mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 10:50:12 +07:00
70f4f93523
We have a generic read_persistent_clock64 interface now, and can change the ia64 implementation to provide that instead of read_persistent_clock. The main point of this is to avoid the use of struct timespec in the global efi.h, which would cause build errors as soon as we want to build a kernel without 'struct timespec' defined on 32-bit architectures. Aside from this, we get a little closer to removing the __weak read_persistent_clock() definition, which relies on converting all architectures to provide read_persistent_clock64 instead. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Tony Luck <tony.luck@intel.com>
428 lines
11 KiB
C
428 lines
11 KiB
C
/*
|
|
* linux/arch/ia64/kernel/time.c
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* David Mosberger <davidm@hpl.hp.com>
|
|
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
|
|
* Copyright (C) 1999-2000 VA Linux Systems
|
|
* Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/time.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <asm/machvec.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include "fsyscall_gtod_data.h"
|
|
|
|
static cycle_t itc_get_cycles(struct clocksource *cs);
|
|
|
|
struct fsyscall_gtod_data_t fsyscall_gtod_data;
|
|
|
|
struct itc_jitter_data_t itc_jitter_data;
|
|
|
|
volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
|
|
|
|
#ifdef CONFIG_IA64_DEBUG_IRQ
|
|
|
|
unsigned long last_cli_ip;
|
|
EXPORT_SYMBOL(last_cli_ip);
|
|
|
|
#endif
|
|
|
|
static struct clocksource clocksource_itc = {
|
|
.name = "itc",
|
|
.rating = 350,
|
|
.read = itc_get_cycles,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
static struct clocksource *itc_clocksource;
|
|
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
|
|
#include <linux/kernel_stat.h>
|
|
|
|
extern cputime_t cycle_to_cputime(u64 cyc);
|
|
|
|
void vtime_account_user(struct task_struct *tsk)
|
|
{
|
|
cputime_t delta_utime;
|
|
struct thread_info *ti = task_thread_info(tsk);
|
|
|
|
if (ti->ac_utime) {
|
|
delta_utime = cycle_to_cputime(ti->ac_utime);
|
|
account_user_time(tsk, delta_utime, delta_utime);
|
|
ti->ac_utime = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called from the context switch with interrupts disabled, to charge all
|
|
* accumulated times to the current process, and to prepare accounting on
|
|
* the next process.
|
|
*/
|
|
void arch_vtime_task_switch(struct task_struct *prev)
|
|
{
|
|
struct thread_info *pi = task_thread_info(prev);
|
|
struct thread_info *ni = task_thread_info(current);
|
|
|
|
pi->ac_stamp = ni->ac_stamp;
|
|
ni->ac_stime = ni->ac_utime = 0;
|
|
}
|
|
|
|
/*
|
|
* Account time for a transition between system, hard irq or soft irq state.
|
|
* Note that this function is called with interrupts enabled.
|
|
*/
|
|
static cputime_t vtime_delta(struct task_struct *tsk)
|
|
{
|
|
struct thread_info *ti = task_thread_info(tsk);
|
|
cputime_t delta_stime;
|
|
__u64 now;
|
|
|
|
WARN_ON_ONCE(!irqs_disabled());
|
|
|
|
now = ia64_get_itc();
|
|
|
|
delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
|
|
ti->ac_stime = 0;
|
|
ti->ac_stamp = now;
|
|
|
|
return delta_stime;
|
|
}
|
|
|
|
void vtime_account_system(struct task_struct *tsk)
|
|
{
|
|
cputime_t delta = vtime_delta(tsk);
|
|
|
|
account_system_time(tsk, 0, delta, delta);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_account_system);
|
|
|
|
void vtime_account_idle(struct task_struct *tsk)
|
|
{
|
|
account_idle_time(vtime_delta(tsk));
|
|
}
|
|
|
|
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
|
|
|
|
static irqreturn_t
|
|
timer_interrupt (int irq, void *dev_id)
|
|
{
|
|
unsigned long new_itm;
|
|
|
|
if (cpu_is_offline(smp_processor_id())) {
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
platform_timer_interrupt(irq, dev_id);
|
|
|
|
new_itm = local_cpu_data->itm_next;
|
|
|
|
if (!time_after(ia64_get_itc(), new_itm))
|
|
printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
|
|
ia64_get_itc(), new_itm);
|
|
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
while (1) {
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
|
|
new_itm += local_cpu_data->itm_delta;
|
|
|
|
if (smp_processor_id() == time_keeper_id)
|
|
xtime_update(1);
|
|
|
|
local_cpu_data->itm_next = new_itm;
|
|
|
|
if (time_after(new_itm, ia64_get_itc()))
|
|
break;
|
|
|
|
/*
|
|
* Allow IPIs to interrupt the timer loop.
