mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 14:09:49 +07:00
96d4f267e4
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
728 lines
18 KiB
C
728 lines
18 KiB
C
/*
|
|
* linux/arch/arm/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1995-2009 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/random.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/vfp.h>
|
|
|
|
#include "signal.h"
|
|
|
|
extern const unsigned long sigreturn_codes[17];
|
|
|
|
static unsigned long signal_return_offset;
|
|
|
|
#ifdef CONFIG_CRUNCH
|
|
static int preserve_crunch_context(struct crunch_sigframe __user *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct crunch_sigframe *kframe;
|
|
|
|
/* the crunch context must be 64 bit aligned */
|
|
kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
kframe->magic = CRUNCH_MAGIC;
|
|
kframe->size = CRUNCH_STORAGE_SIZE;
|
|
crunch_task_copy(current_thread_info(), &kframe->storage);
|
|
return __copy_to_user(frame, kframe, sizeof(*frame));
|
|
}
|
|
|
|
static int restore_crunch_context(char __user **auxp)
|
|
{
|
|
struct crunch_sigframe __user *frame =
|
|
(struct crunch_sigframe __user *)*auxp;
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct crunch_sigframe *kframe;
|
|
|
|
/* the crunch context must be 64 bit aligned */
|
|
kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
if (__copy_from_user(kframe, frame, sizeof(*frame)))
|
|
return -1;
|
|
if (kframe->magic != CRUNCH_MAGIC ||
|
|
kframe->size != CRUNCH_STORAGE_SIZE)
|
|
return -1;
|
|
*auxp += CRUNCH_STORAGE_SIZE;
|
|
crunch_task_restore(current_thread_info(), &kframe->storage);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
|
|
static int preserve_iwmmxt_context(struct iwmmxt_sigframe __user *frame)
|
|
{
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct iwmmxt_sigframe *kframe;
|
|
int err = 0;
|
|
|
|
/* the iWMMXt context must be 64 bit aligned */
|
|
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
|
|
if (test_thread_flag(TIF_USING_IWMMXT)) {
|
|
kframe->magic = IWMMXT_MAGIC;
|
|
kframe->size = IWMMXT_STORAGE_SIZE;
|
|
iwmmxt_task_copy(current_thread_info(), &kframe->storage);
|
|
} else {
|
|
/*
|
|
* For bug-compatibility with older kernels, some space
|
|
* has to be reserved for iWMMXt even if it's not used.
|
|
* Set the magic and size appropriately so that properly
|
|
* written userspace can skip it reliably:
|
|
*/
|
|
*kframe = (struct iwmmxt_sigframe) {
|
|
.magic = DUMMY_MAGIC,
|
|
.size = IWMMXT_STORAGE_SIZE,
|
|
};
|
|
}
|
|
|
|
err = __copy_to_user(frame, kframe, sizeof(*kframe));
|
|
|
|
return err;
|
|
}
|
|
|
|
static int restore_iwmmxt_context(char __user **auxp)
|
|
{
|
|
struct iwmmxt_sigframe __user *frame =
|
|
(struct iwmmxt_sigframe __user *)*auxp;
|
|
char kbuf[sizeof(*frame) + 8];
|
|
struct iwmmxt_sigframe *kframe;
|
|
|
|
/* the iWMMXt context must be 64 bit aligned */
|
|
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
|
|
if (__copy_from_user(kframe, frame, sizeof(*frame)))
|
