linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/ahb.c
Ashok Raj Nagarajan 7f622593cc ath10k: fix reading sram contents for QCA4019
With QCA4019 platform, SRAM address can be accessed directly from host but
currently, we are assuming sram addresses cannot be accessed directly and
hence we convert the addresses.

While there, clean up growing hw checks during conversion of target CPU
address to CE address. Now we have function pointer pertaining to different
chips.

Signed-off-by: Ashok Raj Nagarajan <arnagara@qti.qualcomm.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2017-02-07 10:57:49 +02:00

899 lines
22 KiB
C

/*
* Copyright (c) 2016 Qualcomm Atheros, Inc. All rights reserved.
* Copyright (c) 2015 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include "core.h"
#include "debug.h"
#include "pci.h"
#include "ahb.h"
static const struct of_device_id ath10k_ahb_of_match[] = {
{ .compatible = "qcom,ipq4019-wifi",
.data = (void *)ATH10K_HW_QCA4019
},
{ }
};
MODULE_DEVICE_TABLE(of, ath10k_ahb_of_match);
#define QCA4019_SRAM_ADDR 0x000C0000
#define QCA4019_SRAM_LEN 0x00040000 /* 256 kb */
static inline struct ath10k_ahb *ath10k_ahb_priv(struct ath10k *ar)
{
return &((struct ath10k_pci *)ar->drv_priv)->ahb[0];
}
static void ath10k_ahb_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
iowrite32(value, ar_ahb->mem + offset);
}
static u32 ath10k_ahb_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
return ioread32(ar_ahb->mem + offset);
}
static u32 ath10k_ahb_gcc_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
return ioread32(ar_ahb->gcc_mem + offset);
}
static void ath10k_ahb_tcsr_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
iowrite32(value, ar_ahb->tcsr_mem + offset);
}
static u32 ath10k_ahb_tcsr_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
return ioread32(ar_ahb->tcsr_mem + offset);
}
static u32 ath10k_ahb_soc_read32(struct ath10k *ar, u32 addr)
{
return ath10k_ahb_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
}
static int ath10k_ahb_get_num_banks(struct ath10k *ar)
{
if (ar->hw_rev == ATH10K_HW_QCA4019)
return 1;
ath10k_warn(ar, "unknown number of banks, assuming 1\n");
return 1;
}
static int ath10k_ahb_clock_init(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
dev = &ar_ahb->pdev->dev;
ar_ahb->cmd_clk = devm_clk_get(dev, "wifi_wcss_cmd");
if (IS_ERR_OR_NULL(ar_ahb->cmd_clk)) {
ath10k_err(ar, "failed to get cmd clk: %ld\n",
PTR_ERR(ar_ahb->cmd_clk));
return ar_ahb->cmd_clk ? PTR_ERR(ar_ahb->cmd_clk) : -ENODEV;
}
ar_ahb->ref_clk = devm_clk_get(dev, "wifi_wcss_ref");
if (IS_ERR_OR_NULL(ar_ahb->ref_clk)) {
ath10k_err(ar, "failed to get ref clk: %ld\n",
PTR_ERR(ar_ahb->ref_clk));
return ar_ahb->ref_clk ? PTR_ERR(ar_ahb->ref_clk) : -ENODEV;
}
ar_ahb->rtc_clk = devm_clk_get(dev, "wifi_wcss_rtc");
if (IS_ERR_OR_NULL(ar_ahb->rtc_clk)) {
ath10k_err(ar, "failed to get rtc clk: %ld\n",
PTR_ERR(ar_ahb->rtc_clk));
return ar_ahb->rtc_clk ? PTR_ERR(ar_ahb->rtc_clk) : -ENODEV;
}
return 0;
}
static void ath10k_ahb_clock_deinit(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
ar_ahb->cmd_clk = NULL;
ar_ahb->ref_clk = NULL;
ar_ahb->rtc_clk = NULL;
