mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
2c99a547bc
If device reset/suspend/resume failed for some reason, dqm lock is hold forever and this causes deadlock. Below is a kernel backtrace when application open kfd after suspend/resume failed. Instead of holding dqm lock in pre_reset and releasing dqm lock in post_reset, add dqm->sched_running flag which is modified in dqm->ops.start and dqm->ops.stop. The flag doesn't need lock protection because write/read are all inside dqm lock. For HWS case, map_queues_cpsch and unmap_queues_cpsch checks sched_running flag before sending the updated runlist. v2: For no-HWS case, when device is stopped, don't call load/destroy_mqd for eviction, restore and create queue, and avoid debugfs dump hdqs. Backtrace of dqm lock deadlock: [Thu Oct 17 16:43:37 2019] INFO: task rocminfo:3024 blocked for more than 120 seconds. [Thu Oct 17 16:43:37 2019] Not tainted 5.0.0-rc1-kfd-compute-rocm-dkms-no-npi-1131 #1 [Thu Oct 17 16:43:37 2019] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [Thu Oct 17 16:43:37 2019] rocminfo D 0 3024 2947 0x80000000 [Thu Oct 17 16:43:37 2019] Call Trace: [Thu Oct 17 16:43:37 2019] ? __schedule+0x3d9/0x8a0 [Thu Oct 17 16:43:37 2019] schedule+0x32/0x70 [Thu Oct 17 16:43:37 2019] schedule_preempt_disabled+0xa/0x10 [Thu Oct 17 16:43:37 2019] __mutex_lock.isra.9+0x1e3/0x4e0 [Thu Oct 17 16:43:37 2019] ? __call_srcu+0x264/0x3b0 [Thu Oct 17 16:43:37 2019] ? process_termination_cpsch+0x24/0x2f0 [amdgpu] [Thu Oct 17 16:43:37 2019] process_termination_cpsch+0x24/0x2f0 [amdgpu] [Thu Oct 17 16:43:37 2019] kfd_process_dequeue_from_all_devices+0x42/0x60 [amdgpu] [Thu Oct 17 16:43:37 2019] kfd_process_notifier_release+0x1be/0x220 [amdgpu] [Thu Oct 17 16:43:37 2019] __mmu_notifier_release+0x3e/0xc0 [Thu Oct 17 16:43:37 2019] exit_mmap+0x160/0x1a0 [Thu Oct 17 16:43:37 2019] ? __handle_mm_fault+0xba3/0x1200 [Thu Oct 17 16:43:37 2019] ? exit_robust_list+0x5a/0x110 [Thu Oct 17 16:43:37 2019] mmput+0x4a/0x120 [Thu Oct 17 16:43:37 2019] do_exit+0x284/0xb20 [Thu Oct 17 16:43:37 2019] ? handle_mm_fault+0xfa/0x200 [Thu Oct 17 16:43:37 2019] do_group_exit+0x3a/0xa0 [Thu Oct 17 16:43:37 2019] __x64_sys_exit_group+0x14/0x20 [Thu Oct 17 16:43:37 2019] do_syscall_64+0x4f/0x100 [Thu Oct 17 16:43:37 2019] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Suggested-by: Felix Kuehling <Felix.Kuehling@amd.com> Signed-off-by: Philip Yang <Philip.Yang@amd.com> Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1163 lines
31 KiB
C
1163 lines
31 KiB
C
/*
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include "kfd_priv.h"
|
|
#include "kfd_device_queue_manager.h"
|
|
#include "kfd_pm4_headers_vi.h"
|
|
#include "cwsr_trap_handler.h"
|
|
#include "kfd_iommu.h"
|
|
#include "amdgpu_amdkfd.h"
|
|
|
|
#define MQD_SIZE_ALIGNED 768
|
|
|
|
/*
|
|
* kfd_locked is used to lock the kfd driver during suspend or reset
|
|
* once locked, kfd driver will stop any further GPU execution.
|
|
* create process (open) will return -EAGAIN.