|
return -1;
|
|
|
|
/*
|
|
* For non-iWMMXt threads: a single iwmmxt_sigframe-sized dummy
|
|
* block is discarded for compatibility with setup_sigframe() if
|
|
* present, but we don't mandate its presence. If some other
|
|
* magic is here, it's not for us:
|
|
*/
|
|
if (!test_thread_flag(TIF_USING_IWMMXT) &&
|
|
kframe->magic != DUMMY_MAGIC)
|
|
return 0;
|
|
|
|
if (kframe->size != IWMMXT_STORAGE_SIZE)
|
|
return -1;
|
|
|
|
if (test_thread_flag(TIF_USING_IWMMXT)) {
|
|
if (kframe->magic != IWMMXT_MAGIC)
|
|
return -1;
|
|
|
|
iwmmxt_task_restore(current_thread_info(), &kframe->storage);
|
|
}
|
|
|
|
*auxp += IWMMXT_STORAGE_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_VFP
|
|
|
|
static int preserve_vfp_context(struct vfp_sigframe __user *frame)
|
|
{
|
|
struct vfp_sigframe kframe;
|
|
int err = 0;
|
|
|
|
memset(&kframe, 0, sizeof(kframe));
|
|
kframe.magic = VFP_MAGIC;
|
|
kframe.size = VFP_STORAGE_SIZE;
|
|
|
|
err = vfp_preserve_user_clear_hwstate(&kframe.ufp, &kframe.ufp_exc);
|
|
if (err)
|
|
return err;
|
|
|
|
return __copy_to_user(frame, &kframe, sizeof(kframe));
|
|
}
|
|
|
|
static int restore_vfp_context(char __user **auxp)
|
|
{
|
|
struct vfp_sigframe frame;
|
|
int err;
|
|
|
|
err = __copy_from_user(&frame, *auxp, sizeof(frame));
|
|
if (err)
|
|
return err;
|
|
|
|
if (frame.magic != VFP_MAGIC || frame.size != VFP_STORAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
*auxp += sizeof(frame);
|
|
return vfp_restore_user_hwstate(&frame.ufp, &frame.ufp_exc);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Do a signal return; undo the signal stack. These are aligned to 64-bit.
|
|
*/
|
|
|
|
static int restore_sigframe(struct pt_regs *regs, struct sigframe __user *sf)
|
|
{
|
|
struct sigcontext context;
|
|
char __user *aux;
|
|
sigset_t set;
|
|
int err;
|
|
|
|
err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set));
|
|
if (err == 0)
|
|
set_current_blocked(&set);
|
|
|
|
err |= __copy_from_user(&context, &sf->uc.uc_mcontext, sizeof(context));
|
|
if (err == 0) {
|
|
regs->ARM_r0 = context.arm_r0;
|
|
regs->ARM_r1 = context.arm_r1;
|
|
regs->ARM_r2 = context.arm_r2;
|
|
regs->ARM_r3 = context.arm_r3;
|
|
regs->ARM_r4 = context.arm_r4;
|
|
regs->ARM_r5 = context.arm_r5;
|
|
regs->ARM_r6 = context.arm_r6;
|
|
regs->ARM_r7 = context.arm_r7;
|
|
regs->ARM_r8 = context.arm_r8;
|
|
regs->ARM_r9 = context.arm_r9;
|
|
regs->ARM_r10 = context.arm_r10;
|
|
regs->ARM_fp = context.arm_fp;
|
|
regs->ARM_ip = context.arm_ip;
|
|
regs->ARM_sp = context.arm_sp;
|
|
regs->ARM_lr = context.arm_lr;
|
|
regs->ARM_pc = context.arm_pc;
|
|
regs->ARM_cpsr = context.arm_cpsr;
|
|
}
|
|
|
|
err |= !valid_user_regs(regs);
|
|
|
|
aux = (char __user *) sf->uc.uc_regspace;
|
|
#ifdef CONFIG_CRUNCH
|
|
if (err == 0)
|
|
err |= restore_crunch_context(&aux);
|
|
#endif
|
|
#ifdef CONFIG_IWMMXT
|
|
if (err == 0)
|
|
err |= restore_iwmmxt_context(&aux);
|
|
#endif
|
|
#ifdef CONFIG_VFP
|
|
if (err == 0)
|
|
err |= restore_vfp_context(&aux);
