*/
unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
{
struct request *req = mmc_queue_req_to_req(mqrq);
return blk_rq_map_sg(mq->queue, req, mqrq->sg);
}