|
|
*/
|
|
local_irq_enable();
|
|
local_irq_disable();
|
|
}
|
|
|
|
do {
|
|
/*
|
|
* If we're too close to the next clock tick for
|
|
* comfort, we increase the safety margin by
|
|
* intentionally dropping the next tick(s). We do NOT
|
|
* update itm.next because that would force us to call
|
|
* xtime_update() which in turn would let our clock run
|
|
* too fast (with the potentially devastating effect
|
|
* of losing monotony of time).
|
|
*/
|
|
while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
|
|
new_itm += local_cpu_data->itm_delta;
|
|
ia64_set_itm(new_itm);
|
|
/* double check, in case we got hit by a (slow) PMI: */
|
|
} while (time_after_eq(ia64_get_itc(), new_itm));
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate access to the itm structure for SMP.
|
|
*/
|
|
void
|
|
ia64_cpu_local_tick (void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
unsigned long shift = 0, delta;
|
|
|
|
/* arrange for the cycle counter to generate a timer interrupt: */
|
|
ia64_set_itv(IA64_TIMER_VECTOR);
|
|
|
|
delta = local_cpu_data->itm_delta;
|
|
/*
|
|
* Stagger the timer tick for each CPU so they don't occur all at (almost) the
|
|
* same time:
|
|
*/
|
|
if (cpu) {
|
|
unsigned long hi = 1UL << ia64_fls(cpu);
|
|
shift = (2*(cpu - hi) + 1) * delta/hi/2;
|
|
}
|
|
local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
|
|
ia64_set_itm(local_cpu_data->itm_next);
|
|
}
|
|
|
|
static int nojitter;
|
|
|
|
static int __init nojitter_setup(char *str)
|
|
{
|
|
nojitter = 1;
|
|
printk("Jitter checking for ITC timers disabled\n");
|
|
return 1;
|
|
}
|
|
|
|
__setup("nojitter", nojitter_setup);
|
|
|
|
|
|
void ia64_init_itm(void)
|
|
{
|
|
unsigned long platform_base_freq, itc_freq;
|
|
struct pal_freq_ratio itc_ratio, proc_ratio;
|
|
long status, platform_base_drift, itc_drift;
|
|
|
|
/*
|
|
* According to SAL v2.6, we need to use a SAL call to determine the platform base
|
|
* frequency and then a PAL call to determine the frequency ratio between the ITC
|
|
* and the base frequency.
|
|
*/
|
|
status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
|
|
&platform_base_freq, &platform_base_drift);
|
|
if (status != 0) {
|
|
printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
|
|
} else {
|
|
status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
|
|
if (status != 0)
|
|
printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
|
|
}
|
|
if (status != 0) {
|
|
/* invent "random" values */
|
|
printk(KERN_ERR
|
|
"SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
|
|
platform_base_freq = 100000000;
|
|
platform_base_drift = -1; /* no drift info */
|
|
itc_ratio.num = 3;
|
|
itc_ratio.den = 1;
|
|
}
|
|
if (platform_base_freq < 40000000) {
|
|
printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
|
|
platform_base_freq);
|
|
platform_base_freq = 75000000;
|
|
platform_base_drift = -1;
|
|
}
|
|
if (!proc_ratio.den)
|
|
proc_ratio.den = 1; /* avoid division by zero */
|
|
if (!itc_ratio.den)
|
|
itc_ratio.den = 1; /* avoid division by zero */
|
|
|
|
itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
|
|
|
|
local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
|
|
printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
|
|
"ITC freq=%lu.%03luMHz", smp_processor_id(),
|
|
platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
|
|
itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
|
|
|
|
if (platform_base_drift != -1) {
|
|
itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
|
|
printk("+/-%ldppm\n", itc_drift);
|
|
} else {
|
|
itc_drift = -1;
|
|
printk("\n");
|
|
}
|
|
|
|
local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
|
|
local_cpu_data->itc_freq = itc_freq;
|
|
local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
|
|
local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
|
|
+ itc_freq/2)/itc_freq;
|
|
|
|
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
|
|
#ifdef CONFIG_SMP
|
|
/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
|
|
* Jitter compensation requires a cmpxchg which may limit
|
|
* the scalability of the syscalls for retrieving time.
|
|
* The ITC synchronization is usually successful to within a few
|
|
* ITC ticks but this is not a sure thing. If you need to improve
|
|
* timer performance in SMP situations then boot the kernel with the
|
|
* "nojitter" option. However, doing so may result in time fluctuating (maybe
|
|
* even going backward) if the ITC offsets between the individual CPUs
|
|
* are too large.