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
|
|
asmlinkage int sys_sigreturn(struct pt_regs *regs)
|
|
{
|
|
struct sigframe __user *frame;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (regs->ARM_sp & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct sigframe __user *)regs->ARM_sp;
|
|
|
|
if (!access_ok(frame, sizeof (*frame)))
|
|
goto badframe;
|
|
|
|
if (restore_sigframe(regs, frame))
|
|
goto badframe;
|
|
|
|
return regs->ARM_r0;
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV, current);
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int sys_rt_sigreturn(struct pt_regs *regs)
|
|
{
|
|
struct rt_sigframe __user *frame;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (regs->ARM_sp & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct rt_sigframe __user *)regs->ARM_sp;
|
|
|
|
if (!access_ok(frame, sizeof (*frame)))
|
|
goto badframe;
|
|
|
|
if (restore_sigframe(regs, &frame->sig))
|
|
goto badframe;
|
|
|
|
if (restore_altstack(&frame->sig.uc.uc_stack))
|
|
goto badframe;
|
|
|
|
return regs->ARM_r0;
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV, current);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_sigframe(struct sigframe __user *sf, struct pt_regs *regs, sigset_t *set)
|
|
{
|
|
struct aux_sigframe __user *aux;
|
|
struct sigcontext context;
|
|
int err = 0;
|
|
|
|
context = (struct sigcontext) {
|
|
.arm_r0 = regs->ARM_r0,
|
|
.arm_r1 = regs->ARM_r1,
|
|
.arm_r2 = regs->ARM_r2,
|
|
.arm_r3 = regs->ARM_r3,
|
|
.arm_r4 = regs->ARM_r4,
|
|
.arm_r5 = regs->ARM_r5,
|
|
.arm_r6 = regs->ARM_r6,
|
|
.arm_r7 = regs->ARM_r7,
|
|
.arm_r8 = regs->ARM_r8,
|
|
.arm_r9 = regs->ARM_r9,
|
|
.arm_r10 = regs->ARM_r10,
|
|
.arm_fp = regs->ARM_fp,
|
|
.arm_ip = regs->ARM_ip,
|
|
.arm_sp = regs->ARM_sp,
|
|
.arm_lr = regs->ARM_lr,
|
|
.arm_pc = regs->ARM_pc,
|
|
.arm_cpsr = regs->ARM_cpsr,
|
|
|
|
.trap_no = current->thread.trap_no,
|
|
.error_code = current->thread.error_code,
|
|
.fault_address = current->thread.address,
|
|
.oldmask = set->sig[0],
|
|
};
|
|
|
|
err |= __copy_to_user(&sf->uc.uc_mcontext, &context, sizeof(context));
|
|
|
|
err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set));
|
|
|
|
aux = (struct aux_sigframe __user *) sf->uc.uc_regspace;
|
|
#ifdef CONFIG_CRUNCH
|
|
if (err == 0)
|
|
err |= preserve_crunch_context(&aux->crunch);
|
|
#endif
|
|
#ifdef CONFIG_IWMMXT
|
|
if (err == 0)
|
|
err |= preserve_iwmmxt_context(&aux->iwmmxt);
|
|
#endif
|
|
#ifdef CONFIG_VFP
|
|
if (err == 0)
|
|
err |= preserve_vfp_context(&aux->vfp);
|
|
#endif
|
|
err |= __put_user(0, &aux->end_magic);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void __user *
|
|
get_sigframe(struct ksignal *ksig, struct pt_regs *regs, int framesize)
|
|
{
|
|
unsigned long sp = sigsp(regs->ARM_sp, ksig);
|
|
void __user *frame;
|
|
|
|
/*
|
|
* ATPCS B01 mandates 8-byte alignment
|
|
*/
|
|
frame = (void __user *)((sp - framesize) & ~7);
|
|
|
|
/*
|
|
* Check that we can actually write to the signal frame.