|
|
*/
|
|
static atomic_t kfd_locked = ATOMIC_INIT(0);
|
|
|
|
#ifdef CONFIG_DRM_AMDGPU_CIK
|
|
extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
|
|
#endif
|
|
extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
|
|
extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
|
|
extern const struct kfd2kgd_calls arcturus_kfd2kgd;
|
|
extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
|
|
|
|
static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
|
|
#ifdef KFD_SUPPORT_IOMMU_V2
|
|
#ifdef CONFIG_DRM_AMDGPU_CIK
|
|
[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
|
|
#endif
|
|
[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
|
|
[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
|
|
#endif
|
|
#ifdef CONFIG_DRM_AMDGPU_CIK
|
|
[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
|
|
#endif
|
|
[CHIP_TONGA] = &gfx_v8_kfd2kgd,
|
|
[CHIP_FIJI] = &gfx_v8_kfd2kgd,
|
|
[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
|
|
[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
|
|
[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
|
|
[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
|
|
[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
|
|
[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
|
|
[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
|
|
[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
|
|
[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
|
|
[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
|
|
[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
|
|
[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
|
|
};
|
|
|
|
#ifdef KFD_SUPPORT_IOMMU_V2
|
|
static const struct kfd_device_info kaveri_device_info = {
|
|
.asic_family = CHIP_KAVERI,
|
|
.asic_name = "kaveri",
|
|
.max_pasid_bits = 16,
|
|
/* max num of queues for KV.TODO should be a dynamic value */
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = false,
|
|
.needs_iommu_device = true,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info carrizo_device_info = {
|
|
.asic_family = CHIP_CARRIZO,
|
|
.asic_name = "carrizo",
|
|
.max_pasid_bits = 16,
|
|
/* max num of queues for CZ.TODO should be a dynamic value */
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = true,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info raven_device_info = {
|
|
.asic_family = CHIP_RAVEN,
|
|
.asic_name = "raven",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = true,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 1,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
#endif
|
|
|
|
static const struct kfd_device_info hawaii_device_info = {
|
|
.asic_family = CHIP_HAWAII,
|
|
.asic_name = "hawaii",
|
|
.max_pasid_bits = 16,
|
|
/* max num of queues for KV.TODO should be a dynamic value */
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = false,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info tonga_device_info = {
|
|
.asic_family = CHIP_TONGA,
|
|
.asic_name = "tonga",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = false,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info fiji_device_info = {
|
|
.asic_family = CHIP_FIJI,
|
|
.asic_name = "fiji",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info fiji_vf_device_info = {
|
|
.asic_family = CHIP_FIJI,
|
|
.asic_name = "fiji",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
|
|
static const struct kfd_device_info polaris10_device_info = {
|
|
.asic_family = CHIP_POLARIS10,
|
|
.asic_name = "polaris10",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info polaris10_vf_device_info = {
|
|
.asic_family = CHIP_POLARIS10,
|
|
.asic_name = "polaris10",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info polaris11_device_info = {
|
|
.asic_family = CHIP_POLARIS11,
|
|
.asic_name = "polaris11",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info polaris12_device_info = {
|
|
.asic_family = CHIP_POLARIS12,
|
|
.asic_name = "polaris12",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info vegam_device_info = {
|
|
.asic_family = CHIP_VEGAM,
|
|
.asic_name = "vegam",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 4,
|
|
.ih_ring_entry_size = 4 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_cik,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = true,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info vega10_device_info = {
|
|
.asic_family = CHIP_VEGA10,
|
|
.asic_name = "vega10",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info vega10_vf_device_info = {