}
static int ath10k_ahb_clock_enable(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
int ret;
dev = &ar_ahb->pdev->dev;
if (IS_ERR_OR_NULL(ar_ahb->cmd_clk) ||
IS_ERR_OR_NULL(ar_ahb->ref_clk) ||
IS_ERR_OR_NULL(ar_ahb->rtc_clk)) {
ath10k_err(ar, "clock(s) is/are not initialized\n");
ret = -EIO;
goto out;
}
ret = clk_prepare_enable(ar_ahb->cmd_clk);
if (ret) {
ath10k_err(ar, "failed to enable cmd clk: %d\n", ret);
goto out;
}
ret = clk_prepare_enable(ar_ahb->ref_clk);
if (ret) {
ath10k_err(ar, "failed to enable ref clk: %d\n", ret);
goto err_cmd_clk_disable;
}
ret = clk_prepare_enable(ar_ahb->rtc_clk);
if (ret) {
ath10k_err(ar, "failed to enable rtc clk: %d\n", ret);
goto err_ref_clk_disable;
}
return 0;
err_ref_clk_disable:
clk_disable_unprepare(ar_ahb->ref_clk);
err_cmd_clk_disable:
clk_disable_unprepare(ar_ahb->cmd_clk);
out:
return ret;
}
static void ath10k_ahb_clock_disable(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
if (!IS_ERR_OR_NULL(ar_ahb->cmd_clk))
clk_disable_unprepare(ar_ahb->cmd_clk);
if (!IS_ERR_OR_NULL(ar_ahb->ref_clk))
clk_disable_unprepare(ar_ahb->ref_clk);
if (!IS_ERR_OR_NULL(ar_ahb->rtc_clk))
clk_disable_unprepare(ar_ahb->rtc_clk);
}
static int ath10k_ahb_rst_ctrl_init(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
dev = &ar_ahb->pdev->dev;
ar_ahb->core_cold_rst = devm_reset_control_get(dev, "wifi_core_cold");
if (IS_ERR(ar_ahb->core_cold_rst)) {
ath10k_err(ar, "failed to get core cold rst ctrl: %ld\n",
PTR_ERR(ar_ahb->core_cold_rst));
return PTR_ERR(ar_ahb->core_cold_rst);
}
ar_ahb->radio_cold_rst = devm_reset_control_get(dev, "wifi_radio_cold");
if (IS_ERR(ar_ahb->radio_cold_rst)) {
ath10k_err(ar, "failed to get radio cold rst ctrl: %ld\n",
PTR_ERR(ar_ahb->radio_cold_rst));
return PTR_ERR(ar_ahb->radio_cold_rst);
}
ar_ahb->radio_warm_rst = devm_reset_control_get(dev, "wifi_radio_warm");
if (IS_ERR(ar_ahb->radio_warm_rst)) {
ath10k_err(ar, "failed to get radio warm rst ctrl: %ld\n",
PTR_ERR(ar_ahb->radio_warm_rst));
return PTR_ERR(ar_ahb->radio_warm_rst);
}
ar_ahb->radio_srif_rst = devm_reset_control_get(dev, "wifi_radio_srif");
if (IS_ERR(ar_ahb->radio_srif_rst)) {
ath10k_err(ar, "failed to get radio srif rst ctrl: %ld\n",
PTR_ERR(ar_ahb->radio_srif_rst));
return PTR_ERR(ar_ahb->radio_srif_rst);
}
ar_ahb->cpu_init_rst = devm_reset_control_get(dev, "wifi_cpu_init");
if (IS_ERR(ar_ahb->cpu_init_rst)) {
ath10k_err(ar, "failed to get cpu init rst ctrl: %ld\n",
PTR_ERR(ar_ahb->cpu_init_rst));
return PTR_ERR(ar_ahb->cpu_init_rst);
}
return 0;
}
static void ath10k_ahb_rst_ctrl_deinit(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
ar_ahb->core_cold_rst = NULL;
ar_ahb->radio_cold_rst = NULL;
ar_ahb->radio_warm_rst = NULL;
ar_ahb->radio_srif_rst = NULL;
ar_ahb->cpu_init_rst = NULL;
}
static int ath10k_ahb_release_reset(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
int ret;
if (IS_ERR_OR_NULL(ar_ahb->radio_cold_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_warm_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_srif_rst) ||
IS_ERR_OR_NULL(ar_ahb->cpu_init_rst)) {
ath10k_err(ar, "rst ctrl(s) is/are not initialized\n");