|
|
*/
|
|
if (!access_ok(frame, framesize))
|
|
frame = NULL;
|
|
|
|
return frame;
|
|
}
|
|
|
|
static int
|
|
setup_return(struct pt_regs *regs, struct ksignal *ksig,
|
|
unsigned long __user *rc, void __user *frame)
|
|
{
|
|
unsigned long handler = (unsigned long)ksig->ka.sa.sa_handler;
|
|
unsigned long handler_fdpic_GOT = 0;
|
|
unsigned long retcode;
|
|
unsigned int idx, thumb = 0;
|
|
unsigned long cpsr = regs->ARM_cpsr & ~(PSR_f | PSR_E_BIT);
|
|
bool fdpic = IS_ENABLED(CONFIG_BINFMT_ELF_FDPIC) &&
|
|
(current->personality & FDPIC_FUNCPTRS);
|
|
|
|
if (fdpic) {
|
|
unsigned long __user *fdpic_func_desc =
|
|
(unsigned long __user *)handler;
|
|
if (__get_user(handler, &fdpic_func_desc[0]) ||
|
|
__get_user(handler_fdpic_GOT, &fdpic_func_desc[1]))
|
|
return 1;
|
|
}
|
|
|
|
cpsr |= PSR_ENDSTATE;
|
|
|
|
/*
|
|
* Maybe we need to deliver a 32-bit signal to a 26-bit task.
|
|
*/
|
|
if (ksig->ka.sa.sa_flags & SA_THIRTYTWO)
|
|
cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
|
|
|
|
#ifdef CONFIG_ARM_THUMB
|
|
if (elf_hwcap & HWCAP_THUMB) {
|
|
/*
|
|
* The LSB of the handler determines if we're going to
|
|
* be using THUMB or ARM mode for this signal handler.
|
|
*/
|
|
thumb = handler & 1;
|
|
|
|
/*
|
|
* Clear the If-Then Thumb-2 execution state. ARM spec
|
|
* requires this to be all 000s in ARM mode. Snapdragon
|
|
* S4/Krait misbehaves on a Thumb=>ARM signal transition
|
|
* without this.
|
|
*
|
|
* We must do this whenever we are running on a Thumb-2
|
|
* capable CPU, which includes ARMv6T2. However, we elect
|
|
* to always do this to simplify the code; this field is
|
|
* marked UNK/SBZP for older architectures.
|
|
*/
|
|
cpsr &= ~PSR_IT_MASK;
|
|
|
|
if (thumb) {
|
|
cpsr |= PSR_T_BIT;
|
|
} else
|
|
cpsr &= ~PSR_T_BIT;
|
|
}
|
|
#endif
|
|
|
|
if (ksig->ka.sa.sa_flags & SA_RESTORER) {
|
|
retcode = (unsigned long)ksig->ka.sa.sa_restorer;
|
|
if (fdpic) {
|
|
/*
|
|
* We need code to load the function descriptor.
|
|
* That code follows the standard sigreturn code
|
|
* (6 words), and is made of 3 + 2 words for each
|
|
* variant. The 4th copied word is the actual FD
|
|
* address that the assembly code expects.
|
|
*/
|
|
idx = 6 + thumb * 3;
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
idx += 5;
|
|
if (__put_user(sigreturn_codes[idx], rc ) ||
|
|
__put_user(sigreturn_codes[idx+1], rc+1) ||
|
|
__put_user(sigreturn_codes[idx+2], rc+2) ||
|
|
__put_user(retcode, rc+3))
|
|
return 1;
|
|
goto rc_finish;
|
|
}
|
|
} else {
|
|
idx = thumb << 1;
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
idx += 3;
|
|
|
|
/*
|
|
* Put the sigreturn code on the stack no matter which return
|
|
* mechanism we use in order to remain ABI compliant
|
|
*/
|
|
if (__put_user(sigreturn_codes[idx], rc) ||
|
|
__put_user(sigreturn_codes[idx+1], rc+1))
|
|
return 1;
|
|
|
|
rc_finish:
|
|
#ifdef CONFIG_MMU
|
|
if (cpsr & MODE32_BIT) {
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/*
|
|
* 32-bit code can use the signal return page
|
|
* except when the MPU has protected the vectors
|
|
* page from PL0
|
|
*/
|
|
retcode = mm->context.sigpage + signal_return_offset +
|
|
(idx << 2) + thumb;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* Ensure that the instruction cache sees
|
|
* the return code written onto the stack.