|
|
.asic_family = CHIP_VEGA10,
|
|
.asic_name = "vega10",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info vega12_device_info = {
|
|
.asic_family = CHIP_VEGA12,
|
|
.asic_name = "vega12",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info vega20_device_info = {
|
|
.asic_family = CHIP_VEGA20,
|
|
.asic_name = "vega20",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 8,
|
|
};
|
|
|
|
static const struct kfd_device_info arcturus_device_info = {
|
|
.asic_family = CHIP_ARCTURUS,
|
|
.asic_name = "arcturus",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 6,
|
|
.num_sdma_queues_per_engine = 8,
|
|
};
|
|
|
|
static const struct kfd_device_info renoir_device_info = {
|
|
.asic_family = CHIP_RENOIR,
|
|
.asic_name = "renoir",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.supports_cwsr = true,
|
|
.needs_iommu_device = false,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 1,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 2,
|
|
};
|
|
|
|
static const struct kfd_device_info navi10_device_info = {
|
|
.asic_family = CHIP_NAVI10,
|
|
.asic_name = "navi10",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.needs_iommu_device = false,
|
|
.supports_cwsr = true,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 8,
|
|
};
|
|
|
|
static const struct kfd_device_info navi12_device_info = {
|
|
.asic_family = CHIP_NAVI12,
|
|
.asic_name = "navi12",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.needs_iommu_device = false,
|
|
.supports_cwsr = true,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 8,
|
|
};
|
|
|
|
static const struct kfd_device_info navi14_device_info = {
|
|
.asic_family = CHIP_NAVI14,
|
|
.asic_name = "navi14",
|
|
.max_pasid_bits = 16,
|
|
.max_no_of_hqd = 24,
|
|
.doorbell_size = 8,
|
|
.ih_ring_entry_size = 8 * sizeof(uint32_t),
|
|
.event_interrupt_class = &event_interrupt_class_v9,
|
|
.num_of_watch_points = 4,
|
|
.mqd_size_aligned = MQD_SIZE_ALIGNED,
|
|
.needs_iommu_device = false,
|
|
.supports_cwsr = true,
|
|
.needs_pci_atomics = false,
|
|
.num_sdma_engines = 2,
|
|
.num_xgmi_sdma_engines = 0,
|
|
.num_sdma_queues_per_engine = 8,
|
|
};
|
|
|
|
/* For each entry, [0] is regular and [1] is virtualisation device. */
|
|
static const struct kfd_device_info *kfd_supported_devices[][2] = {
|
|
#ifdef KFD_SUPPORT_IOMMU_V2
|
|
[CHIP_KAVERI] = {&kaveri_device_info, NULL},
|
|
[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
|
|
[CHIP_RAVEN] = {&raven_device_info, NULL},
|
|
#endif
|
|
[CHIP_HAWAII] = {&hawaii_device_info, NULL},
|
|
[CHIP_TONGA] = {&tonga_device_info, NULL},
|
|
[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
|
|
[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
|
|
[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
|
|
[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
|
|
[CHIP_VEGAM] = {&vegam_device_info, NULL},
|
|
[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
|
|
[CHIP_VEGA12] = {&vega12_device_info, NULL},
|
|
[CHIP_VEGA20] = {&vega20_device_info, NULL},
|
|
[CHIP_RENOIR] = {&renoir_device_info, NULL},
|
|
[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
|
|
[CHIP_NAVI10] = {&navi10_device_info, NULL},
|
|
[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
|
|
[CHIP_NAVI14] = {&navi14_device_info, NULL},
|
|
};
|
|
|
|
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
|
|
unsigned int chunk_size);
|
|
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
|
|
|
|
static int kfd_resume(struct kfd_dev *kfd);
|
|
|
|
struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
|
|
struct pci_dev *pdev, unsigned int asic_type, bool vf)
|
|
{
|
|
struct kfd_dev *kfd;
|
|
const struct kfd_device_info *device_info;
|
|
const struct kfd2kgd_calls *f2g;
|
|
|
|
if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
|
|
|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
|
|
dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
|
|
return NULL; /* asic_type out of range */
|
|
}
|
|
|
|
device_info = kfd_supported_devices[asic_type][vf];
|
|
f2g = kfd2kgd_funcs[asic_type];
|
|
|
|
if (!device_info || !f2g) {
|
|
dev_err(kfd_device, "%s %s not supported in kfd\n",
|
|
amdgpu_asic_name[asic_type], vf ? "VF" : "");
|
|
return NULL;
|
|
}
|
|
|
|
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
|
|
if (!kfd)
|
|
return NULL;
|
|
|
|
/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
|
|
* 32 and 64-bit requests are possible and must be
|
|
* supported.
