mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 22:36:42 +07:00
d4e64c2909
When replacing an IPv4 route, tb_id member of the new fib_alias
structure is not set in the replace code path so that the new route is
ignored.
Fixes: 0ddcf43d5d
("ipv4: FIB Local/MAIN table collapse")
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Acked-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2660 lines
64 KiB
C
2660 lines
64 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
|
|
* & Swedish University of Agricultural Sciences.
|
|
*
|
|
* Jens Laas <jens.laas@data.slu.se> Swedish University of
|
|
* Agricultural Sciences.
|
|
*
|
|
* Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
|
|
*
|
|
* This work is based on the LPC-trie which is originally described in:
|
|
*
|
|
* An experimental study of compression methods for dynamic tries
|
|
* Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
|
|
* http://www.csc.kth.se/~snilsson/software/dyntrie2/
|
|
*
|
|
*
|
|
* IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
|
|
* IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
|
|
*
|
|
*
|
|
* Code from fib_hash has been reused which includes the following header:
|
|
*
|
|
*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* IPv4 FIB: lookup engine and maintenance routines.
|
|
*
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Substantial contributions to this work comes from:
|
|
*
|
|
* David S. Miller, <davem@davemloft.net>
|
|
* Stephen Hemminger <shemminger@osdl.org>
|
|
* Paul E. McKenney <paulmck@us.ibm.com>
|
|
* Patrick McHardy <kaber@trash.net>
|
|
*/
|
|
|
|
#define VERSION "0.409"
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/inetdevice.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/ip.h>
|
|
#include <net/protocol.h>
|
|
#include <net/route.h>
|
|
#include <net/tcp.h>
|
|
#include <net/sock.h>
|
|
#include <net/ip_fib.h>
|
|
#include <net/switchdev.h>
|
|
#include "fib_lookup.h"
|
|
|
|
#define MAX_STAT_DEPTH 32
|
|
|
|
#define KEYLENGTH (8*sizeof(t_key))
|
|
#define KEY_MAX ((t_key)~0)
|
|
|
|
typedef unsigned int t_key;
|
|
|
|
#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
|
|
#define IS_TNODE(n) ((n)->bits)
|
|
#define IS_LEAF(n) (!(n)->bits)
|
|
|
|
struct key_vector {
|
|
t_key key;
|
|
unsigned char pos; /* 2log(KEYLENGTH) bits needed */
|
|
unsigned char bits; /* 2log(KEYLENGTH) bits needed */
|
|
unsigned char slen;
|
|
union {
|
|
/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
|
|
struct hlist_head leaf;
|
|
/* This array is valid if (pos | bits) > 0 (TNODE) */
|
|
struct key_vector __rcu *tnode[0];
|
|
};
|
|
};
|
|
|
|
struct tnode {
|
|
struct rcu_head rcu;
|
|
t_key empty_children; /* KEYLENGTH bits needed */
|
|
t_key full_children; /* KEYLENGTH bits needed */
|
|
struct key_vector __rcu *parent;
|
|
struct key_vector kv[1];
|
|
#define tn_bits kv[0].bits
|
|
};
|
|
|
|
#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
|
|
#define LEAF_SIZE TNODE_SIZE(1)
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats {
|
|
unsigned int gets;
|
|
unsigned int backtrack;
|
|
unsigned int semantic_match_passed;
|
|
unsigned int semantic_match_miss;
|
|
unsigned int null_node_hit;
|
|
unsigned int resize_node_skipped;
|
|
};
|
|
#endif
|
|
|
|
struct trie_stat {
|
|
unsigned int totdepth;
|
|
unsigned int maxdepth;
|
|
unsigned int tnodes;
|
|
unsigned int leaves;
|
|
unsigned int nullpointers;
|
|
unsigned int prefixes;
|
|
unsigned int nodesizes[MAX_STAT_DEPTH];
|
|
};
|
|
|
|
struct trie {
|
|
struct key_vector kv[1];
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats __percpu *stats;
|
|
#endif
|
|
};
|
|
|
|
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
|
|
static size_t tnode_free_size;
|
|
|
|
/*
|
|
* synchronize_rcu after call_rcu for that many pages; it should be especially
|
|
* useful before resizing the root node with PREEMPT_NONE configs; the value was
|
|
* obtained experimentally, aiming to avoid visible slowdown.
|
|
*/
|
|
static const int sync_pages = 128;
|
|
|
|
static struct kmem_cache *fn_alias_kmem __read_mostly;
|
|
static struct kmem_cache *trie_leaf_kmem __read_mostly;
|
|
|
|
static inline struct tnode *tn_info(struct key_vector *kv)
|
|
{
|
|
return container_of(kv, struct tnode, kv[0]);
|
|
}
|
|
|
|
/* caller must hold RTNL */
|
|
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
|
|
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
|
|
|
|
/* caller must hold RCU read lock or RTNL */
|
|
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
|
|
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
|
|
|
|
/* wrapper for rcu_assign_pointer */
|
|
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
|
|
{
|
|
if (n)
|
|
rcu_assign_pointer(tn_info(n)->parent, tp);
|
|
}
|
|
|
|
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
|
|
|
|
/* This provides us with the number of children in this node, in the case of a
|
|
* leaf this will return 0 meaning none of the children are accessible.
|
|
*/
|
|
static inline unsigned long child_length(const struct key_vector *tn)
|
|
{
|
|
return (1ul << tn->bits) & ~(1ul);
|
|
}
|
|
|
|
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
|
|
|
|
static inline unsigned long get_index(t_key key, struct key_vector *kv)
|
|
{
|
|
unsigned long index = key ^ kv->key;
|
|
|
|
if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
|
|
return 0;
|
|
|
|
return index >> kv->pos;
|
|
}
|
|
|
|
/* To understand this stuff, an understanding of keys and all their bits is
|
|
* necessary. Every node in the trie has a key associated with it, but not
|
|
* all of the bits in that key are significant.
|
|
*
|
|
* Consider a node 'n' and its parent 'tp'.
|
|
*
|
|
* If n is a leaf, every bit in its key is significant. Its presence is
|
|
* necessitated by path compression, since during a tree traversal (when
|
|
* searching for a leaf - unless we are doing an insertion) we will completely
|
|
* ignore all skipped bits we encounter. Thus we need to verify, at the end of
|
|
* a potentially successful search, that we have indeed been walking the
|
|
* correct key path.
|
|
*
|
|
* Note that we can never "miss" the correct key in the tree if present by
|
|
* following the wrong path. Path compression ensures that segments of the key
|
|
* that are the same for all keys with a given prefix are skipped, but the
|
|
* skipped part *is* identical for each node in the subtrie below the skipped
|
|
* bit! trie_insert() in this implementation takes care of that.
|
|
*
|
|
* if n is an internal node - a 'tnode' here, the various parts of its key
|
|
* have many different meanings.
|
|
*
|
|
* Example:
|
|
* _________________________________________________________________
|
|
* | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
|
|
* -----------------------------------------------------------------
|
|
* 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|
|
*
|
|
* _________________________________________________________________
|
|
* | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
|
|
* -----------------------------------------------------------------
|
|
* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
|
*
|
|
* tp->pos = 22
|
|
* tp->bits = 3
|
|
* n->pos = 13
|
|
* n->bits = 4
|
|
*
|
|
* First, let's just ignore the bits that come before the parent tp, that is
|
|
* the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
|
|
* point we do not use them for anything.
|
|
*
|
|
* The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
|
|
* index into the parent's child array. That is, they will be used to find
|
|
* 'n' among tp's children.
|
|
*
|
|
* The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
|
|
* for the node n.
|
|
*
|
|
* All the bits we have seen so far are significant to the node n. The rest
|
|
* of the bits are really not needed or indeed known in n->key.
|
|
*
|
|
* The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
|
|
* n's child array, and will of course be different for each child.
|
|
*
|
|
* The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
|
|
* at this point.
|
|
*/
|
|
|
|
static const int halve_threshold = 25;
|
|
static const int inflate_threshold = 50;
|
|
static const int halve_threshold_root = 15;
|
|
static const int inflate_threshold_root = 30;
|
|
|
|
static void __alias_free_mem(struct rcu_head *head)
|
|
{
|
|
struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
|
|
kmem_cache_free(fn_alias_kmem, fa);
|
|
}
|
|
|
|
static inline void alias_free_mem_rcu(struct fib_alias *fa)
|
|
{
|
|
call_rcu(&fa->rcu, __alias_free_mem);
|
|
}
|
|
|
|
#define TNODE_KMALLOC_MAX \
|
|
ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
|
|
#define TNODE_VMALLOC_MAX \
|
|
ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
|
|
|
|
static void __node_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct tnode *n = container_of(head, struct tnode, rcu);
|
|
|
|
if (!n->tn_bits)
|
|
kmem_cache_free(trie_leaf_kmem, n);
|
|
else if (n->tn_bits <= TNODE_KMALLOC_MAX)
|
|
kfree(n);
|
|
else
|
|
vfree(n);
|
|
}
|
|
|
|
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
|
|
|
|
static struct tnode *tnode_alloc(int bits)
|
|
{
|
|
size_t size;
|
|
|
|
/* verify bits is within bounds */
|
|
if (bits > TNODE_VMALLOC_MAX)
|
|
return NULL;
|
|
|
|
/* determine size and verify it is non-zero and didn't overflow */
|
|
size = TNODE_SIZE(1ul << bits);
|
|
|
|
if (size <= PAGE_SIZE)
|
|
return kzalloc(size, GFP_KERNEL);
|
|
else
|
|
return vzalloc(size);
|
|
}
|
|
|
|
static inline void empty_child_inc(struct key_vector *n)
|
|
{
|
|
++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
|
|
}
|
|
|
|
static inline void empty_child_dec(struct key_vector *n)
|
|
{
|
|
tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
|
|
}
|
|
|
|
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
|
|
{
|
|
struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
|
|
struct key_vector *l = kv->kv;
|
|
|
|
if (!kv)
|
|
return NULL;
|
|
|
|
/* initialize key vector */
|
|
l->key = key;
|
|
l->pos = 0;
|
|
l->bits = 0;
|
|
l->slen = fa->fa_slen;
|
|
|
|
/* link leaf to fib alias */
|
|
INIT_HLIST_HEAD(&l->leaf);
|
|
hlist_add_head(&fa->fa_list, &l->leaf);
|
|
|
|
return l;
|
|
}
|
|
|
|
static struct key_vector *tnode_new(t_key key, int pos, int bits)
|
|
{
|
|
struct tnode *tnode = tnode_alloc(bits);
|
|
unsigned int shift = pos + bits;
|
|
struct key_vector *tn = tnode->kv;
|
|
|
|
/* verify bits and pos their msb bits clear and values are valid */
|
|
BUG_ON(!bits || (shift > KEYLENGTH));
|
|
|
|
pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
|
|
sizeof(struct key_vector *) << bits);
|
|
|
|
if (!tnode)
|
|
return NULL;
|
|
|
|
if (bits == KEYLENGTH)
|
|
tnode->full_children = 1;
|
|
else
|
|
tnode->empty_children = 1ul << bits;
|
|
|
|
tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
|
|
tn->pos = pos;
|
|
tn->bits = bits;
|
|
tn->slen = pos;
|
|
|
|
return tn;
|
|
}
|
|
|
|
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
|
|
* and no bits are skipped. See discussion in dyntree paper p. 6
|
|
*/
|
|
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
|
|
{
|
|
return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
|
|
}
|
|
|
|
/* Add a child at position i overwriting the old value.