|
|
*/
|
|
flush_icache_range((unsigned long)rc,
|
|
(unsigned long)(rc + 3));
|
|
|
|
retcode = ((unsigned long)rc) + thumb;
|
|
}
|
|
}
|
|
|
|
regs->ARM_r0 = ksig->sig;
|
|
regs->ARM_sp = (unsigned long)frame;
|
|
regs->ARM_lr = retcode;
|
|
regs->ARM_pc = handler;
|
|
if (fdpic)
|
|
regs->ARM_r9 = handler_fdpic_GOT;
|
|
regs->ARM_cpsr = cpsr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
struct sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
|
|
int err = 0;
|
|
|
|
if (!frame)
|
|
return 1;
|
|
|
|
/*
|
|
* Set uc.uc_flags to a value which sc.trap_no would never have.
|
|
*/
|
|
err = __put_user(0x5ac3c35a, &frame->uc.uc_flags);
|
|
|
|
err |= setup_sigframe(frame, regs, set);
|
|
if (err == 0)
|
|
err = setup_return(regs, ksig, frame->retcode, frame);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
setup_rt_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
struct rt_sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
|
|
int err = 0;
|
|
|
|
if (!frame)
|
|
return 1;
|
|
|
|
err |= copy_siginfo_to_user(&frame->info, &ksig->info);
|
|
|
|
err |= __put_user(0, &frame->sig.uc.uc_flags);
|
|
err |= __put_user(NULL, &frame->sig.uc.uc_link);
|
|
|
|
err |= __save_altstack(&frame->sig.uc.uc_stack, regs->ARM_sp);
|
|
err |= setup_sigframe(&frame->sig, regs, set);
|
|
if (err == 0)
|
|
err = setup_return(regs, ksig, frame->sig.retcode, frame);
|
|
|
|
if (err == 0) {
|
|
/*
|
|
* For realtime signals we must also set the second and third
|
|
* arguments for the signal handler.
|
|
* -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
|
|
*/
|
|
regs->ARM_r1 = (unsigned long)&frame->info;
|
|
regs->ARM_r2 = (unsigned long)&frame->sig.uc;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* OK, we're invoking a handler
|
|
*/
|
|
static void handle_signal(struct ksignal *ksig, struct pt_regs *regs)
|
|
{
|
|
sigset_t *oldset = sigmask_to_save();
|
|
int ret;
|
|
|
|
/*
|
|
* Increment event counter and perform fixup for the pre-signal
|
|
* frame.
|
|
*/
|
|
rseq_signal_deliver(ksig, regs);
|
|
|
|
/*
|
|
* Set up the stack frame
|
|
*/
|
|
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
|
|
ret = setup_rt_frame(ksig, oldset, regs);
|
|
else
|
|
ret = setup_frame(ksig, oldset, regs);
|
|
|
|
/*
|
|
* Check that the resulting registers are actually sane.
|
|
*/
|
|
ret |= !valid_user_regs(regs);
|
|
|
|
signal_setup_done(ret, ksig, 0);
|
|
}
|
|
|
|
/*
|
|
* Note that 'init' is a special process: it doesn't get signals it doesn't
|
|
* want to handle. Thus you cannot kill init even with a SIGKILL even by
|
|
* mistake.
|
|
*
|
|
* Note that we go through the signals twice: once to check the signals that
|
|
* the kernel can handle, and then we build all the user-level signal handling
|
|
* stack-frames in one go after that.
|
|
*/
|
|
static int do_signal(struct pt_regs *regs, int syscall)
|
|
{
|
|
unsigned int retval = 0, continue_addr = 0, restart_addr = 0;
|
|
struct ksignal ksig;
|
|
int restart = 0;
|
|
|
|
/*
|
|
* If we were from a system call, check for system call restarting...
|
|
*/
|
|
if (syscall) {
|
|
continue_addr = regs->ARM_pc;
|
|
restart_addr = continue_addr - (thumb_mode(regs) ? 2 : 4);
|
|
retval = regs->ARM_r0;
|
|
|
|
/*
|
|
* Prepare for system call restart. We do this here so that a
|
|
* debugger will see the already changed PSW.