|
|
*/
|
|
kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
|
|
if (device_info->needs_pci_atomics &&
|
|
!kfd->pci_atomic_requested) {
|
|
dev_info(kfd_device,
|
|
"skipped device %x:%x, PCI rejects atomics\n",
|
|
pdev->vendor, pdev->device);
|
|
kfree(kfd);
|
|
return NULL;
|
|
}
|
|
|
|
kfd->kgd = kgd;
|
|
kfd->device_info = device_info;
|
|
kfd->pdev = pdev;
|
|
kfd->init_complete = false;
|
|
kfd->kfd2kgd = f2g;
|
|
atomic_set(&kfd->compute_profile, 0);
|
|
|
|
mutex_init(&kfd->doorbell_mutex);
|
|
memset(&kfd->doorbell_available_index, 0,
|
|
sizeof(kfd->doorbell_available_index));
|
|
|
|
atomic_set(&kfd->sram_ecc_flag, 0);
|
|
|
|
return kfd;
|
|
}
|
|
|
|
static void kfd_cwsr_init(struct kfd_dev *kfd)
|
|
{
|
|
if (cwsr_enable && kfd->device_info->supports_cwsr) {
|
|
if (kfd->device_info->asic_family < CHIP_VEGA10) {
|
|
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
|
|
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
|
|
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
|
|
} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
|
|
BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
|
|
kfd->cwsr_isa = cwsr_trap_arcturus_hex;
|
|
kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
|
|
} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
|
|
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
|
|
kfd->cwsr_isa = cwsr_trap_gfx9_hex;
|
|
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
|
|
} else {
|
|
BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
|
|
kfd->cwsr_isa = cwsr_trap_gfx10_hex;
|
|
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
|
|
}
|
|
|
|
kfd->cwsr_enabled = true;
|
|
}
|
|
}
|
|
|
|
bool kgd2kfd_device_init(struct kfd_dev *kfd,
|
|
struct drm_device *ddev,
|
|
const struct kgd2kfd_shared_resources *gpu_resources)
|
|
{
|
|
unsigned int size;
|
|
|
|
kfd->ddev = ddev;
|
|
kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
|
|
KGD_ENGINE_MEC1);
|
|
kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
|
|
KGD_ENGINE_SDMA1);
|
|
kfd->shared_resources = *gpu_resources;
|
|
|
|
kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
|
|
kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
|
|
kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
|
|
- kfd->vm_info.first_vmid_kfd + 1;
|
|
|
|
/* Verify module parameters regarding mapped process number*/
|
|
if ((hws_max_conc_proc < 0)
|
|
|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
|
|
dev_err(kfd_device,
|
|
"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
|
|
hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
|
|
kfd->vm_info.vmid_num_kfd);
|
|
kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
|
|
} else
|
|
kfd->max_proc_per_quantum = hws_max_conc_proc;
|
|
|
|
/* Allocate global GWS that is shared by all KFD processes */
|
|
if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
|
|
amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
|
|
dev_err(kfd_device, "Could not allocate %d gws\n",
|
|
amdgpu_amdkfd_get_num_gws(kfd->kgd));
|
|
goto out;
|
|
}
|
|
/* calculate max size of mqds needed for queues */
|
|
size = max_num_of_queues_per_device *
|
|
kfd->device_info->mqd_size_aligned;
|
|
|
|
/*
|
|
* calculate max size of runlist packet.