|
|
* Update the value of full_children and empty_children.
|
|
*/
|
|
static void put_child(struct key_vector *tn, unsigned long i,
|
|
struct key_vector *n)
|
|
{
|
|
struct key_vector *chi = get_child(tn, i);
|
|
int isfull, wasfull;
|
|
|
|
BUG_ON(i >= child_length(tn));
|
|
|
|
/* update emptyChildren, overflow into fullChildren */
|
|
if (!n && chi)
|
|
empty_child_inc(tn);
|
|
if (n && !chi)
|
|
empty_child_dec(tn);
|
|
|
|
/* update fullChildren */
|
|
wasfull = tnode_full(tn, chi);
|
|
isfull = tnode_full(tn, n);
|
|
|
|
if (wasfull && !isfull)
|
|
tn_info(tn)->full_children--;
|
|
else if (!wasfull && isfull)
|
|
tn_info(tn)->full_children++;
|
|
|
|
if (n && (tn->slen < n->slen))
|
|
tn->slen = n->slen;
|
|
|
|
rcu_assign_pointer(tn->tnode[i], n);
|
|
}
|
|
|
|
static void update_children(struct key_vector *tn)
|
|
{
|
|
unsigned long i;
|
|
|
|
/* update all of the child parent pointers */
|
|
for (i = child_length(tn); i;) {
|
|
struct key_vector *inode = get_child(tn, --i);
|
|
|
|
if (!inode)
|
|
continue;
|
|
|
|
/* Either update the children of a tnode that
|
|
* already belongs to us or update the child
|
|
* to point to ourselves.
|
|
*/
|
|
if (node_parent(inode) == tn)
|
|
update_children(inode);
|
|
else
|
|
node_set_parent(inode, tn);
|
|
}
|
|
}
|
|
|
|
static inline void put_child_root(struct key_vector *tp, t_key key,
|
|
struct key_vector *n)
|
|
{
|
|
if (IS_TRIE(tp))
|
|
rcu_assign_pointer(tp->tnode[0], n);
|
|
else
|
|
put_child(tp, get_index(key, tp), n);
|
|
}
|
|
|
|
static inline void tnode_free_init(struct key_vector *tn)
|
|
{
|
|
tn_info(tn)->rcu.next = NULL;
|
|
}
|
|
|
|
static inline void tnode_free_append(struct key_vector *tn,
|
|
struct key_vector *n)
|
|
{
|
|
tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
|
|
tn_info(tn)->rcu.next = &tn_info(n)->rcu;
|
|
}
|
|
|
|
static void tnode_free(struct key_vector *tn)
|
|
{
|
|
struct callback_head *head = &tn_info(tn)->rcu;
|
|
|
|
while (head) {
|
|
head = head->next;
|
|
tnode_free_size += TNODE_SIZE(1ul << tn->bits);
|
|
node_free(tn);
|
|
|
|
tn = container_of(head, struct tnode, rcu)->kv;
|
|
}
|
|
|
|
if (tnode_free_size >= PAGE_SIZE * sync_pages) {
|
|
tnode_free_size = 0;
|
|
synchronize_rcu();
|
|
}
|
|
}
|
|
|
|
static struct key_vector *replace(struct trie *t,
|
|
struct key_vector *oldtnode,
|
|
struct key_vector *tn)
|
|
{
|
|
struct key_vector *tp = node_parent(oldtnode);
|
|
unsigned long i;
|
|
|
|
/* setup the parent pointer out of and back into this node */
|
|
NODE_INIT_PARENT(tn, tp);
|
|
put_child_root(tp, tn->key, tn);
|
|
|
|
/* update all of the child parent pointers */
|
|
update_children(tn);
|
|
|
|
/* all pointers should be clean so we are done */
|
|
tnode_free(oldtnode);
|
|
|
|
/* resize children now that oldtnode is freed */
|
|
for (i = child_length(tn); i;) {
|
|
struct key_vector *inode = get_child(tn, --i);
|
|
|
|
/* resize child node */
|
|
if (tnode_full(tn, inode))
|
|
tn = resize(t, inode);
|
|
}
|
|
|
|
return tp;
|
|
}
|
|
|
|
static struct key_vector *inflate(struct trie *t,
|
|
struct key_vector *oldtnode)
|
|
{
|
|
struct key_vector *tn;
|
|
unsigned long i;
|
|
t_key m;
|
|
|
|
pr_debug("In inflate\n");
|
|
|
|
tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
|
|
if (!tn)
|
|
goto notnode;
|
|
|
|
/* prepare oldtnode to be freed */
|
|
tnode_free_init(oldtnode);
|
|
|
|
/* Assemble all of the pointers in our cluster, in this case that
|
|
* represents all of the pointers out of our allocated nodes that
|
|
* point to existing tnodes and the links between our allocated
|
|
* nodes.
|
|
*/
|
|
for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
|
|
struct key_vector *inode = get_child(oldtnode, --i);
|
|
struct key_vector *node0, *node1;
|
|
unsigned long j, k;
|
|
|
|
/* An empty child */
|
|
if (!inode)
|
|
continue;
|
|
|
|
/* A leaf or an internal node with skipped bits */
|
|
if (!tnode_full(oldtnode, inode)) {
|
|
put_child(tn, get_index(inode->key, tn), inode);
|
|
continue;
|
|
}
|
|
|
|
/* drop the node in the old tnode free list */
|
|
tnode_free_append(oldtnode, inode);
|
|
|
|
/* An internal node with two children */
|
|
if (inode->bits == 1) {
|
|
put_child(tn, 2 * i + 1, get_child(inode, 1));
|
|
put_child(tn, 2 * i, get_child(inode, 0));
|
|
continue;
|
|
}
|
|
|
|
/* We will replace this node 'inode' with two new
|
|
* ones, 'node0' and 'node1', each with half of the
|
|
* original children. The two new nodes will have
|
|
* a position one bit further down the key and this
|
|
* means that the "significant" part of their keys
|
|
* (see the discussion near the top of this file)
|
|
* will differ by one bit, which will be "0" in
|
|
* node0's key and "1" in node1's key. Since we are
|
|
* moving the key position by one step, the bit that
|
|
* we are moving away from - the bit at position
|
|
* (tn->pos) - is the one that will differ between
|
|
* node0 and node1. So... we synthesize that bit in the
|
|
* two new keys.
|
|
*/
|
|
node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
|
|
if (!node1)
|
|
goto nomem;
|
|
node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
|
|
|
|
tnode_free_append(tn, node1);
|
|
if (!node0)
|
|
goto nomem;
|
|
tnode_free_append(tn, node0);
|
|
|
|
/* populate child pointers in new nodes */
|
|
for (k = child_length(inode), j = k / 2; j;) {
|
|
put_child(node1, --j, get_child(inode, --k));
|
|
put_child(node0, j, get_child(inode, j));
|
|
put_child(node1, --j, get_child(inode, --k));
|
|
put_child(node0, j, get_child(inode, j));
|
|
}
|
|
|
|
/* link new nodes to parent */
|
|
NODE_INIT_PARENT(node1, tn);
|
|
NODE_INIT_PARENT(node0, tn);
|
|
|
|
/* link parent to nodes */
|
|
put_child(tn, 2 * i + 1, node1);
|
|
put_child(tn, 2 * i, node0);
|
|
}
|
|
|
|
/* setup the parent pointers into and out of this node */
|
|
return replace(t, oldtnode, tn);
|
|
nomem:
|
|
/* all pointers should be clean so we are done */
|
|
tnode_free(tn);
|
|
notnode:
|
|
return NULL;
|
|
}
|
|
|
|
static struct key_vector *halve(struct trie *t,
|
|
struct key_vector *oldtnode)
|
|
{
|
|
struct key_vector *tn;
|
|
unsigned long i;
|
|
|
|
pr_debug("In halve\n");
|
|
|
|
tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
|
|
if (!tn)
|
|
goto notnode;
|
|
|
|
/* prepare oldtnode to be freed */
|
|
tnode_free_init(oldtnode);
|
|
|
|
/* Assemble all of the pointers in our cluster, in this case that
|
|
* represents all of the pointers out of our allocated nodes that
|
|
* point to existing tnodes and the links between our allocated
|
|
* nodes.
