linux_dsm_epyc7002/fs/gfs2/bits.c
Steven Whitehouse 5c676f6d35 [GFS2] Macros removal in gfs2.h
As suggested by Pekka Enberg <penberg@cs.helsinki.fi>.

The DIV_RU macro is renamed DIV_ROUND_UP and and moved to kernel.h
The other macros are gone from gfs2.h as (although not requested
by Pekka Enberg) are a number of included header file which are now
included individually. The inode number comparison function is
now an inline function.

The DT2IF and IF2DT may be addressed in a future patch.

Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-27 17:23:27 -05:00

183 lines
4.6 KiB
C

/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License v.2.
*/
/*
* These routines are used by the resource group routines (rgrp.c)
* to keep track of block allocation. Each block is represented by two
* bits. One bit indicates whether or not the block is used. (1=used,
* 0=free) The other bit indicates whether or not the block contains a
* dinode or not. (1=dinode, 0=not-dinode) So, each byte represents
* GFS2_NBBY (i.e. 4) blocks.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/gfs2_ondisk.h>
#include <asm/semaphore.h>
#include "gfs2.h"
#include "lm_interface.h"
#include "incore.h"
#include "bits.h"
#include "util.h"
static const char valid_change[16] = {
/* current */
/* n */ 0, 1, 0, 1,
/* e */ 1, 0, 0, 0,
/* w */ 0, 0, 0, 0,
1, 0, 0, 0
};
/**
* gfs2_setbit - Set a bit in the bitmaps
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @block: the block to set
* @new_state: the new state of the block
*
*/
void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buffer,
unsigned int buflen, uint32_t block, unsigned char new_state)
{
unsigned char *byte, *end, cur_state;
unsigned int bit;
byte = buffer + (block / GFS2_NBBY);
bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
end = buffer + buflen;
gfs2_assert(rgd->rd_sbd, byte < end);
cur_state = (*byte >> bit) & GFS2_BIT_MASK;
if (valid_change[new_state * 4 + cur_state]) {
*byte ^= cur_state << bit;
*byte |= new_state << bit;
} else
gfs2_consist_rgrpd(rgd);
}
/**
* gfs2_testbit - test a bit in the bitmaps
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @block: the block to read
*
*/
unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd, unsigned char *buffer,
unsigned int buflen, uint32_t block)
{
unsigned char *byte, *end, cur_state;
unsigned int bit;
byte = buffer + (block / GFS2_NBBY);
bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
end = buffer + buflen;
gfs2_assert(rgd->rd_sbd, byte < end);
cur_state = (*byte >> bit) & GFS2_BIT_MASK;
return cur_state;
}
/**
* gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
* a block in a given allocation state.
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @goal: start search at this block's bit-pair (within @buffer)
* @old_state: GFS2_BLKST_XXX the state of the block we're looking for;
* bit 0 = alloc(1)/free(0), bit 1 = meta(1)/data(0)
*
* Scope of @goal and returned block number is only within this bitmap buffer,
* not entire rgrp or filesystem. @buffer will be offset from the actual
* beginning of a bitmap block buffer, skipping any header structures.
*
* Return: the block number (bitmap buffer scope) that was found
*/
uint32_t gfs2_bitfit(struct gfs2_rgrpd *rgd, unsigned char *buffer,
unsigned int buflen, uint32_t goal,
unsigned char old_state)
{
unsigned char *byte, *end, alloc;
uint32_t blk = goal;
unsigned int bit;
byte = buffer + (goal / GFS2_NBBY);
bit = (goal % GFS2_NBBY) * GFS2_BIT_SIZE;
end = buffer + buflen;
alloc = (old_state & 1) ? 0 : 0x55;
while (byte < end) {
if ((*byte & 0x55) == alloc) {
blk += (8 - bit) >> 1;
bit = 0;
byte++;
continue;
}
if (((*byte >> bit) & GFS2_BIT_MASK) == old_state)
return blk;
bit += GFS2_BIT_SIZE;
if (bit >= 8) {
bit = 0;
byte++;
}
blk++;
}
return BFITNOENT;
}
/**
* gfs2_bitcount - count the number of bits in a certain state
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @state: the state of the block we're looking for
*
* Returns: The number of bits
*/
uint32_t gfs2_bitcount(struct gfs2_rgrpd *rgd, unsigned char *buffer,
unsigned int buflen, unsigned char state)
{
unsigned char *byte = buffer;
unsigned char *end = buffer + buflen;
unsigned char state1 = state << 2;
unsigned char state2 = state << 4;
unsigned char state3 = state << 6;
uint32_t count = 0;
for (; byte < end; byte++) {
if (((*byte) & 0x03) == state)
count++;
if (((*byte) & 0x0C) == state1)
count++;
if (((*byte) & 0x30) == state2)
count++;
if (((*byte) & 0xC0) == state3)
count++;
}
return count;
}