|
|
* There can be only 2 packets at once
|
|
*/
|
|
size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
|
|
max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
|
|
+ sizeof(struct pm4_mes_runlist)) * 2;
|
|
|
|
/* Add size of HIQ & DIQ */
|
|
size += KFD_KERNEL_QUEUE_SIZE * 2;
|
|
|
|
/* add another 512KB for all other allocations on gart (HPD, fences) */
|
|
size += 512 * 1024;
|
|
|
|
if (amdgpu_amdkfd_alloc_gtt_mem(
|
|
kfd->kgd, size, &kfd->gtt_mem,
|
|
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
|
|
false)) {
|
|
dev_err(kfd_device, "Could not allocate %d bytes\n", size);
|
|
goto alloc_gtt_mem_failure;
|
|
}
|
|
|
|
dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
|
|
|
|
/* Initialize GTT sa with 512 byte chunk size */
|
|
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
|
|
dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
|
|
goto kfd_gtt_sa_init_error;
|
|
}
|
|
|
|
if (kfd_doorbell_init(kfd)) {
|
|
dev_err(kfd_device,
|
|
"Error initializing doorbell aperture\n");
|
|
goto kfd_doorbell_error;
|
|
}
|
|
|
|
if (kfd->kfd2kgd->get_hive_id)
|
|
kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
|
|
|
|
if (kfd_interrupt_init(kfd)) {
|
|
dev_err(kfd_device, "Error initializing interrupts\n");
|
|
goto kfd_interrupt_error;
|
|
}
|
|
|
|
kfd->dqm = device_queue_manager_init(kfd);
|
|
if (!kfd->dqm) {
|
|
dev_err(kfd_device, "Error initializing queue manager\n");
|
|
goto device_queue_manager_error;
|
|
}
|
|
|
|
if (kfd_iommu_device_init(kfd)) {
|
|
dev_err(kfd_device, "Error initializing iommuv2\n");
|
|
goto device_iommu_error;
|
|
}
|
|
|
|
kfd_cwsr_init(kfd);
|
|
|
|
if (kfd_resume(kfd))
|
|
goto kfd_resume_error;
|
|
|
|
kfd->dbgmgr = NULL;
|
|
|
|
if (kfd_topology_add_device(kfd)) {
|
|
dev_err(kfd_device, "Error adding device to topology\n");
|
|
goto kfd_topology_add_device_error;
|
|
}
|
|
|
|
kfd->init_complete = true;
|
|
dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
|
|
kfd->pdev->device);
|
|
|
|
pr_debug("Starting kfd with the following scheduling policy %d\n",
|
|
kfd->dqm->sched_policy);
|
|
|
|
goto out;
|
|
|
|
kfd_topology_add_device_error:
|
|
kfd_resume_error:
|
|
device_iommu_error:
|
|
device_queue_manager_uninit(kfd->dqm);
|
|
device_queue_manager_error:
|
|
kfd_interrupt_exit(kfd);
|
|
kfd_interrupt_error:
|
|
kfd_doorbell_fini(kfd);
|
|
kfd_doorbell_error:
|
|
kfd_gtt_sa_fini(kfd);
|
|
kfd_gtt_sa_init_error:
|
|
amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
|
|
alloc_gtt_mem_failure:
|
|
if (hws_gws_support)
|
|
amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
|
|
dev_err(kfd_device,
|
|
"device %x:%x NOT added due to errors\n",
|
|
kfd->pdev->vendor, kfd->pdev->device);
|
|
out:
|
|
return kfd->init_complete;
|
|
}
|
|
|
|
void kgd2kfd_device_exit(struct kfd_dev *kfd)
|
|
{
|
|
if (kfd->init_complete) {
|
|
kgd2kfd_suspend(kfd);
|
|
device_queue_manager_uninit(kfd->dqm);
|
|
kfd_interrupt_exit(kfd);
|
|
kfd_topology_remove_device(kfd);
|
|
kfd_doorbell_fini(kfd);
|
|
kfd_gtt_sa_fini(kfd);
|
|
amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
|
|
if (hws_gws_support)
|
|
amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
|
|
}
|
|
|
|
kfree(kfd);
|
|
}
|
|
|
|
int kgd2kfd_pre_reset(struct kfd_dev *kfd)
|
|
{
|
|
if (!kfd->init_complete)
|
|
return 0;
|
|
kgd2kfd_suspend(kfd);
|
|
|
|
kfd_signal_reset_event(kfd);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fix me. KFD won't be able to resume existing process for now.
|
|
* We will keep all existing process in a evicted state and
|
|
* wait the process to be terminated.