|
|
*/
|
|
for (i = child_length(oldtnode); i;) {
|
|
struct key_vector *node1 = get_child(oldtnode, --i);
|
|
struct key_vector *node0 = get_child(oldtnode, --i);
|
|
struct key_vector *inode;
|
|
|
|
/* At least one of the children is empty */
|
|
if (!node1 || !node0) {
|
|
put_child(tn, i / 2, node1 ? : node0);
|
|
continue;
|
|
}
|
|
|
|
/* Two nonempty children */
|
|
inode = tnode_new(node0->key, oldtnode->pos, 1);
|
|
if (!inode)
|
|
goto nomem;
|
|
tnode_free_append(tn, inode);
|
|
|
|
/* initialize pointers out of node */
|
|
put_child(inode, 1, node1);
|
|
put_child(inode, 0, node0);
|
|
NODE_INIT_PARENT(inode, tn);
|
|
|
|
/* link parent to node */
|
|
put_child(tn, i / 2, inode);
|
|
}
|
|
|
|
/* setup the parent pointers into and out of this node */
|
|
return replace(t, oldtnode, tn);
|
|
nomem:
|
|
/* all pointers should be clean so we are done */
|
|
tnode_free(tn);
|
|
notnode:
|
|
return NULL;
|
|
}
|
|
|
|
static struct key_vector *collapse(struct trie *t,
|
|
struct key_vector *oldtnode)
|
|
{
|
|
struct key_vector *n, *tp;
|
|
unsigned long i;
|
|
|
|
/* scan the tnode looking for that one child that might still exist */
|
|
for (n = NULL, i = child_length(oldtnode); !n && i;)
|
|
n = get_child(oldtnode, --i);
|
|
|
|
/* compress one level */
|
|
tp = node_parent(oldtnode);
|
|
put_child_root(tp, oldtnode->key, n);
|
|
node_set_parent(n, tp);
|
|
|
|
/* drop dead node */
|
|
node_free(oldtnode);
|
|
|
|
return tp;
|
|
}
|
|
|
|
static unsigned char update_suffix(struct key_vector *tn)
|
|
{
|
|
unsigned char slen = tn->pos;
|
|
unsigned long stride, i;
|
|
|
|
/* search though the list of children looking for nodes that might
|
|
* have a suffix greater than the one we currently have. This is
|
|
* why we start with a stride of 2 since a stride of 1 would
|
|
* represent the nodes with suffix length equal to tn->pos
|
|
*/
|
|
for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
|
|
struct key_vector *n = get_child(tn, i);
|
|
|
|
if (!n || (n->slen <= slen))
|
|
continue;
|
|
|
|
/* update stride and slen based on new value */
|
|
stride <<= (n->slen - slen);
|
|
slen = n->slen;
|
|
i &= ~(stride - 1);
|
|
|
|
/* if slen covers all but the last bit we can stop here
|
|
* there will be nothing longer than that since only node
|
|
* 0 and 1 << (bits - 1) could have that as their suffix
|
|
* length.
|
|
*/
|
|
if ((slen + 1) >= (tn->pos + tn->bits))
|
|
break;
|
|
}
|
|
|
|
tn->slen = slen;
|
|
|
|
return slen;
|
|
}
|
|
|
|
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
|
|
* the Helsinki University of Technology and Matti Tikkanen of Nokia
|
|
* Telecommunications, page 6:
|
|
* "A node is doubled if the ratio of non-empty children to all
|
|
* children in the *doubled* node is at least 'high'."
|
|
*
|
|
* 'high' in this instance is the variable 'inflate_threshold'. It
|
|
* is expressed as a percentage, so we multiply it with
|
|
* child_length() and instead of multiplying by 2 (since the
|
|
* child array will be doubled by inflate()) and multiplying
|
|
* the left-hand side by 100 (to handle the percentage thing) we
|
|
* multiply the left-hand side by 50.
|
|
*
|
|
* The left-hand side may look a bit weird: child_length(tn)
|
|
* - tn->empty_children is of course the number of non-null children
|
|
* in the current node. tn->full_children is the number of "full"
|
|
* children, that is non-null tnodes with a skip value of 0.
|
|
* All of those will be doubled in the resulting inflated tnode, so
|
|
* we just count them one extra time here.
|
|
*
|
|
* A clearer way to write this would be:
|
|
*
|
|
* to_be_doubled = tn->full_children;
|
|
* not_to_be_doubled = child_length(tn) - tn->empty_children -
|
|
* tn->full_children;
|
|
*
|
|
* new_child_length = child_length(tn) * 2;
|
|
*
|
|
* new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
|
|
* new_child_length;
|
|
* if (new_fill_factor >= inflate_threshold)
|
|
*
|
|
* ...and so on, tho it would mess up the while () loop.
|
|
*
|
|
* anyway,
|
|
* 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
|
|
* inflate_threshold
|
|
*
|
|
* avoid a division:
|
|
* 100 * (not_to_be_doubled + 2*to_be_doubled) >=
|
|
* inflate_threshold * new_child_length
|
|
*
|
|
* expand not_to_be_doubled and to_be_doubled, and shorten:
|
|
* 100 * (child_length(tn) - tn->empty_children +
|
|
* tn->full_children) >= inflate_threshold * new_child_length
|
|
*
|
|
* expand new_child_length:
|
|
* 100 * (child_length(tn) - tn->empty_children +
|
|
* tn->full_children) >=
|
|
* inflate_threshold * child_length(tn) * 2
|
|
*
|
|
* shorten again:
|
|
* 50 * (tn->full_children + child_length(tn) -
|
|
* tn->empty_children) >= inflate_threshold *
|
|
* child_length(tn)
|
|
*
|
|
*/
|
|
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
|
|
{
|
|
unsigned long used = child_length(tn);
|
|
unsigned long threshold = used;
|
|
|
|
/* Keep root node larger */
|
|
threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
|
|
used -= tn_info(tn)->empty_children;
|
|
used += tn_info(tn)->full_children;
|
|
|
|
/* if bits == KEYLENGTH then pos = 0, and will fail below */
|
|
|
|
return (used > 1) && tn->pos && ((50 * used) >= threshold);
|
|
}
|
|
|
|
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
|
|
{
|
|
unsigned long used = child_length(tn);
|
|
unsigned long threshold = used;
|
|
|
|
/* Keep root node larger */
|
|
threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
|
|
used -= tn_info(tn)->empty_children;
|
|
|
|
/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
|
|
|
|
return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
|
|
}
|
|
|
|
static inline bool should_collapse(struct key_vector *tn)
|
|
{
|
|
unsigned long used = child_length(tn);
|
|
|
|
used -= tn_info(tn)->empty_children;
|
|
|
|
/* account for bits == KEYLENGTH case */
|
|
if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
|
|
used -= KEY_MAX;
|
|
|
|
/* One child or none, time to drop us from the trie */
|
|
return used < 2;
|
|
}
|
|
|
|
#define MAX_WORK 10
|
|
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
|
|
{
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats __percpu *stats = t->stats;
|
|
#endif
|
|
struct key_vector *tp = node_parent(tn);
|
|
unsigned long cindex = get_index(tn->key, tp);
|
|
int max_work = MAX_WORK;
|
|
|
|
pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
|
|
tn, inflate_threshold, halve_threshold);
|
|
|
|
/* track the tnode via the pointer from the parent instead of
|
|
* doing it ourselves. This way we can let RCU fully do its
|
|
* thing without us interfering
|
|
*/
|
|
BUG_ON(tn != get_child(tp, cindex));
|
|
|
|
/* Double as long as the resulting node has a number of
|
|
* nonempty nodes that are above the threshold.
|
|
*/
|
|
while (should_inflate(tp, tn) && max_work) {
|
|
tp = inflate(t, tn);
|
|
if (!tp) {
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->resize_node_skipped);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
max_work--;
|
|
tn = get_child(tp, cindex);
|
|
}
|
|
|
|
/* update parent in case inflate failed */
|
|
tp = node_parent(tn);
|
|
|
|
/* Return if at least one inflate is run */
|
|
if (max_work != MAX_WORK)
|
|
return tp;
|
|
|
|
/* Halve as long as the number of empty children in this
|
|
* node is above threshold.
|
|
*/
|
|
while (should_halve(tp, tn) && max_work) {
|
|
tp = halve(t, tn);
|
|
if (!tp) {
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->resize_node_skipped);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
max_work--;
|
|
tn = get_child(tp, cindex);
|
|
}
|
|
|
|
/* Only one child remains */
|
|
if (should_collapse(tn))
|
|
return collapse(t, tn);
|
|
|
|
/* update parent in case halve failed */
|
|
tp = node_parent(tn);
|
|
|
|
/* Return if at least one deflate was run */
|
|
if (max_work != MAX_WORK)
|
|
return tp;
|
|
|
|
/* push the suffix length to the parent node */
|
|
if (tn->slen > tn->pos) {
|
|
unsigned char slen = update_suffix(tn);
|
|
|
|
if (slen > tp->slen)
|
|
tp->slen = slen;
|
|
}
|
|
|
|
return tp;
|
|
}
|
|
|
|
static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
|
|
{
|
|
while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
|
|
if (update_suffix(tp) > l->slen)
|
|
break;
|
|
tp = node_parent(tp);
|
|
}
|
|
}
|
|
|
|
static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
|
|
{
|
|
/* if this is a new leaf then tn will be NULL and we can sort
|
|
* out parent suffix lengths as a part of trie_rebalance
|
|
*/
|
|
while (tn->slen < l->slen) {
|
|
tn->slen = l->slen;
|
|
tn = node_parent(tn);
|
|
}
|
|
}
|
|
|
|
/* rcu_read_lock needs to be hold by caller from readside */
|
|
static struct key_vector *fib_find_node(struct trie *t,
|
|
struct key_vector **tp, u32 key)
|
|
{
|
|
struct key_vector *pn, *n = t->kv;
|
|
unsigned long index = 0;
|
|
|
|
do {
|
|
pn = n;
|
|
n = get_child_rcu(n, index);
|
|
|
|
if (!n)
|
|
break;
|
|
|
|
index = get_cindex(key, n);
|
|
|
|
/* This bit of code is a bit tricky but it combines multiple
|
|
* checks into a single check. The prefix consists of the
|
|
* prefix plus zeros for the bits in the cindex. The index
|
|
* is the difference between the key and this value. From
|
|
* this we can actually derive several pieces of data.
|
|
* if (index >= (1ul << bits))
|
|
* we have a mismatch in skip bits and failed
|
|
* else
|
|
* we know the value is cindex
|
|
*
|
|
* This check is safe even if bits == KEYLENGTH due to the
|
|
* fact that we can only allocate a node with 32 bits if a
|
|
* long is greater than 32 bits.