|
|
*/
|
|
switch (retval) {
|
|
case -ERESTART_RESTARTBLOCK:
|
|
restart -= 2;
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
restart++;
|
|
regs->ARM_r0 = regs->ARM_ORIG_r0;
|
|
regs->ARM_pc = restart_addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the signal to deliver. When running under ptrace, at this
|
|
* point the debugger may change all our registers ...
|
|
*/
|
|
/*
|
|
* Depending on the signal settings we may need to revert the
|
|
* decision to restart the system call. But skip this if a
|
|
* debugger has chosen to restart at a different PC.
|
|
*/
|
|
if (get_signal(&ksig)) {
|
|
/* handler */
|
|
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
|
|
if (retval == -ERESTARTNOHAND ||
|
|
retval == -ERESTART_RESTARTBLOCK
|
|
|| (retval == -ERESTARTSYS
|
|
&& !(ksig.ka.sa.sa_flags & SA_RESTART))) {
|
|
regs->ARM_r0 = -EINTR;
|
|
regs->ARM_pc = continue_addr;
|
|
}
|
|
}
|
|
handle_signal(&ksig, regs);
|
|
} else {
|
|
/* no handler */
|
|
restore_saved_sigmask();
|
|
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
|
|
regs->ARM_pc = continue_addr;
|
|
return restart;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage int
|
|
do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall)
|
|
{
|
|
/*
|
|
* The assembly code enters us with IRQs off, but it hasn't
|
|
* informed the tracing code of that for efficiency reasons.
|
|
* Update the trace code with the current status.
|
|
*/
|
|
trace_hardirqs_off();
|
|
do {
|
|
if (likely(thread_flags & _TIF_NEED_RESCHED)) {
|
|
schedule();
|
|
} else {
|
|
if (unlikely(!user_mode(regs)))
|
|
return 0;
|
|
local_irq_enable();
|
|
if (thread_flags & _TIF_SIGPENDING) {
|
|
int restart = do_signal(regs, syscall);
|
|
if (unlikely(restart)) {
|
|
/*
|
|
* Restart without handlers.
|
|
* Deal with it without leaving
|
|
* the kernel space.
|
|
*/
|
|
return restart;
|
|
}
|
|
syscall = 0;
|
|
} else if (thread_flags & _TIF_UPROBE) {
|
|
uprobe_notify_resume(regs);
|
|
} else {
|
|
clear_thread_flag(TIF_NOTIFY_RESUME);
|
|
tracehook_notify_resume(regs);
|
|
rseq_handle_notify_resume(NULL, regs);
|
|
}
|
|
}
|
|
local_irq_disable();
|
|
thread_flags = current_thread_info()->flags;
|
|
} while (thread_flags & _TIF_WORK_MASK);
|
|
return 0;
|
|
}
|
|
|
|
struct page *get_signal_page(void)
|
|
{
|
|
unsigned long ptr;
|
|
unsigned offset;
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
page = alloc_pages(GFP_KERNEL, 0);
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
addr = page_address(page);
|
|
|
|
/* Give the signal return code some randomness */
|
|
offset = 0x200 + (get_random_int() & 0x7fc);
|
|
signal_return_offset = offset;
|
|
|
|
/*
|
|
* Copy signal return handlers into the vector page, and
|
|
* set sigreturn to be a pointer to these.
|
|
*/
|
|
memcpy(addr + offset, sigreturn_codes, sizeof(sigreturn_codes));
|
|
|
|
ptr = (unsigned long)addr + offset;
|
|
flush_icache_range(ptr, ptr + sizeof(sigreturn_codes));
|
|
|
|
return page;
|
|
}
|
|
|
|
/* Defer to generic check */
|
|
asmlinkage void addr_limit_check_failed(void)
|
|
{
|
|
addr_limit_user_check();
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_RSEQ
|
|
asmlinkage void do_rseq_syscall(struct pt_regs *regs)
|
|
{
|
|
rseq_syscall(regs);
|
|
}
|
|
#endif
|