return -EINVAL;
}
ret = reset_control_deassert(ar_ahb->radio_cold_rst);
if (ret) {
ath10k_err(ar, "failed to deassert radio cold rst: %d\n", ret);
return ret;
}
ret = reset_control_deassert(ar_ahb->radio_warm_rst);
if (ret) {
ath10k_err(ar, "failed to deassert radio warm rst: %d\n", ret);
return ret;
}
ret = reset_control_deassert(ar_ahb->radio_srif_rst);
if (ret) {
ath10k_err(ar, "failed to deassert radio srif rst: %d\n", ret);
return ret;
}
ret = reset_control_deassert(ar_ahb->cpu_init_rst);
if (ret) {
ath10k_err(ar, "failed to deassert cpu init rst: %d\n", ret);
return ret;
}
return 0;
}
static void ath10k_ahb_halt_axi_bus(struct ath10k *ar, u32 haltreq_reg,
u32 haltack_reg)
{
unsigned long timeout;
u32 val;
/* Issue halt axi bus request */
val = ath10k_ahb_tcsr_read32(ar, haltreq_reg);
val |= AHB_AXI_BUS_HALT_REQ;
ath10k_ahb_tcsr_write32(ar, haltreq_reg, val);
/* Wait for axi bus halted ack */
timeout = jiffies + msecs_to_jiffies(ATH10K_AHB_AXI_BUS_HALT_TIMEOUT);
do {
val = ath10k_ahb_tcsr_read32(ar, haltack_reg);
if (val & AHB_AXI_BUS_HALT_ACK)
break;
mdelay(1);
} while (time_before(jiffies, timeout));
if (!(val & AHB_AXI_BUS_HALT_ACK)) {
ath10k_err(ar, "failed to halt axi bus: %d\n", val);
return;
}
ath10k_dbg(ar, ATH10K_DBG_AHB, "axi bus halted\n");
}
static void ath10k_ahb_halt_chip(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
u32 core_id, glb_cfg_reg, haltreq_reg, haltack_reg;
u32 val;
int ret;
if (IS_ERR_OR_NULL(ar_ahb->core_cold_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_cold_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_warm_rst) ||
IS_ERR_OR_NULL(ar_ahb->radio_srif_rst) ||
IS_ERR_OR_NULL(ar_ahb->cpu_init_rst)) {
ath10k_err(ar, "rst ctrl(s) is/are not initialized\n");
return;
}
core_id = ath10k_ahb_read32(ar, ATH10K_AHB_WLAN_CORE_ID_REG);
switch (core_id) {
case 0:
glb_cfg_reg = ATH10K_AHB_TCSR_WIFI0_GLB_CFG;
haltreq_reg = ATH10K_AHB_TCSR_WCSS0_HALTREQ;
haltack_reg = ATH10K_AHB_TCSR_WCSS0_HALTACK;
break;
case 1:
glb_cfg_reg = ATH10K_AHB_TCSR_WIFI1_GLB_CFG;
haltreq_reg = ATH10K_AHB_TCSR_WCSS1_HALTREQ;
haltack_reg = ATH10K_AHB_TCSR_WCSS1_HALTACK;
break;
default:
ath10k_err(ar, "invalid core id %d found, skipping reset sequence\n",
core_id);
return;
}
ath10k_ahb_halt_axi_bus(ar, haltreq_reg, haltack_reg);
val = ath10k_ahb_tcsr_read32(ar, glb_cfg_reg);
val |= TCSR_WIFIX_GLB_CFG_DISABLE_CORE_CLK;
ath10k_ahb_tcsr_write32(ar, glb_cfg_reg, val);
ret = reset_control_assert(ar_ahb->core_cold_rst);
if (ret)
ath10k_err(ar, "failed to assert core cold rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->radio_cold_rst);
if (ret)
ath10k_err(ar, "failed to assert radio cold rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->radio_warm_rst);
if (ret)
ath10k_err(ar, "failed to assert radio warm rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->radio_srif_rst);
if (ret)
ath10k_err(ar, "failed to assert radio srif rst: %d\n", ret);
msleep(1);
ret = reset_control_assert(ar_ahb->cpu_init_rst);
if (ret)
ath10k_err(ar, "failed to assert cpu init rst: %d\n", ret);
msleep(10);
/* Clear halt req and core clock disable req before
* deasserting wifi core reset.