|
|
*/
|
|
if (index >= (1ul << n->bits)) {
|
|
n = NULL;
|
|
break;
|
|
}
|
|
|
|
/* keep searching until we find a perfect match leaf or NULL */
|
|
} while (IS_TNODE(n));
|
|
|
|
*tp = pn;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Return the first fib alias matching TOS with
|
|
* priority less than or equal to PRIO.
|
|
*/
|
|
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
|
|
u8 tos, u32 prio, u32 tb_id)
|
|
{
|
|
struct fib_alias *fa;
|
|
|
|
if (!fah)
|
|
return NULL;
|
|
|
|
hlist_for_each_entry(fa, fah, fa_list) {
|
|
if (fa->fa_slen < slen)
|
|
continue;
|
|
if (fa->fa_slen != slen)
|
|
break;
|
|
if (fa->tb_id > tb_id)
|
|
continue;
|
|
if (fa->tb_id != tb_id)
|
|
break;
|
|
if (fa->fa_tos > tos)
|
|
continue;
|
|
if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
|
|
return fa;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void trie_rebalance(struct trie *t, struct key_vector *tn)
|
|
{
|
|
while (!IS_TRIE(tn))
|
|
tn = resize(t, tn);
|
|
}
|
|
|
|
static int fib_insert_node(struct trie *t, struct key_vector *tp,
|
|
struct fib_alias *new, t_key key)
|
|
{
|
|
struct key_vector *n, *l;
|
|
|
|
l = leaf_new(key, new);
|
|
if (!l)
|
|
goto noleaf;
|
|
|
|
/* retrieve child from parent node */
|
|
n = get_child(tp, get_index(key, tp));
|
|
|
|
/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
|
|
*
|
|
* Add a new tnode here
|
|
* first tnode need some special handling
|
|
* leaves us in position for handling as case 3
|
|
*/
|
|
if (n) {
|
|
struct key_vector *tn;
|
|
|
|
tn = tnode_new(key, __fls(key ^ n->key), 1);
|
|
if (!tn)
|
|
goto notnode;
|
|
|
|
/* initialize routes out of node */
|
|
NODE_INIT_PARENT(tn, tp);
|
|
put_child(tn, get_index(key, tn) ^ 1, n);
|
|
|
|
/* start adding routes into the node */
|
|
put_child_root(tp, key, tn);
|
|
node_set_parent(n, tn);
|
|
|
|
/* parent now has a NULL spot where the leaf can go */
|
|
tp = tn;
|
|
}
|
|
|
|
/* Case 3: n is NULL, and will just insert a new leaf */
|
|
NODE_INIT_PARENT(l, tp);
|
|
put_child_root(tp, key, l);
|
|
trie_rebalance(t, tp);
|
|
|
|
return 0;
|
|
notnode:
|
|
node_free(l);
|
|
noleaf:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
|
|
struct key_vector *l, struct fib_alias *new,
|
|
struct fib_alias *fa, t_key key)
|
|
{
|
|
if (!l)
|
|
return fib_insert_node(t, tp, new, key);
|
|
|
|
if (fa) {
|
|
hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
|
|
} else {
|
|
struct fib_alias *last;
|
|
|
|
hlist_for_each_entry(last, &l->leaf, fa_list) {
|
|
if (new->fa_slen < last->fa_slen)
|
|
break;
|
|
if ((new->fa_slen == last->fa_slen) &&
|
|
(new->tb_id > last->tb_id))
|
|
break;
|
|
fa = last;
|
|
}
|
|
|
|
if (fa)
|
|
hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
|
|
else
|
|
hlist_add_head_rcu(&new->fa_list, &l->leaf);
|
|
}
|
|
|
|
/* if we added to the tail node then we need to update slen */
|
|
if (l->slen < new->fa_slen) {
|
|
l->slen = new->fa_slen;
|
|
leaf_push_suffix(tp, l);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must hold RTNL. */
|
|
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
|
|
{
|
|
struct trie *t = (struct trie *)tb->tb_data;
|
|
struct fib_alias *fa, *new_fa;
|
|
struct key_vector *l, *tp;
|
|
struct fib_info *fi;
|
|
u8 plen = cfg->fc_dst_len;
|
|
u8 slen = KEYLENGTH - plen;
|
|
u8 tos = cfg->fc_tos;
|
|
u32 key;
|
|
int err;
|
|
|
|
if (plen > KEYLENGTH)
|
|
return -EINVAL;
|
|
|
|
key = ntohl(cfg->fc_dst);
|
|
|
|
pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
|
|
|
|
if ((plen < KEYLENGTH) && (key << plen))
|
|
return -EINVAL;
|
|
|
|
fi = fib_create_info(cfg);
|
|
if (IS_ERR(fi)) {
|
|
err = PTR_ERR(fi);
|
|
goto err;
|
|
}
|
|
|
|
l = fib_find_node(t, &tp, key);
|
|
fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
|
|
tb->tb_id) : NULL;
|
|
|
|
/* Now fa, if non-NULL, points to the first fib alias
|
|
* with the same keys [prefix,tos,priority], if such key already
|
|
* exists or to the node before which we will insert new one.
|
|
*
|
|
* If fa is NULL, we will need to allocate a new one and
|
|
* insert to the tail of the section matching the suffix length
|
|
* of the new alias.
|
|
*/
|
|
|
|
if (fa && fa->fa_tos == tos &&
|
|
fa->fa_info->fib_priority == fi->fib_priority) {
|
|
struct fib_alias *fa_first, *fa_match;
|
|
|
|
err = -EEXIST;
|
|
if (cfg->fc_nlflags & NLM_F_EXCL)
|
|
goto out;
|
|
|
|
/* We have 2 goals:
|
|
* 1. Find exact match for type, scope, fib_info to avoid
|
|
* duplicate routes
|
|
* 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
|
|
*/
|
|
fa_match = NULL;
|
|
fa_first = fa;
|
|
hlist_for_each_entry_from(fa, fa_list) {
|
|
if ((fa->fa_slen != slen) ||
|
|
(fa->tb_id != tb->tb_id) ||
|
|
(fa->fa_tos != tos))
|
|
break;
|
|
if (fa->fa_info->fib_priority != fi->fib_priority)
|
|
break;
|
|
if (fa->fa_type == cfg->fc_type &&
|
|
fa->fa_info == fi) {
|
|
fa_match = fa;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cfg->fc_nlflags & NLM_F_REPLACE) {
|
|
struct fib_info *fi_drop;
|
|
u8 state;
|
|
|
|
fa = fa_first;
|
|
if (fa_match) {
|
|
if (fa == fa_match)
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
err = -ENOBUFS;
|
|
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
|
|
if (!new_fa)
|
|
goto out;
|
|
|
|
fi_drop = fa->fa_info;
|
|
new_fa->fa_tos = fa->fa_tos;
|
|
new_fa->fa_info = fi;
|
|
new_fa->fa_type = cfg->fc_type;
|
|
state = fa->fa_state;
|
|
new_fa->fa_state = state & ~FA_S_ACCESSED;
|
|
new_fa->fa_slen = fa->fa_slen;
|
|
new_fa->tb_id = tb->tb_id;
|
|
|
|
err = netdev_switch_fib_ipv4_add(key, plen, fi,
|
|
new_fa->fa_tos,
|
|
cfg->fc_type,
|
|
cfg->fc_nlflags,
|
|
tb->tb_id);
|
|
if (err) {
|
|
netdev_switch_fib_ipv4_abort(fi);
|
|
kmem_cache_free(fn_alias_kmem, new_fa);
|
|
goto out;
|
|
}
|
|
|
|
hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
|
|
|
|
alias_free_mem_rcu(fa);
|
|
|
|
fib_release_info(fi_drop);
|
|
if (state & FA_S_ACCESSED)
|
|
rt_cache_flush(cfg->fc_nlinfo.nl_net);
|
|
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
|
|
tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
|
|
|
|
goto succeeded;
|
|
}
|
|
/* Error if we find a perfect match which
|
|
* uses the same scope, type, and nexthop
|
|
* information.
|
|
*/
|
|
if (fa_match)
|
|
goto out;
|
|
|
|
if (!(cfg->fc_nlflags & NLM_F_APPEND))
|
|
fa = fa_first;
|
|
}
|
|
err = -ENOENT;
|
|
if (!(cfg->fc_nlflags & NLM_F_CREATE))
|
|
goto out;
|
|
|
|
err = -ENOBUFS;
|
|
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
|
|
if (!new_fa)
|
|
goto out;
|
|
|
|
new_fa->fa_info = fi;
|
|
new_fa->fa_tos = tos;
|
|
new_fa->fa_type = cfg->fc_type;
|
|
new_fa->fa_state = 0;
|
|
new_fa->fa_slen = slen;
|
|
new_fa->tb_id = tb->tb_id;
|
|
|
|
/* (Optionally) offload fib entry to switch hardware. */
|
|
err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
|
|
cfg->fc_type,
|
|
cfg->fc_nlflags,
|
|
tb->tb_id);
|
|
if (err) {
|
|
netdev_switch_fib_ipv4_abort(fi);
|
|
goto out_free_new_fa;
|
|
}
|
|
|
|
/* Insert new entry to the list. */
|
|
err = fib_insert_alias(t, tp, l, new_fa, fa, key);
|
|
if (err)
|
|
goto out_sw_fib_del;
|
|
|
|
if (!plen)
|
|
tb->tb_num_default++;
|
|
|
|
rt_cache_flush(cfg->fc_nlinfo.nl_net);
|
|
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
|
|
&cfg->fc_nlinfo, 0);
|
|
succeeded:
|
|
return 0;
|
|
|
|
out_sw_fib_del:
|
|
netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
|
|
out_free_new_fa:
|
|
kmem_cache_free(fn_alias_kmem, new_fa);
|
|
out:
|
|
fib_release_info(fi);
|
|
err:
|
|
return err;
|
|
}
|
|
|
|
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
|
|
{
|
|
t_key prefix = n->key;
|
|
|
|
return (key ^ prefix) & (prefix | -prefix);
|
|
}
|
|
|
|
/* should be called with rcu_read_lock */
|
|
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
|
|
struct fib_result *res, int fib_flags)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats __percpu *stats = t->stats;
|
|
#endif
|
|
const t_key key = ntohl(flp->daddr);
|
|
struct key_vector *n, *pn;
|
|
struct fib_alias *fa;
|
|
unsigned long index;
|
|
t_key cindex;
|
|
|
|
pn = t->kv;
|
|
cindex = 0;
|
|
|
|
n = get_child_rcu(pn, cindex);
|
|
if (!n)
|
|
return -EAGAIN;
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->gets);
|
|
#endif
|
|
|
|
/* Step 1: Travel to the longest prefix match in the trie */
|
|
for (;;) {
|
|
index = get_cindex(key, n);
|
|
|
|
/* This bit of code is a bit tricky but it combines multiple
|
|
* checks into a single check. The prefix consists of the
|
|
* prefix plus zeros for the "bits" in the prefix. The index
|
|
* is the difference between the key and this value. From
|
|
* this we can actually derive several pieces of data.