|
|
*/
|
|
|
|
int kgd2kfd_post_reset(struct kfd_dev *kfd)
|
|
{
|
|
int ret, count;
|
|
|
|
if (!kfd->init_complete)
|
|
return 0;
|
|
|
|
ret = kfd_resume(kfd);
|
|
if (ret)
|
|
return ret;
|
|
count = atomic_dec_return(&kfd_locked);
|
|
|
|
atomic_set(&kfd->sram_ecc_flag, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool kfd_is_locked(void)
|
|
{
|
|
return (atomic_read(&kfd_locked) > 0);
|
|
}
|
|
|
|
void kgd2kfd_suspend(struct kfd_dev *kfd)
|
|
{
|
|
if (!kfd->init_complete)
|
|
return;
|
|
|
|
/* For first KFD device suspend all the KFD processes */
|
|
if (atomic_inc_return(&kfd_locked) == 1)
|
|
kfd_suspend_all_processes();
|
|
|
|
kfd->dqm->ops.stop(kfd->dqm);
|
|
|
|
kfd_iommu_suspend(kfd);
|
|
}
|
|
|
|
int kgd2kfd_resume(struct kfd_dev *kfd)
|
|
{
|
|
int ret, count;
|
|
|
|
if (!kfd->init_complete)
|
|
return 0;
|
|
|
|
ret = kfd_resume(kfd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
count = atomic_dec_return(&kfd_locked);
|
|
WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
|
|
if (count == 0)
|
|
ret = kfd_resume_all_processes();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kfd_resume(struct kfd_dev *kfd)
|
|
{
|
|
int err = 0;
|
|
|
|
err = kfd_iommu_resume(kfd);
|
|
if (err) {
|
|
dev_err(kfd_device,
|
|
"Failed to resume IOMMU for device %x:%x\n",
|
|
kfd->pdev->vendor, kfd->pdev->device);
|
|
return err;
|
|
}
|
|
|
|
err = kfd->dqm->ops.start(kfd->dqm);
|
|
if (err) {
|
|
dev_err(kfd_device,
|
|
"Error starting queue manager for device %x:%x\n",
|
|
kfd->pdev->vendor, kfd->pdev->device);
|
|
goto dqm_start_error;
|
|
}
|
|
|
|
return err;
|
|
|
|
dqm_start_error:
|
|
kfd_iommu_suspend(kfd);
|
|
return err;
|
|
}
|
|
|
|
/* This is called directly from KGD at ISR. */
|
|
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
|
|
{
|
|
uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
|
|
bool is_patched = false;
|
|
unsigned long flags;
|
|
|
|
if (!kfd->init_complete)
|
|
return;
|
|
|
|
if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
|
|
dev_err_once(kfd_device, "Ring entry too small\n");
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&kfd->interrupt_lock, flags);
|
|
|
|
if (kfd->interrupts_active
|
|
&& interrupt_is_wanted(kfd, ih_ring_entry,
|
|
patched_ihre, &is_patched)
|
|
&& enqueue_ih_ring_entry(kfd,
|
|
is_patched ? patched_ihre : ih_ring_entry))
|
|
queue_work(kfd->ih_wq, &kfd->interrupt_work);
|
|
|
|
spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
|
|
}
|
|
|
|
int kgd2kfd_quiesce_mm(struct mm_struct *mm)
|
|
{
|
|
struct kfd_process *p;
|
|
int r;
|
|
|
|
/* Because we are called from arbitrary context (workqueue) as opposed
|
|
* to process context, kfd_process could attempt to exit while we are
|
|
* running so the lookup function increments the process ref count.
|
|
*/
|
|
p = kfd_lookup_process_by_mm(mm);
|
|
if (!p)
|
|
return -ESRCH;
|
|
|
|
r = kfd_process_evict_queues(p);
|
|
|
|
kfd_unref_process(p);
|
|
return r;
|
|
}
|
|
|
|
int kgd2kfd_resume_mm(struct mm_struct *mm)
|
|
{
|
|
struct kfd_process *p;
|
|
int r;
|
|
|
|
/* Because we are called from arbitrary context (workqueue) as opposed
|
|
* to process context, kfd_process could attempt to exit while we are
|
|
* running so the lookup function increments the process ref count.
|
|
*/
|
|
p = kfd_lookup_process_by_mm(mm);
|
|
if (!p)
|
|
return -ESRCH;
|
|
|
|
r = kfd_process_restore_queues(p);
|
|
|
|
kfd_unref_process(p);
|
|
return r;
|
|
}
|
|
|
|
/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
|
|
* prepare for safe eviction of KFD BOs that belong to the specified
|
|
* process.