*/
val = ath10k_ahb_tcsr_read32(ar, haltreq_reg);
val &= ~AHB_AXI_BUS_HALT_REQ;
ath10k_ahb_tcsr_write32(ar, haltreq_reg, val);
val = ath10k_ahb_tcsr_read32(ar, glb_cfg_reg);
val &= ~TCSR_WIFIX_GLB_CFG_DISABLE_CORE_CLK;
ath10k_ahb_tcsr_write32(ar, glb_cfg_reg, val);
ret = reset_control_deassert(ar_ahb->core_cold_rst);
if (ret)
ath10k_err(ar, "failed to deassert core cold rst: %d\n", ret);
ath10k_dbg(ar, ATH10K_DBG_AHB, "core %d reset done\n", core_id);
}
static irqreturn_t ath10k_ahb_interrupt_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
if (!ath10k_pci_irq_pending(ar))
return IRQ_NONE;
ath10k_pci_disable_and_clear_legacy_irq(ar);
ath10k_pci_irq_msi_fw_mask(ar);
napi_schedule(&ar->napi);
return IRQ_HANDLED;
}
static int ath10k_ahb_request_irq_legacy(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
int ret;
ret = request_irq(ar_ahb->irq,
ath10k_ahb_interrupt_handler,
IRQF_SHARED, "ath10k_ahb", ar);
if (ret) {
ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
ar_ahb->irq, ret);
return ret;
}
ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
return 0;
}
static void ath10k_ahb_release_irq_legacy(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
free_irq(ar_ahb->irq, ar);
}
static void ath10k_ahb_irq_disable(struct ath10k *ar)
{
ath10k_ce_disable_interrupts(ar);
ath10k_pci_disable_and_clear_legacy_irq(ar);
}
static int ath10k_ahb_resource_init(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct platform_device *pdev;
struct device *dev;
struct resource *res;
int ret;
pdev = ar_ahb->pdev;
dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ath10k_err(ar, "failed to get memory resource\n");
ret = -ENXIO;
goto out;
}
ar_ahb->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ar_ahb->mem)) {
ath10k_err(ar, "mem ioremap error\n");
ret = PTR_ERR(ar_ahb->mem);
goto out;
}
ar_ahb->mem_len = resource_size(res);
ar_ahb->gcc_mem = ioremap_nocache(ATH10K_GCC_REG_BASE,
ATH10K_GCC_REG_SIZE);
if (!ar_ahb->gcc_mem) {
ath10k_err(ar, "gcc mem ioremap error\n");
ret = -ENOMEM;
goto err_mem_unmap;
}
ar_ahb->tcsr_mem = ioremap_nocache(ATH10K_TCSR_REG_BASE,
ATH10K_TCSR_REG_SIZE);
if (!ar_ahb->tcsr_mem) {
ath10k_err(ar, "tcsr mem ioremap error\n");
ret = -ENOMEM;
goto err_gcc_mem_unmap;
}
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set 32-bit dma mask: %d\n", ret);
goto err_tcsr_mem_unmap;
}
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set 32-bit consistent dma: %d\n",
ret);
goto err_tcsr_mem_unmap;
}
ret = ath10k_ahb_clock_init(ar);
if (ret)
goto err_tcsr_mem_unmap;
ret = ath10k_ahb_rst_ctrl_init(ar);
if (ret)
goto err_clock_deinit;
ar_ahb->irq = platform_get_irq_byname(pdev, "legacy");
if (ar_ahb->irq < 0) {
ath10k_err(ar, "failed to get irq number: %d\n", ar_ahb->irq);
ret = ar_ahb->irq;
goto err_clock_deinit;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "irq: %d\n", ar_ahb->irq);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "mem: 0x%pK mem_len: %lu gcc mem: 0x%pK tcsr_mem: 0x%pK\n",
ar_ahb->mem, ar_ahb->mem_len,
ar_ahb->gcc_mem, ar_ahb->tcsr_mem);
return 0;
err_clock_deinit:
ath10k_ahb_clock_deinit(ar);
err_tcsr_mem_unmap:
iounmap(ar_ahb->tcsr_mem);
err_gcc_mem_unmap:
ar_ahb->tcsr_mem = NULL;
iounmap(ar_ahb->gcc_mem);
err_mem_unmap:
ar_ahb->gcc_mem = NULL;
devm_iounmap(&pdev->dev, ar_ahb->mem);
out:
ar_ahb->mem = NULL;
return ret;
}
static void ath10k_ahb_resource_deinit(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
struct device *dev;
dev = &ar_ahb->pdev->dev;
if (ar_ahb->mem)
devm_iounmap(dev, ar_ahb->mem);
if (ar_ahb->gcc_mem)
iounmap(ar_ahb->gcc_mem);
if (ar_ahb->tcsr_mem)
iounmap(ar_ahb->tcsr_mem);
ar_ahb->mem = NULL;
ar_ahb->gcc_mem = NULL;
ar_ahb->tcsr_mem = NULL;
ath10k_ahb_clock_deinit(ar);
ath10k_ahb_rst_ctrl_deinit(ar);
}
static int ath10k_ahb_prepare_device(struct ath10k *ar)
{
u32 val;
int ret;
ret = ath10k_ahb_clock_enable(ar);
if (ret) {
ath10k_err(ar, "failed to enable clocks\n");
return ret;
}
/* Clock for the target is supplied from outside of target (ie,
* external clock module controlled by the host). Target needs
* to know what frequency target cpu is configured which is needed
* for target internal use. Read target cpu frequency info from
* gcc register and write into target's scratch register where
* target expects this information.