|
|
* if (index >= (1ul << bits))
|
|
* we have a mismatch in skip bits and failed
|
|
* else
|
|
* we know the value is cindex
|
|
*
|
|
* This check is safe even if bits == KEYLENGTH due to the
|
|
* fact that we can only allocate a node with 32 bits if a
|
|
* long is greater than 32 bits.
|
|
*/
|
|
if (index >= (1ul << n->bits))
|
|
break;
|
|
|
|
/* we have found a leaf. Prefixes have already been compared */
|
|
if (IS_LEAF(n))
|
|
goto found;
|
|
|
|
/* only record pn and cindex if we are going to be chopping
|
|
* bits later. Otherwise we are just wasting cycles.
|
|
*/
|
|
if (n->slen > n->pos) {
|
|
pn = n;
|
|
cindex = index;
|
|
}
|
|
|
|
n = get_child_rcu(n, index);
|
|
if (unlikely(!n))
|
|
goto backtrace;
|
|
}
|
|
|
|
/* Step 2: Sort out leaves and begin backtracing for longest prefix */
|
|
for (;;) {
|
|
/* record the pointer where our next node pointer is stored */
|
|
struct key_vector __rcu **cptr = n->tnode;
|
|
|
|
/* This test verifies that none of the bits that differ
|
|
* between the key and the prefix exist in the region of
|
|
* the lsb and higher in the prefix.
|
|
*/
|
|
if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
|
|
goto backtrace;
|
|
|
|
/* exit out and process leaf */
|
|
if (unlikely(IS_LEAF(n)))
|
|
break;
|
|
|
|
/* Don't bother recording parent info. Since we are in
|
|
* prefix match mode we will have to come back to wherever
|
|
* we started this traversal anyway
|
|
*/
|
|
|
|
while ((n = rcu_dereference(*cptr)) == NULL) {
|
|
backtrace:
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
if (!n)
|
|
this_cpu_inc(stats->null_node_hit);
|
|
#endif
|
|
/* If we are at cindex 0 there are no more bits for
|
|
* us to strip at this level so we must ascend back
|
|
* up one level to see if there are any more bits to
|
|
* be stripped there.
|
|
*/
|
|
while (!cindex) {
|
|
t_key pkey = pn->key;
|
|
|
|
/* If we don't have a parent then there is
|
|
* nothing for us to do as we do not have any
|
|
* further nodes to parse.
|
|
*/
|
|
if (IS_TRIE(pn))
|
|
return -EAGAIN;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->backtrack);
|
|
#endif
|
|
/* Get Child's index */
|
|
pn = node_parent_rcu(pn);
|
|
cindex = get_index(pkey, pn);
|
|
}
|
|
|
|
/* strip the least significant bit from the cindex */
|
|
cindex &= cindex - 1;
|
|
|
|
/* grab pointer for next child node */
|
|
cptr = &pn->tnode[cindex];
|
|
}
|
|
}
|
|
|
|
found:
|
|
/* this line carries forward the xor from earlier in the function */
|
|
index = key ^ n->key;
|
|
|
|
/* Step 3: Process the leaf, if that fails fall back to backtracing */
|
|
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
int nhsel, err;
|
|
|
|
if ((index >= (1ul << fa->fa_slen)) &&
|
|
((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
|
|
continue;
|
|
if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
|
|
continue;
|
|
if (fi->fib_dead)
|
|
continue;
|
|
if (fa->fa_info->fib_scope < flp->flowi4_scope)
|
|
continue;
|
|
fib_alias_accessed(fa);
|
|
err = fib_props[fa->fa_type].error;
|
|
if (unlikely(err < 0)) {
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->semantic_match_passed);
|
|
#endif
|
|
return err;
|
|
}
|
|
if (fi->fib_flags & RTNH_F_DEAD)
|
|
continue;
|
|
for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
|
|
const struct fib_nh *nh = &fi->fib_nh[nhsel];
|
|
|
|
if (nh->nh_flags & RTNH_F_DEAD)
|
|
continue;
|
|
if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
|
|
continue;
|
|
|
|
if (!(fib_flags & FIB_LOOKUP_NOREF))
|
|
atomic_inc(&fi->fib_clntref);
|
|
|
|
res->prefixlen = KEYLENGTH - fa->fa_slen;
|
|
res->nh_sel = nhsel;
|
|
res->type = fa->fa_type;
|
|
res->scope = fi->fib_scope;
|
|
res->fi = fi;
|
|
res->table = tb;
|
|
res->fa_head = &n->leaf;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->semantic_match_passed);
|
|
#endif
|
|
return err;
|
|
}
|
|
}
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
this_cpu_inc(stats->semantic_match_miss);
|
|
#endif
|
|
goto backtrace;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fib_table_lookup);
|
|
|
|
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
|
|
struct key_vector *l, struct fib_alias *old)
|
|
{
|
|
/* record the location of the previous list_info entry */
|
|
struct hlist_node **pprev = old->fa_list.pprev;
|
|
struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
|
|
|
|
/* remove the fib_alias from the list */
|
|
hlist_del_rcu(&old->fa_list);
|
|
|
|
/* if we emptied the list this leaf will be freed and we can sort
|
|
* out parent suffix lengths as a part of trie_rebalance
|
|
*/
|
|
if (hlist_empty(&l->leaf)) {
|
|
put_child_root(tp, l->key, NULL);
|
|
node_free(l);
|
|
trie_rebalance(t, tp);
|
|
return;
|
|
}
|
|
|
|
/* only access fa if it is pointing at the last valid hlist_node */
|
|
if (*pprev)
|
|
return;
|
|
|
|
/* update the trie with the latest suffix length */
|
|
l->slen = fa->fa_slen;
|
|
leaf_pull_suffix(tp, l);
|
|
}
|
|
|
|
/* Caller must hold RTNL. */
|
|
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct fib_alias *fa, *fa_to_delete;
|
|
struct key_vector *l, *tp;
|
|
u8 plen = cfg->fc_dst_len;
|
|
u8 slen = KEYLENGTH - plen;
|
|
u8 tos = cfg->fc_tos;
|
|
u32 key;
|
|
|
|
if (plen > KEYLENGTH)
|
|
return -EINVAL;
|
|
|
|
key = ntohl(cfg->fc_dst);
|
|
|
|
if ((plen < KEYLENGTH) && (key << plen))
|
|
return -EINVAL;
|
|
|
|
l = fib_find_node(t, &tp, key);
|
|
if (!l)
|
|
return -ESRCH;
|
|
|
|
fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
|
|
if (!fa)
|
|
return -ESRCH;
|
|
|
|
pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
|
|
|
|
fa_to_delete = NULL;
|
|
hlist_for_each_entry_from(fa, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
if ((fa->fa_slen != slen) ||
|
|
(fa->tb_id != tb->tb_id) ||
|
|
(fa->fa_tos != tos))
|
|
break;
|
|
|
|
if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
|
|
(cfg->fc_scope == RT_SCOPE_NOWHERE ||
|
|
fa->fa_info->fib_scope == cfg->fc_scope) &&
|
|
(!cfg->fc_prefsrc ||
|
|
fi->fib_prefsrc == cfg->fc_prefsrc) &&
|
|
(!cfg->fc_protocol ||
|
|
fi->fib_protocol == cfg->fc_protocol) &&
|
|
fib_nh_match(cfg, fi) == 0) {
|
|
fa_to_delete = fa;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!fa_to_delete)
|
|
return -ESRCH;
|
|
|
|
netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
|
|
cfg->fc_type, tb->tb_id);
|
|
|
|
rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
|
|
&cfg->fc_nlinfo, 0);
|
|
|
|
if (!plen)
|
|
tb->tb_num_default--;
|
|
|
|
fib_remove_alias(t, tp, l, fa_to_delete);
|
|
|
|
if (fa_to_delete->fa_state & FA_S_ACCESSED)
|
|
rt_cache_flush(cfg->fc_nlinfo.nl_net);
|
|
|
|
fib_release_info(fa_to_delete->fa_info);
|
|
alias_free_mem_rcu(fa_to_delete);
|
|
return 0;
|
|
}
|
|
|
|
/* Scan for the next leaf starting at the provided key value */
|
|
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
|
|
{
|
|
struct key_vector *pn, *n = *tn;
|
|
unsigned long cindex;
|
|
|
|
/* this loop is meant to try and find the key in the trie */
|
|
do {
|
|
/* record parent and next child index */
|
|
pn = n;
|
|
cindex = key ? get_index(key, pn) : 0;
|
|
|
|
if (cindex >> pn->bits)
|
|
break;
|
|
|
|
/* descend into the next child */
|
|
n = get_child_rcu(pn, cindex++);
|
|
if (!n)
|
|
break;
|
|
|
|
/* guarantee forward progress on the keys */
|
|
if (IS_LEAF(n) && (n->key >= key))
|
|
goto found;
|
|
} while (IS_TNODE(n));
|
|
|
|
/* this loop will search for the next leaf with a greater key */
|
|
while (!IS_TRIE(pn)) {
|
|
/* if we exhausted the parent node we will need to climb */
|
|
if (cindex >= (1ul << pn->bits)) {
|
|
t_key pkey = pn->key;
|
|
|
|
pn = node_parent_rcu(pn);
|
|
cindex = get_index(pkey, pn) + 1;
|
|