|
|
*
|
|
* @mm: mm_struct that identifies the specified KFD process
|
|
* @fence: eviction fence attached to KFD process BOs
|
|
*
|
|
*/
|
|
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
|
|
struct dma_fence *fence)
|
|
{
|
|
struct kfd_process *p;
|
|
unsigned long active_time;
|
|
unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
|
|
|
|
if (!fence)
|
|
return -EINVAL;
|
|
|
|
if (dma_fence_is_signaled(fence))
|
|
return 0;
|
|
|
|
p = kfd_lookup_process_by_mm(mm);
|
|
if (!p)
|
|
return -ENODEV;
|
|
|
|
if (fence->seqno == p->last_eviction_seqno)
|
|
goto out;
|
|
|
|
p->last_eviction_seqno = fence->seqno;
|
|
|
|
/* Avoid KFD process starvation. Wait for at least
|
|
* PROCESS_ACTIVE_TIME_MS before evicting the process again
|
|
*/
|
|
active_time = get_jiffies_64() - p->last_restore_timestamp;
|
|
if (delay_jiffies > active_time)
|
|
delay_jiffies -= active_time;
|
|
else
|
|
delay_jiffies = 0;
|
|
|
|
/* During process initialization eviction_work.dwork is initialized
|
|
* to kfd_evict_bo_worker
|
|
*/
|
|
schedule_delayed_work(&p->eviction_work, delay_jiffies);
|
|
out:
|
|
kfd_unref_process(p);
|
|
return 0;
|
|
}
|
|
|
|
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
|
|
unsigned int chunk_size)
|
|
{
|
|
unsigned int num_of_longs;
|
|
|
|
if (WARN_ON(buf_size < chunk_size))
|
|
return -EINVAL;
|
|
if (WARN_ON(buf_size == 0))
|
|
return -EINVAL;
|
|
if (WARN_ON(chunk_size == 0))
|
|
return -EINVAL;
|
|
|
|
kfd->gtt_sa_chunk_size = chunk_size;
|
|
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
|
|
|
|
num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
|
|
BITS_PER_LONG;
|
|
|
|
kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
|
|
|
|
if (!kfd->gtt_sa_bitmap)
|
|
return -ENOMEM;
|
|
|
|
pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
|
|
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
|
|
|
|
mutex_init(&kfd->gtt_sa_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
|
|
{
|
|
mutex_destroy(&kfd->gtt_sa_lock);
|
|
kfree(kfd->gtt_sa_bitmap);
|
|
}
|
|
|
|
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
|
|
unsigned int bit_num,
|
|
unsigned int chunk_size)
|
|
{
|
|
return start_addr + bit_num * chunk_size;
|
|
}
|
|
|
|
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
|
|
unsigned int bit_num,
|
|
unsigned int chunk_size)
|
|
{
|
|
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
|
|
}
|
|
|
|
int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
|
|
struct kfd_mem_obj **mem_obj)
|
|
{
|
|
unsigned int found, start_search, cur_size;
|
|
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
|
|
return -ENOMEM;
|
|
|
|
*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
|
|
if (!(*mem_obj))
|
|
return -ENOMEM;
|
|
|
|
pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
|
|
|
|
start_search = 0;
|
|
|
|
mutex_lock(&kfd->gtt_sa_lock);
|
|
|
|
kfd_gtt_restart_search:
|
|
/* Find the first chunk that is free */
|
|
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
|
|
kfd->gtt_sa_num_of_chunks,
|
|
start_search);
|
|
|
|
pr_debug("Found = %d\n", found);
|
|
|
|
/* If there wasn't any free chunk, bail out */
|
|
if (found == kfd->gtt_sa_num_of_chunks)
|
|
goto kfd_gtt_no_free_chunk;
|
|
|
|
/* Update fields of mem_obj */
|
|
(*mem_obj)->range_start = found;
|
|
(*mem_obj)->range_end = found;
|
|
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
|
|
kfd->gtt_start_gpu_addr,
|
|
found,
|
|
kfd->gtt_sa_chunk_size);
|
|
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