|
|
*/
|
|
if (!nojitter)
|
|
itc_jitter_data.itc_jitter = 1;
|
|
#endif
|
|
} else
|
|
/*
|
|
* ITC is drifty and we have not synchronized the ITCs in smpboot.c.
|
|
* ITC values may fluctuate significantly between processors.
|
|
* Clock should not be used for hrtimers. Mark itc as only
|
|
* useful for boot and testing.
|
|
*
|
|
* Note that jitter compensation is off! There is no point of
|
|
* synchronizing ITCs since they may be large differentials
|
|
* that change over time.
|
|
*
|
|
* The only way to fix this would be to repeatedly sync the
|
|
* ITCs. Until that time we have to avoid ITC.
|
|
*/
|
|
clocksource_itc.rating = 50;
|
|
|
|
/* avoid softlock up message when cpu is unplug and plugged again. */
|
|
touch_softlockup_watchdog();
|
|
|
|
/* Setup the CPU local timer tick */
|
|
ia64_cpu_local_tick();
|
|
|
|
if (!itc_clocksource) {
|
|
clocksource_register_hz(&clocksource_itc,
|
|
local_cpu_data->itc_freq);
|
|
itc_clocksource = &clocksource_itc;
|
|
}
|
|
}
|
|
|
|
static cycle_t itc_get_cycles(struct clocksource *cs)
|
|
{
|
|
unsigned long lcycle, now, ret;
|
|
|
|
if (!itc_jitter_data.itc_jitter)
|
|
return get_cycles();
|
|
|
|
lcycle = itc_jitter_data.itc_lastcycle;
|
|
now = get_cycles();
|
|
if (lcycle && time_after(lcycle, now))
|
|
return lcycle;
|
|
|
|
/*
|
|
* Keep track of the last timer value returned.
|
|
* In an SMP environment, you could lose out in contention of
|
|
* cmpxchg. If so, your cmpxchg returns new value which the
|
|
* winner of contention updated to. Use the new value instead.
|
|
*/
|
|
ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
|
|
if (unlikely(ret != lcycle))
|
|
return ret;
|
|
|
|
return now;
|
|
}
|
|
|
|
|
|
static struct irqaction timer_irqaction = {
|
|
.handler = timer_interrupt,
|
|
.flags = IRQF_IRQPOLL,
|
|
.name = "timer"
|
|
};
|
|
|
|
void read_persistent_clock64(struct timespec64 *ts)
|
|
{
|
|
efi_gettimeofday(ts);
|
|
}
|
|
|
|
void __init
|
|
time_init (void)
|
|
{
|
|
register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
|
|
ia64_init_itm();
|
|
}
|
|
|
|
/*
|
|
* Generic udelay assumes that if preemption is allowed and the thread
|
|
* migrates to another CPU, that the ITC values are synchronized across
|
|
* all CPUs.
|
|
*/
|
|
static void
|
|
ia64_itc_udelay (unsigned long usecs)
|
|
{
|
|
unsigned long start = ia64_get_itc();
|
|
unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
|
|
|
|
while (time_before(ia64_get_itc(), end))
|
|
cpu_relax();
|
|
}
|
|
|
|
void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
|
|
|
|
void
|
|
udelay (unsigned long usecs)
|
|
{
|
|
(*ia64_udelay)(usecs);
|
|
}
|
|
EXPORT_SYMBOL(udelay);
|
|
|
|
/* IA64 doesn't cache the timezone */
|
|
void update_vsyscall_tz(void)
|
|
{
|
|
}
|
|
|
|
void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
|
|
struct clocksource *c, u32 mult, cycle_t cycle_last)
|
|
{
|
|
write_seqcount_begin(&fsyscall_gtod_data.seq);
|
|
|
|
/* copy fsyscall clock data */
|
|
fsyscall_gtod_data.clk_mask = c->mask;
|
|
fsyscall_gtod_data.clk_mult = mult;
|
|
fsyscall_gtod_data.clk_shift = c->shift;
|
|
fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
|
|
fsyscall_gtod_data.clk_cycle_last = cycle_last;
|
|
|
|
/* copy kernel time structures */
|
|
fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
|
|
fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
|
|
fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
|
|
+ wall->tv_sec;
|
|
fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
|
|
+ wall->tv_nsec;
|
|
|
|
/* normalize */
|
|
while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
|
|
fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
|
|
fsyscall_gtod_data.monotonic_time.tv_sec++;
|
|
}
|
|
|
|
write_seqcount_end(&fsyscall_gtod_data.seq);
|
|
}
|
|
|