continue;
|
|
}
|
|
|
|
/* grab the next available node */
|
|
n = get_child_rcu(pn, cindex++);
|
|
if (!n)
|
|
continue;
|
|
|
|
/* no need to compare keys since we bumped the index */
|
|
if (IS_LEAF(n))
|
|
goto found;
|
|
|
|
/* Rescan start scanning in new node */
|
|
pn = n;
|
|
cindex = 0;
|
|
}
|
|
|
|
*tn = pn;
|
|
return NULL; /* Root of trie */
|
|
found:
|
|
/* if we are at the limit for keys just return NULL for the tnode */
|
|
*tn = pn;
|
|
return n;
|
|
}
|
|
|
|
static void fib_trie_free(struct fib_table *tb)
|
|
{
|
|
struct trie *t = (struct trie *)tb->tb_data;
|
|
struct key_vector *pn = t->kv;
|
|
unsigned long cindex = 1;
|
|
struct hlist_node *tmp;
|
|
struct fib_alias *fa;
|
|
|
|
/* walk trie in reverse order and free everything */
|
|
for (;;) {
|
|
struct key_vector *n;
|
|
|
|
if (!(cindex--)) {
|
|
t_key pkey = pn->key;
|
|
|
|
if (IS_TRIE(pn))
|
|
break;
|
|
|
|
n = pn;
|
|
pn = node_parent(pn);
|
|
|
|
/* drop emptied tnode */
|
|
put_child_root(pn, n->key, NULL);
|
|
node_free(n);
|
|
|
|
cindex = get_index(pkey, pn);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* grab the next available node */
|
|
n = get_child(pn, cindex);
|
|
if (!n)
|
|
continue;
|
|
|
|
if (IS_TNODE(n)) {
|
|
/* record pn and cindex for leaf walking */
|
|
pn = n;
|
|
cindex = 1ul << n->bits;
|
|
|
|
continue;
|
|
}
|
|
|
|
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
|
|
hlist_del_rcu(&fa->fa_list);
|
|
alias_free_mem_rcu(fa);
|
|
}
|
|
|
|
put_child_root(pn, n->key, NULL);
|
|
node_free(n);
|
|
}
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
free_percpu(t->stats);
|
|
#endif
|
|
kfree(tb);
|
|
}
|
|
|
|
struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
|
|
{
|
|
struct trie *ot = (struct trie *)oldtb->tb_data;
|
|
struct key_vector *l, *tp = ot->kv;
|
|
struct fib_table *local_tb;
|
|
struct fib_alias *fa;
|
|
struct trie *lt;
|
|
t_key key = 0;
|
|
|
|
if (oldtb->tb_data == oldtb->__data)
|
|
return oldtb;
|
|
|
|
local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
|
|
if (!local_tb)
|
|
return NULL;
|
|
|
|
lt = (struct trie *)local_tb->tb_data;
|
|
|
|
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
|
|
struct key_vector *local_l = NULL, *local_tp;
|
|
|
|
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
|
|
struct fib_alias *new_fa;
|
|
|
|
if (local_tb->tb_id != fa->tb_id)
|
|
continue;
|
|
|
|
/* clone fa for new local table */
|
|
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
|
|
if (!new_fa)
|
|
goto out;
|
|
|
|
memcpy(new_fa, fa, sizeof(*fa));
|
|
|
|
/* insert clone into table */
|
|
if (!local_l)
|
|
local_l = fib_find_node(lt, &local_tp, l->key);
|
|
|
|
if (fib_insert_alias(lt, local_tp, local_l, new_fa,
|
|
NULL, l->key))
|
|
goto out;
|
|
}
|
|
|
|
/* stop loop if key wrapped back to 0 */
|
|
key = l->key + 1;
|
|
if (key < l->key)
|
|
break;
|
|
}
|
|
|
|
return local_tb;
|
|
out:
|
|
fib_trie_free(local_tb);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Caller must hold RTNL */
|
|
void fib_table_flush_external(struct fib_table *tb)
|
|
{
|
|
struct trie *t = (struct trie *)tb->tb_data;
|
|
struct key_vector *pn = t->kv;
|
|
unsigned long cindex = 1;
|
|
struct hlist_node *tmp;
|
|
struct fib_alias *fa;
|
|
|
|
/* walk trie in reverse order */
|
|
for (;;) {
|
|
unsigned char slen = 0;
|
|
struct key_vector *n;
|
|
|
|
if (!(cindex--)) {
|
|
t_key pkey = pn->key;
|
|
|
|
/* cannot resize the trie vector */
|
|
if (IS_TRIE(pn))
|
|
break;
|
|
|
|
/* resize completed node */
|
|
pn = resize(t, pn);
|
|
cindex = get_index(pkey, pn);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* grab the next available node */
|
|
n = get_child(pn, cindex);
|
|
if (!n)
|
|
continue;
|
|
|
|
if (IS_TNODE(n)) {
|
|
/* record pn and cindex for leaf walking */
|
|
pn = n;
|
|
cindex = 1ul << n->bits;
|
|
|
|
continue;
|
|
}
|
|
|
|
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
/* if alias was cloned to local then we just
|
|
* need to remove the local copy from main
|
|
*/
|
|
if (tb->tb_id != fa->tb_id) {
|
|
hlist_del_rcu(&fa->fa_list);
|
|
alias_free_mem_rcu(fa);
|
|
continue;
|
|
}
|
|
|
|
/* record local slen */
|
|
slen = fa->fa_slen;
|
|
|
|
if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
|
|
continue;
|
|
|
|
netdev_switch_fib_ipv4_del(n->key,
|
|
KEYLENGTH - fa->fa_slen,
|
|
fi, fa->fa_tos,
|
|
fa->fa_type, tb->tb_id);
|
|
}
|
|
|
|
/* update leaf slen */
|
|
n->slen = slen;
|
|
|
|
if (hlist_empty(&n->leaf)) {
|
|
put_child_root(pn, n->key, NULL);
|
|
node_free(n);
|
|
} else {
|
|
leaf_pull_suffix(pn, n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Caller must hold RTNL. */
|
|
int fib_table_flush(struct fib_table *tb)
|
|
{
|
|
struct trie *t = (struct trie *)tb->tb_data;
|
|
struct key_vector *pn = t->kv;
|
|
unsigned long cindex = 1;
|
|
struct hlist_node *tmp;
|
|
struct fib_alias *fa;
|
|
int found = 0;
|
|
|
|
/* walk trie in reverse order */
|
|
for (;;) {
|
|
unsigned char slen = 0;
|
|
struct key_vector *n;
|
|
|
|
if (!(cindex--)) {
|
|
t_key pkey = pn->key;
|
|
|
|
/* cannot resize the trie vector */
|
|
if (IS_TRIE(pn))
|
|
break;
|
|
|
|
/* resize completed node */
|
|
pn = resize(t, pn);
|
|
cindex = get_index(pkey, pn);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* grab the next available node */
|
|
n = get_child(pn, cindex);
|
|
if (!n)
|
|
continue;
|
|
|
|
if (IS_TNODE(n)) {
|
|
/* record pn and cindex for leaf walking */
|
|
pn = n;
|
|
cindex = 1ul << n->bits;
|
|
|
|
continue;
|
|
}
|
|
|
|
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
|
|
slen = fa->fa_slen;
|
|
continue;
|
|
}
|
|
|
|
netdev_switch_fib_ipv4_del(n->key,
|
|
KEYLENGTH - fa->fa_slen,
|
|
fi, fa->fa_tos,
|
|
fa->fa_type, tb->tb_id);
|
|
hlist_del_rcu(&fa->fa_list);
|
|
fib_release_info(fa->fa_info);
|
|
alias_free_mem_rcu(fa);
|
|
found++;
|
|
}
|
|
|
|
/* update leaf slen */
|
|
n->slen = slen;
|
|
|
|
if (hlist_empty(&n->leaf)) {
|
|
put_child_root(pn, n->key, NULL);
|
|
node_free(n);
|
|
} else {
|
|
leaf_pull_suffix(pn, n);
|
|
}
|
|
}
|
|
|
|
pr_debug("trie_flush found=%d\n", found);
|
|
return found;
|
|
}
|
|
|
|
static void __trie_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct fib_table *tb = container_of(head, struct fib_table, rcu);
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie *t = (struct trie *)tb->tb_data;
|
|
|
|
if (tb->tb_data == tb->__data)
|
|
free_percpu(t->stats);
|
|
#endif /* CONFIG_IP_FIB_TRIE_STATS */
|
|
kfree(tb);
|
|
}
|
|
|
|
void fib_free_table(struct fib_table *tb)
|
|
{
|
|
call_rcu(&tb->rcu, __trie_free_rcu);
|
|
}
|
|
|
|
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
|
|
struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
__be32 xkey = htonl(l->key);
|
|
struct fib_alias *fa;
|
|
int i, s_i;
|
|
|
|
s_i = cb->args[4];
|
|
i = 0;
|
|
|
|
/* rcu_read_lock is hold by caller */
|
|
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
|
|
if (i < s_i) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (tb->tb_id != fa->tb_id) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWROUTE,
|
|
tb->tb_id,
|
|
fa->fa_type,
|
|
xkey,
|
|
KEYLENGTH - fa->fa_slen,
|
|
fa->fa_tos,
|
|
fa->fa_info, NLM_F_MULTI) < 0) {
|
|
cb->args[4] = i;
|
|
return -1;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
cb->args[4] = i;
|
|
return skb->len;
|
|
}
|
|
|
|
/* rcu_read_lock needs to be hold by caller from readside */
|
|
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
|
|
struct netlink_callback *cb)
|
|
{
|
|
struct trie *t = (struct trie *)tb->tb_data;
|
|
struct key_vector *l, *tp = t->kv;
|
|
/* Dump starting at last key.
|
|
* Note: 0.0.0.0/0 (ie default) is first key.