|
|
kfd->gtt_start_cpu_ptr,
|
|
found,
|
|
kfd->gtt_sa_chunk_size);
|
|
|
|
pr_debug("gpu_addr = %p, cpu_addr = %p\n",
|
|
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
|
|
|
|
/* If we need only one chunk, mark it as allocated and get out */
|
|
if (size <= kfd->gtt_sa_chunk_size) {
|
|
pr_debug("Single bit\n");
|
|
set_bit(found, kfd->gtt_sa_bitmap);
|
|
goto kfd_gtt_out;
|
|
}
|
|
|
|
/* Otherwise, try to see if we have enough contiguous chunks */
|
|
cur_size = size - kfd->gtt_sa_chunk_size;
|
|
do {
|
|
(*mem_obj)->range_end =
|
|
find_next_zero_bit(kfd->gtt_sa_bitmap,
|
|
kfd->gtt_sa_num_of_chunks, ++found);
|
|
/*
|
|
* If next free chunk is not contiguous than we need to
|
|
* restart our search from the last free chunk we found (which
|
|
* wasn't contiguous to the previous ones
|
|
*/
|
|
if ((*mem_obj)->range_end != found) {
|
|
start_search = found;
|
|
goto kfd_gtt_restart_search;
|
|
}
|
|
|
|
/*
|
|
* If we reached end of buffer, bail out with error
|
|
*/
|
|
if (found == kfd->gtt_sa_num_of_chunks)
|
|
goto kfd_gtt_no_free_chunk;
|
|
|
|
/* Check if we don't need another chunk */
|
|
if (cur_size <= kfd->gtt_sa_chunk_size)
|
|
cur_size = 0;
|
|
else
|
|
cur_size -= kfd->gtt_sa_chunk_size;
|
|
|
|
} while (cur_size > 0);
|
|
|
|
pr_debug("range_start = %d, range_end = %d\n",
|
|
(*mem_obj)->range_start, (*mem_obj)->range_end);
|
|
|
|
/* Mark the chunks as allocated */
|
|
for (found = (*mem_obj)->range_start;
|
|
found <= (*mem_obj)->range_end;
|
|
found++)
|
|
set_bit(found, kfd->gtt_sa_bitmap);
|
|
|
|
kfd_gtt_out:
|
|
mutex_unlock(&kfd->gtt_sa_lock);
|
|
return 0;
|
|
|
|
kfd_gtt_no_free_chunk:
|
|
pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
|
|
mutex_unlock(&kfd->gtt_sa_lock);
|
|
kfree(mem_obj);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
|
|
{
|
|
unsigned int bit;
|
|
|
|
/* Act like kfree when trying to free a NULL object */
|
|
if (!mem_obj)
|
|
return 0;
|
|
|
|
pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
|
|
mem_obj, mem_obj->range_start, mem_obj->range_end);
|
|
|
|
mutex_lock(&kfd->gtt_sa_lock);
|
|
|
|
/* Mark the chunks as free */
|
|
for (bit = mem_obj->range_start;
|
|
bit <= mem_obj->range_end;
|
|
bit++)
|
|
clear_bit(bit, kfd->gtt_sa_bitmap);
|
|
|
|
mutex_unlock(&kfd->gtt_sa_lock);
|
|
|
|
kfree(mem_obj);
|
|
return 0;
|
|
}
|
|
|
|
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
|
|
{
|
|
if (kfd)
|
|
atomic_inc(&kfd->sram_ecc_flag);
|
|
}
|
|
|
|
void kfd_inc_compute_active(struct kfd_dev *kfd)
|
|
{
|
|
if (atomic_inc_return(&kfd->compute_profile) == 1)
|
|
amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
|
|
}
|
|
|
|
void kfd_dec_compute_active(struct kfd_dev *kfd)
|
|
{
|
|
int count = atomic_dec_return(&kfd->compute_profile);
|
|
|
|
if (count == 0)
|
|
amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
|
|
WARN_ONCE(count < 0, "Compute profile ref. count error");
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
|
|
/* This function will send a package to HIQ to hang the HWS
|
|
* which will trigger a GPU reset and bring the HWS back to normal state
|
|
*/
|
|
int kfd_debugfs_hang_hws(struct kfd_dev *dev)
|
|
{
|
|
int r = 0;
|
|
|
|
if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
|
|
pr_err("HWS is not enabled");
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = pm_debugfs_hang_hws(&dev->dqm->packets);
|
|
if (!r)
|
|
r = dqm_debugfs_execute_queues(dev->dqm);
|
|
|
|
return r;
|
|
}
|
|
|
|
#endif
|