*/
val = ath10k_ahb_gcc_read32(ar, ATH10K_AHB_GCC_FEPLL_PLL_DIV);
ath10k_ahb_write32(ar, ATH10K_AHB_WIFI_SCRATCH_5_REG, val);
ret = ath10k_ahb_release_reset(ar);
if (ret)
goto err_clk_disable;
ath10k_ahb_irq_disable(ar);
ath10k_ahb_write32(ar, FW_INDICATOR_ADDRESS, FW_IND_HOST_READY);
ret = ath10k_pci_wait_for_target_init(ar);
if (ret)
goto err_halt_chip;
return 0;
err_halt_chip:
ath10k_ahb_halt_chip(ar);
err_clk_disable:
ath10k_ahb_clock_disable(ar);
return ret;
}
static int ath10k_ahb_chip_reset(struct ath10k *ar)
{
int ret;
ath10k_ahb_halt_chip(ar);
ath10k_ahb_clock_disable(ar);
ret = ath10k_ahb_prepare_device(ar);
if (ret)
return ret;
return 0;
}
static int ath10k_ahb_wake_target_cpu(struct ath10k *ar)
{
u32 addr, val;
addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
val = ath10k_ahb_read32(ar, addr);
val |= ATH10K_AHB_CORE_CTRL_CPU_INTR_MASK;
ath10k_ahb_write32(ar, addr, val);
return 0;
}
static int ath10k_ahb_hif_start(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ahb hif start\n");
ath10k_ce_enable_interrupts(ar);
ath10k_pci_enable_legacy_irq(ar);
ath10k_pci_rx_post(ar);
return 0;
}
static void ath10k_ahb_hif_stop(struct ath10k *ar)
{
struct ath10k_ahb *ar_ahb = ath10k_ahb_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ahb hif stop\n");
ath10k_ahb_irq_disable(ar);
synchronize_irq(ar_ahb->irq);
ath10k_pci_flush(ar);
napi_synchronize(&ar->napi);
napi_disable(&ar->napi);
}
static int ath10k_ahb_hif_power_up(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ahb hif power up\n");
ret = ath10k_ahb_chip_reset(ar);
if (ret) {
ath10k_err(ar, "failed to reset chip: %d\n", ret);
goto out;
}
ret = ath10k_pci_init_pipes(ar);
if (ret) {
ath10k_err(ar, "failed to initialize CE: %d\n", ret);
goto out;
}
ret = ath10k_pci_init_config(ar);
if (ret) {
ath10k_err(ar, "failed to setup init config: %d\n", ret);
goto err_ce_deinit;
}
ret = ath10k_ahb_wake_target_cpu(ar);
if (ret) {
ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
goto err_ce_deinit;
}
napi_enable(&ar->napi);
return 0;
err_ce_deinit:
ath10k_pci_ce_deinit(ar);
out:
return ret;
}
static u32 ath10k_ahb_qca4019_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
u32 val = 0, region = addr & 0xfffff;
val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
if (region >= QCA4019_SRAM_ADDR && region <=
(QCA4019_SRAM_ADDR + QCA4019_SRAM_LEN)) {
/* SRAM contents for QCA4019 can be directly accessed and
* no conversions are required
*/
val |= region;
} else {
val |= 0x100000 | region;
}
return val;
}
static const struct ath10k_hif_ops ath10k_ahb_hif_ops = {
.tx_sg = ath10k_pci_hif_tx_sg,
.diag_read = ath10k_pci_hif_diag_read,
.diag_write = ath10k_pci_diag_write_mem,
.exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
.start = ath10k_ahb_hif_start,
.stop = ath10k_ahb_hif_stop,
.map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
.get_default_pipe = ath10k_pci_hif_get_default_pipe,
.send_complete_check = ath10k_pci_hif_send_complete_check,
.get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
.power_up = ath10k_ahb_hif_power_up,
.power_down = ath10k_pci_hif_power_down,
.read32 = ath10k_ahb_read32,
.write32 = ath10k_ahb_write32,
};