|
|
*/
|
|
int count = cb->args[2];
|
|
t_key key = cb->args[3];
|
|
|
|
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
|
|
if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
|
|
cb->args[3] = key;
|
|
cb->args[2] = count;
|
|
return -1;
|
|
}
|
|
|
|
++count;
|
|
key = l->key + 1;
|
|
|
|
memset(&cb->args[4], 0,
|
|
sizeof(cb->args) - 4*sizeof(cb->args[0]));
|
|
|
|
/* stop loop if key wrapped back to 0 */
|
|
if (key < l->key)
|
|
break;
|
|
}
|
|
|
|
cb->args[3] = key;
|
|
cb->args[2] = count;
|
|
|
|
return skb->len;
|
|
}
|
|
|
|
void __init fib_trie_init(void)
|
|
{
|
|
fn_alias_kmem = kmem_cache_create("ip_fib_alias",
|
|
sizeof(struct fib_alias),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
|
|
LEAF_SIZE,
|
|
0, SLAB_PANIC, NULL);
|
|
}
|
|
|
|
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
|
|
{
|
|
struct fib_table *tb;
|
|
struct trie *t;
|
|
size_t sz = sizeof(*tb);
|
|
|
|
if (!alias)
|
|
sz += sizeof(struct trie);
|
|
|
|
tb = kzalloc(sz, GFP_KERNEL);
|
|
if (!tb)
|
|
return NULL;
|
|
|
|
tb->tb_id = id;
|
|
tb->tb_default = -1;
|
|
tb->tb_num_default = 0;
|
|
tb->tb_data = (alias ? alias->__data : tb->__data);
|
|
|
|
if (alias)
|
|
return tb;
|
|
|
|
t = (struct trie *) tb->tb_data;
|
|
t->kv[0].pos = KEYLENGTH;
|
|
t->kv[0].slen = KEYLENGTH;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats = alloc_percpu(struct trie_use_stats);
|
|
if (!t->stats) {
|
|
kfree(tb);
|
|
tb = NULL;
|
|
}
|
|
#endif
|
|
|
|
return tb;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* Depth first Trie walk iterator */
|
|
struct fib_trie_iter {
|
|
struct seq_net_private p;
|
|
struct fib_table *tb;
|
|
struct key_vector *tnode;
|
|
unsigned int index;
|
|
unsigned int depth;
|
|
};
|
|
|
|
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
|
|
{
|
|
unsigned long cindex = iter->index;
|
|
struct key_vector *pn = iter->tnode;
|
|
t_key pkey;
|
|
|
|
pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
|
|
iter->tnode, iter->index, iter->depth);
|
|
|
|
while (!IS_TRIE(pn)) {
|
|
while (cindex < child_length(pn)) {
|
|
struct key_vector *n = get_child_rcu(pn, cindex++);
|
|
|
|
if (!n)
|
|
continue;
|
|
|
|
if (IS_LEAF(n)) {
|
|
iter->tnode = pn;
|
|
iter->index = cindex;
|
|
} else {
|
|
/* push down one level */
|
|
iter->tnode = n;
|
|
iter->index = 0;
|
|
++iter->depth;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Current node exhausted, pop back up */
|
|
pkey = pn->key;
|
|
pn = node_parent_rcu(pn);
|
|
cindex = get_index(pkey, pn) + 1;
|
|
--iter->depth;
|
|
}
|
|
|
|
/* record root node so further searches know we are done */
|
|
iter->tnode = pn;
|
|
iter->index = 0;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
|
|
struct trie *t)
|
|
{
|
|
struct key_vector *n, *pn = t->kv;
|
|
|
|
if (!t)
|
|
return NULL;
|
|
|
|
n = rcu_dereference(pn->tnode[0]);
|
|
if (!n)
|
|
return NULL;
|
|
|
|
if (IS_TNODE(n)) {
|
|
iter->tnode = n;
|
|
iter->index = 0;
|
|
iter->depth = 1;
|
|
} else {
|
|
iter->tnode = pn;
|
|
iter->index = 0;
|
|
iter->depth = 0;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
|
|
{
|
|
struct key_vector *n;
|
|
struct fib_trie_iter iter;
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
rcu_read_lock();
|
|
for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
|
|
if (IS_LEAF(n)) {
|
|
struct fib_alias *fa;
|
|
|
|
s->leaves++;
|
|
s->totdepth += iter.depth;
|
|
if (iter.depth > s->maxdepth)
|
|
s->maxdepth = iter.depth;
|
|
|
|
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
|
|
++s->prefixes;
|
|
} else {
|
|
s->tnodes++;
|
|
if (n->bits < MAX_STAT_DEPTH)
|
|
s->nodesizes[n->bits]++;
|
|
s->nullpointers += tn_info(n)->empty_children;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* This outputs /proc/net/fib_triestats
|
|
*/
|
|
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
|
|
{
|
|
unsigned int i, max, pointers, bytes, avdepth;
|
|
|
|
if (stat->leaves)
|
|
avdepth = stat->totdepth*100 / stat->leaves;
|
|
else
|
|
avdepth = 0;
|
|
|
|
seq_printf(seq, "\tAver depth: %u.%02d\n",
|
|
avdepth / 100, avdepth % 100);
|
|
seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
|
|
|
|
seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
|
|
bytes = LEAF_SIZE * stat->leaves;
|
|
|
|
seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
|
|
bytes += sizeof(struct fib_alias) * stat->prefixes;
|
|
|
|
seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
|
|
bytes += TNODE_SIZE(0) * stat->tnodes;
|
|
|
|
max = MAX_STAT_DEPTH;
|
|
while (max > 0 && stat->nodesizes[max-1] == 0)
|
|
max--;
|
|
|
|
pointers = 0;
|
|
for (i = 1; i < max; i++)
|
|
if (stat->nodesizes[i] != 0) {
|
|
seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
|
|
pointers += (1<<i) * stat->nodesizes[i];
|
|
}
|
|
seq_putc(seq, '\n');
|
|
seq_printf(seq, "\tPointers: %u\n", pointers);
|
|
|
|
bytes += sizeof(struct key_vector *) * pointers;
|
|
seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
|
|
seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
|
|
}
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
static void trie_show_usage(struct seq_file *seq,
|
|
const struct trie_use_stats __percpu *stats)
|
|
{
|
|
struct trie_use_stats s = { 0 };
|
|
int cpu;
|
|
|
|
/* loop through all of the CPUs and gather up the stats */
|
|
for_each_possible_cpu(cpu) {
|
|
const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
|
|
|
|
s.gets += pcpu->gets;
|
|
s.backtrack += pcpu->backtrack;
|
|
s.semantic_match_passed += pcpu->semantic_match_passed;
|
|
s.semantic_match_miss += pcpu->semantic_match_miss;
|
|
s.null_node_hit += pcpu->null_node_hit;
|
|
s.resize_node_skipped += pcpu->resize_node_skipped;
|
|
}
|
|
|
|
seq_printf(seq, "\nCounters:\n---------\n");
|
|
seq_printf(seq, "gets = %u\n", s.gets);
|
|
seq_printf(seq, "backtracks = %u\n", s.backtrack);
|
|
seq_printf(seq, "semantic match passed = %u\n",
|
|
s.semantic_match_passed);
|
|
seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
|
|
seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
|
|
seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
|
|
}
|
|
#endif /* CONFIG_IP_FIB_TRIE_STATS */
|
|
|
|
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
|
|
{
|
|
if (tb->tb_id == RT_TABLE_LOCAL)
|
|
seq_puts(seq, "Local:\n");
|
|
else if (tb->tb_id == RT_TABLE_MAIN)
|
|
seq_puts(seq, "Main:\n");
|
|
else
|
|
seq_printf(seq, "Id %d:\n", tb->tb_id);
|
|
}
|
|
|
|
|
|
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct net *net = (struct net *)seq->private;
|
|
unsigned int h;
|
|
|
|
seq_printf(seq,
|
|
"Basic info: size of leaf:"
|
|
" %Zd bytes, size of tnode: %Zd bytes.\n",
|
|
LEAF_SIZE, TNODE_SIZE(0));
|
|
|
|
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
|
|
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
|
|
struct fib_table *tb;
|
|
|
|
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct trie_stat stat;
|
|
|
|
if (!t)
|
|
continue;
|
|
|
|
fib_table_print(seq, tb);
|
|
|
|
trie_collect_stats(t, &stat);
|
|
trie_show_stats(seq, &stat);
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
trie_show_usage(seq, t->stats);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open_net(inode, file, fib_triestat_seq_show);
|
|
}
|
|
|
|
static const struct file_operations fib_triestat_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_triestat_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release_net,
|
|
};
|
|
|
|
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
|
|
{
|
|
struct fib_trie_iter *iter = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
loff_t idx = 0;
|
|
unsigned int h;
|
|
|
|
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
|
|
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
|
|
struct fib_table *tb;
|
|
|
|
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
|
|
struct key_vector *n;
|
|
|
|
for (n = fib_trie_get_first(iter,
|
|
(struct trie *) tb->tb_data);
|
|
n; n = fib_trie_get_next(iter))
|
|
if (pos == idx++) {
|
|
iter->tb = tb;
|
|
return n;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
|
|
__acquires(RCU)
|
|
{
|
|
rcu_read_lock();
|
|
return fib_trie_get_idx(seq, *pos);
|
|
}
|
|
|
|
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct fib_trie_iter *iter = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
struct fib_table *tb = iter->tb;
|
|
struct hlist_node *tb_node;
|
|
unsigned int h;
|
|
struct key_vector *n;
|
|
|
|
++*pos;
|
|
/* next node in same table */
|
|
n = fib_trie_get_next(iter);
|
|
if (n)
|
|
return n;
|
|
|
|
/* walk rest of this hash chain */
|
|
h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
|
|
while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
|
|
tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
|
|
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
|
|
if (n)
|
|
goto found;
|
|
}
|
|
|
|
/* new hash chain */
|
|
while (++h < FIB_TABLE_HASHSZ) {
|
|
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
|
|
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
|
|
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
|
|
if (n)
|
|
goto found;
|
|
}
|
|
}
|
|
return NULL;
|
|
|
|
found:
|
|
iter->tb = tb;
|
|
return n;
|
|
}
|
|
|
|
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
|
|
__releases(RCU)
|
|
{
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void seq_indent(struct seq_file *seq, int n)
|
|
{
|
|
while (n-- > 0)
|
|
seq_puts(seq, " ");
|
|
}
|
|
|
|
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
|
|
{
|
|
switch (s) {
|
|
case RT_SCOPE_UNIVERSE: return "universe";
|
|
case RT_SCOPE_SITE: return "site";
|
|
case RT_SCOPE_LINK: return "link";
|
|
case RT_SCOPE_HOST: return "host";
|
|
case RT_SCOPE_NOWHERE: return "nowhere";
|
|
default:
|
|
snprintf(buf, len, "scope=%d", s);
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
static const char *const rtn_type_names[__RTN_MAX] = {
|
|
[RTN_UNSPEC] = "UNSPEC",
|
|
[RTN_UNICAST] = "UNICAST",
|
|
[RTN_LOCAL] = "LOCAL",
|
|
[RTN_BROADCAST] = "BROADCAST",
|
|
[RTN_ANYCAST] = "ANYCAST",
|
|
[RTN_MULTICAST] = "MULTICAST",
|
|
[RTN_BLACKHOLE] = "BLACKHOLE",
|
|
[RTN_UNREACHABLE] = "UNREACHABLE",
|
|
[RTN_PROHIBIT] = "PROHIBIT",
|
|
[RTN_THROW] = "THROW",
|
|
[RTN_NAT] = "NAT",
|
|
[RTN_XRESOLVE] = "XRESOLVE",
|
|
};
|
|
|
|
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
|
|
{
|
|
if (t < __RTN_MAX && rtn_type_names[t])
|
|
return rtn_type_names[t];
|
|
snprintf(buf, len, "type %u", t);
|
|
return buf;
|
|
}
|
|
|
|
/* Pretty print the trie */
|
|
static int fib_trie_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
const struct fib_trie_iter *iter = seq->private;
|
|
struct key_vector *n = v;
|
|
|
|
if (IS_TRIE(node_parent_rcu(n)))
|
|
fib_table_print(seq, iter->tb);
|
|
|
|
if (IS_TNODE(n)) {
|
|
__be32 prf = htonl(n->key);
|
|
|
|
seq_indent(seq, iter->depth-1);
|
|
seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
|
|
&prf, KEYLENGTH - n->pos - n->bits, n->bits,
|
|
tn_info(n)->full_children,
|
|
tn_info(n)->empty_children);
|
|
} else {
|
|
__be32 val = htonl(n->key);
|
|
struct fib_alias *fa;
|
|
|
|
seq_indent(seq, iter->depth);
|
|
seq_printf(seq, " |-- %pI4\n", &val);
|
|
|
|
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
|
|
char buf1[32], buf2[32];
|
|
|
|
seq_indent(seq, iter->depth + 1);
|
|
seq_printf(seq, " /%zu %s %s",
|
|
KEYLENGTH - fa->fa_slen,
|
|
rtn_scope(buf1, sizeof(buf1),
|
|
fa->fa_info->fib_scope),
|
|
rtn_type(buf2, sizeof(buf2),
|
|
fa->fa_type));
|
|
if (fa->fa_tos)
|
|
seq_printf(seq, " tos=%d", fa->fa_tos);
|
|
seq_putc(seq, '\n');
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations fib_trie_seq_ops = {
|
|
.start = fib_trie_seq_start,
|
|
.next = fib_trie_seq_next,
|
|
.stop = fib_trie_seq_stop,
|
|
.show = fib_trie_seq_show,
|
|
};
|
|
|
|
static int fib_trie_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open_net(inode, file, &fib_trie_seq_ops,
|
|
sizeof(struct fib_trie_iter));
|
|
}
|
|
|
|
static const struct file_operations fib_trie_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_trie_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_net,
|
|
};
|
|
|
|
struct fib_route_iter {
|
|
struct seq_net_private p;
|
|
struct fib_table *main_tb;
|
|
struct key_vector *tnode;
|
|
loff_t pos;
|
|
t_key key;
|
|
};
|
|
|
|
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
|
|
loff_t pos)
|
|
{
|
|
struct fib_table *tb = iter->main_tb;
|
|
struct key_vector *l, **tp = &iter->tnode;
|
|
struct trie *t;
|
|
t_key key;
|
|
|
|
/* use cache location of next-to-find key */
|
|
if (iter->pos > 0 && pos >= iter->pos) {
|
|
pos -= iter->pos;
|
|
key = iter->key;
|
|
} else {
|
|
t = (struct trie *)tb->tb_data;
|
|
iter->tnode = t->kv;
|
|
iter->pos = 0;
|
|
key = 0;
|
|
}
|
|
|
|
while ((l = leaf_walk_rcu(tp, key)) != NULL) {
|
|
key = l->key + 1;
|
|
iter->pos++;
|
|
|
|
if (pos-- <= 0)
|
|
break;
|
|
|
|
l = NULL;
|
|
|
|
/* handle unlikely case of a key wrap */
|
|
if (!key)
|
|
break;
|
|
}
|
|
|
|
if (l)
|
|
iter->key = key; /* remember it */
|
|
else
|
|
iter->pos = 0; /* forget it */
|
|
|
|
return l;
|
|
}
|
|
|
|
static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
|
|
__acquires(RCU)
|
|
{
|
|
struct fib_route_iter *iter = seq->private;
|
|
struct fib_table *tb;
|
|
struct trie *t;
|
|
|
|
rcu_read_lock();
|
|
|
|
tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
|
|
if (!tb)
|
|
return NULL;
|
|
|
|
iter->main_tb = tb;
|
|
|
|
if (*pos != 0)
|
|
return fib_route_get_idx(iter, *pos);
|
|
|
|
t = (struct trie *)tb->tb_data;
|
|
iter->tnode = t->kv;
|
|
iter->pos = 0;
|
|
iter->key = 0;
|
|
|
|
return SEQ_START_TOKEN;
|
|
}
|
|
|
|
static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct fib_route_iter *iter = seq->private;
|
|
struct key_vector *l = NULL;
|
|
t_key key = iter->key;
|
|
|
|
++*pos;
|
|
|
|
/* only allow key of 0 for start of sequence */
|
|
if ((v == SEQ_START_TOKEN) || key)
|
|
l = leaf_walk_rcu(&iter->tnode, key);
|
|
|
|
if (l) {
|
|
iter->key = l->key + 1;
|
|
iter->pos++;
|
|
} else {
|
|
iter->pos = 0;
|
|
}
|
|
|
|
return l;
|
|
}
|
|
|
|
static void fib_route_seq_stop(struct seq_file *seq, void *v)
|
|
__releases(RCU)
|
|
{
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
|
|
{
|
|
unsigned int flags = 0;
|
|
|
|
if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
|
|
flags = RTF_REJECT;
|
|
if (fi && fi->fib_nh->nh_gw)
|
|
flags |= RTF_GATEWAY;
|
|
if (mask == htonl(0xFFFFFFFF))
|
|
flags |= RTF_HOST;
|
|
flags |= RTF_UP;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* This outputs /proc/net/route.
|
|
* The format of the file is not supposed to be changed
|
|
* and needs to be same as fib_hash output to avoid breaking
|
|
* legacy utilities
|
|
*/
|
|
static int fib_route_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct fib_route_iter *iter = seq->private;
|
|
struct fib_table *tb = iter->main_tb;
|
|
struct fib_alias *fa;
|
|
struct key_vector *l = v;
|
|
__be32 prefix;
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
|
|
"\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
|
|
"\tWindow\tIRTT");
|
|
return 0;
|
|
}
|
|
|
|
prefix = htonl(l->key);
|
|
|
|
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
|
|
const struct fib_info *fi = fa->fa_info;
|
|
__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
|
|
unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
|
|
|
|
if ((fa->fa_type == RTN_BROADCAST) ||
|
|
(fa->fa_type == RTN_MULTICAST))
|
|
continue;
|
|
|
|
if (fa->tb_id != tb->tb_id)
|
|
continue;
|
|
|
|
seq_setwidth(seq, 127);
|
|
|
|
if (fi)
|
|
seq_printf(seq,
|
|
"%s\t%08X\t%08X\t%04X\t%d\t%u\t"
|
|
"%d\t%08X\t%d\t%u\t%u",
|
|
fi->fib_dev ? fi->fib_dev->name : "*",
|
|
prefix,
|
|
fi->fib_nh->nh_gw, flags, 0, 0,
|
|
fi->fib_priority,
|
|
mask,
|
|
(fi->fib_advmss ?
|
|
fi->fib_advmss + 40 : 0),
|
|
fi->fib_window,
|
|
fi->fib_rtt >> 3);
|
|
else
|
|
seq_printf(seq,
|
|
"*\t%08X\t%08X\t%04X\t%d\t%u\t"
|
|
"%d\t%08X\t%d\t%u\t%u",
|
|
prefix, 0, flags, 0, 0, 0,
|
|
mask, 0, 0, 0);
|
|
|
|
seq_pad(seq, '\n');
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations fib_route_seq_ops = {
|
|
.start = fib_route_seq_start,
|
|
.next = fib_route_seq_next,
|
|
.stop = fib_route_seq_stop,
|
|
.show = fib_route_seq_show,
|
|
};
|
|
|
|
static int fib_route_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open_net(inode, file, &fib_route_seq_ops,
|
|
sizeof(struct fib_route_iter));
|
|
}
|
|
|
|
static const struct file_operations fib_route_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_route_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_net,
|
|
};
|
|
|
|
int __net_init fib_proc_init(struct net *net)
|
|
{
|
|
if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
|
|
goto out1;
|
|
|
|
if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
|
|
&fib_triestat_fops))
|
|
goto out2;
|
|
|
|
if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
|
|
goto out3;
|
|
|
|
return 0;
|
|
|
|
out3:
|
|
remove_proc_entry("fib_triestat", net->proc_net);
|
|
out2:
|
|
remove_proc_entry("fib_trie", net->proc_net);
|
|
out1:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void __net_exit fib_proc_exit(struct net *net)
|
|
{
|
|
remove_proc_entry("fib_trie", net->proc_net);
|
|
remove_proc_entry("fib_triestat", net->proc_net);
|
|
remove_proc_entry("route", net->proc_net);
|
|
}
|
|
|
|
#endif /* CONFIG_PROC_FS */
|