static const struct ath10k_bus_ops ath10k_ahb_bus_ops = {
.read32 = ath10k_ahb_read32,
.write32 = ath10k_ahb_write32,
.get_num_banks = ath10k_ahb_get_num_banks,
};
static int ath10k_ahb_probe(struct platform_device *pdev)
{
struct ath10k *ar;
struct ath10k_ahb *ar_ahb;
struct ath10k_pci *ar_pci;
const struct of_device_id *of_id;
enum ath10k_hw_rev hw_rev;
size_t size;
int ret;
u32 chip_id;
of_id = of_match_device(ath10k_ahb_of_match, &pdev->dev);
if (!of_id) {
dev_err(&pdev->dev, "failed to find matching device tree id\n");
return -EINVAL;
}
hw_rev = (enum ath10k_hw_rev)of_id->data;
size = sizeof(*ar_pci) + sizeof(*ar_ahb);
ar = ath10k_core_create(size, &pdev->dev, ATH10K_BUS_AHB,
hw_rev, &ath10k_ahb_hif_ops);
if (!ar) {
dev_err(&pdev->dev, "failed to allocate core\n");
return -ENOMEM;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "ahb probe\n");
ar_pci = ath10k_pci_priv(ar);
ar_ahb = ath10k_ahb_priv(ar);
ar_ahb->pdev = pdev;
platform_set_drvdata(pdev, ar);
ret = ath10k_ahb_resource_init(ar);
if (ret)
goto err_core_destroy;
ar->dev_id = 0;
ar_pci->mem = ar_ahb->mem;
ar_pci->mem_len = ar_ahb->mem_len;
ar_pci->ar = ar;
ar_pci->bus_ops = &ath10k_ahb_bus_ops;
ar_pci->targ_cpu_to_ce_addr = ath10k_ahb_qca4019_targ_cpu_to_ce_addr;
ret = ath10k_pci_setup_resource(ar);
if (ret) {
ath10k_err(ar, "failed to setup resource: %d\n", ret);
goto err_resource_deinit;
}
ath10k_pci_init_napi(ar);
ret = ath10k_ahb_request_irq_legacy(ar);
if (ret)
goto err_free_pipes;
ret = ath10k_ahb_prepare_device(ar);
if (ret)
goto err_free_irq;
ath10k_pci_ce_deinit(ar);
chip_id = ath10k_ahb_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
if (chip_id == 0xffffffff) {
ath10k_err(ar, "failed to get chip id\n");
ret = -ENODEV;
goto err_halt_device;
}
ret = ath10k_core_register(ar, chip_id);
if (ret) {
ath10k_err(ar, "failed to register driver core: %d\n", ret);
goto err_halt_device;
}
return 0;
err_halt_device:
ath10k_ahb_halt_chip(ar);
ath10k_ahb_clock_disable(ar);
err_free_irq:
ath10k_ahb_release_irq_legacy(ar);
err_free_pipes:
ath10k_pci_free_pipes(ar);
err_resource_deinit:
ath10k_ahb_resource_deinit(ar);
err_core_destroy:
ath10k_core_destroy(ar);
platform_set_drvdata(pdev, NULL);
return ret;
}
static int ath10k_ahb_remove(struct platform_device *pdev)
{
struct ath10k *ar = platform_get_drvdata(pdev);
struct ath10k_ahb *ar_ahb;
if (!ar)
return -EINVAL;
ar_ahb = ath10k_ahb_priv(ar);
if (!ar_ahb)
return -EINVAL;
ath10k_dbg(ar, ATH10K_DBG_AHB, "ahb remove\n");
ath10k_core_unregister(ar);
ath10k_ahb_irq_disable(ar);
ath10k_ahb_release_irq_legacy(ar);
ath10k_pci_release_resource(ar);
ath10k_ahb_halt_chip(ar);
ath10k_ahb_clock_disable(ar);
ath10k_ahb_resource_deinit(ar);
ath10k_core_destroy(ar);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver ath10k_ahb_driver = {
.driver = {
.name = "ath10k_ahb",
.of_match_table = ath10k_ahb_of_match,
},
.probe = ath10k_ahb_probe,
.remove = ath10k_ahb_remove,
};
int ath10k_ahb_init(void)
{
int ret;
ret = platform_driver_register(&ath10k_ahb_driver);
if (ret)
printk(KERN_ERR "failed to register ath10k ahb driver: %d\n",
ret);
return ret;
}
void ath10k_ahb_exit(void)
{
platform_driver_unregister(&ath10k_ahb_driver);
}