linux_dsm_epyc7002/drivers/crypto/chelsio/chcr_algo.c
Linus Torvalds 5518b69b76 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Reasonably busy this cycle, but perhaps not as busy as in the 4.12
  merge window:

   1) Several optimizations for UDP processing under high load from
      Paolo Abeni.

   2) Support pacing internally in TCP when using the sch_fq packet
      scheduler for this is not practical. From Eric Dumazet.

   3) Support mutliple filter chains per qdisc, from Jiri Pirko.

   4) Move to 1ms TCP timestamp clock, from Eric Dumazet.

   5) Add batch dequeueing to vhost_net, from Jason Wang.

   6) Flesh out more completely SCTP checksum offload support, from
      Davide Caratti.

   7) More plumbing of extended netlink ACKs, from David Ahern, Pablo
      Neira Ayuso, and Matthias Schiffer.

   8) Add devlink support to nfp driver, from Simon Horman.

   9) Add RTM_F_FIB_MATCH flag to RTM_GETROUTE queries, from Roopa
      Prabhu.

  10) Add stack depth tracking to BPF verifier and use this information
      in the various eBPF JITs. From Alexei Starovoitov.

  11) Support XDP on qed device VFs, from Yuval Mintz.

  12) Introduce BPF PROG ID for better introspection of installed BPF
      programs. From Martin KaFai Lau.

  13) Add bpf_set_hash helper for TC bpf programs, from Daniel Borkmann.

  14) For loads, allow narrower accesses in bpf verifier checking, from
      Yonghong Song.

  15) Support MIPS in the BPF selftests and samples infrastructure, the
      MIPS eBPF JIT will be merged in via the MIPS GIT tree. From David
      Daney.

  16) Support kernel based TLS, from Dave Watson and others.

  17) Remove completely DST garbage collection, from Wei Wang.

  18) Allow installing TCP MD5 rules using prefixes, from Ivan
      Delalande.

  19) Add XDP support to Intel i40e driver, from Björn Töpel

  20) Add support for TC flower offload in nfp driver, from Simon
      Horman, Pieter Jansen van Vuuren, Benjamin LaHaise, Jakub
      Kicinski, and Bert van Leeuwen.

  21) IPSEC offloading support in mlx5, from Ilan Tayari.

  22) Add HW PTP support to macb driver, from Rafal Ozieblo.

  23) Networking refcount_t conversions, From Elena Reshetova.

  24) Add sock_ops support to BPF, from Lawrence Brako. This is useful
      for tuning the TCP sockopt settings of a group of applications,
      currently via CGROUPs"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1899 commits)
  net: phy: dp83867: add workaround for incorrect RX_CTRL pin strap
  dt-bindings: phy: dp83867: provide a workaround for incorrect RX_CTRL pin strap
  cxgb4: Support for get_ts_info ethtool method
  cxgb4: Add PTP Hardware Clock (PHC) support
  cxgb4: time stamping interface for PTP
  nfp: default to chained metadata prepend format
  nfp: remove legacy MAC address lookup
  nfp: improve order of interfaces in breakout mode
  net: macb: remove extraneous return when MACB_EXT_DESC is defined
  bpf: add missing break in for the TCP_BPF_SNDCWND_CLAMP case
  bpf: fix return in load_bpf_file
  mpls: fix rtm policy in mpls_getroute
  net, ax25: convert ax25_cb.refcount from atomic_t to refcount_t
  net, ax25: convert ax25_route.refcount from atomic_t to refcount_t
  net, ax25: convert ax25_uid_assoc.refcount from atomic_t to refcount_t
  net, sctp: convert sctp_ep_common.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_transport.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_chunk.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_datamsg.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_auth_bytes.refcnt from atomic_t to refcount_t
  ...
2017-07-05 12:31:59 -07:00

3718 lines
107 KiB
C

/*
* This file is part of the Chelsio T6 Crypto driver for Linux.
*
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Written and Maintained by:
* Manoj Malviya (manojmalviya@chelsio.com)
* Atul Gupta (atul.gupta@chelsio.com)
* Jitendra Lulla (jlulla@chelsio.com)
* Yeshaswi M R Gowda (yeshaswi@chelsio.com)
* Harsh Jain (harsh@chelsio.com)
*/
#define pr_fmt(fmt) "chcr:" fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/highmem.h>
#include <linux/scatterlist.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/authenc.h>
#include <crypto/ctr.h>
#include <crypto/gf128mul.h>
#include <crypto/internal/aead.h>
#include <crypto/null.h>
#include <crypto/internal/skcipher.h>
#include <crypto/aead.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/hash.h>
#include "t4fw_api.h"
#include "t4_msg.h"
#include "chcr_core.h"
#include "chcr_algo.h"
#include "chcr_crypto.h"
static inline struct chcr_aead_ctx *AEAD_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->aeadctx;
}
static inline struct ablk_ctx *ABLK_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->ablkctx;
}
static inline struct hmac_ctx *HMAC_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->hmacctx;
}
static inline struct chcr_gcm_ctx *GCM_CTX(struct chcr_aead_ctx *gctx)
{
return gctx->ctx->gcm;
}
static inline struct chcr_authenc_ctx *AUTHENC_CTX(struct chcr_aead_ctx *gctx)
{
return gctx->ctx->authenc;
}
static inline struct uld_ctx *ULD_CTX(struct chcr_context *ctx)
{
return ctx->dev->u_ctx;
}
static inline int is_ofld_imm(const struct sk_buff *skb)
{
return (skb->len <= CRYPTO_MAX_IMM_TX_PKT_LEN);
}
/*
* sgl_len - calculates the size of an SGL of the given capacity
* @n: the number of SGL entries
* Calculates the number of flits needed for a scatter/gather list that
* can hold the given number of entries.
*/
static inline unsigned int sgl_len(unsigned int n)
{
n--;
return (3 * n) / 2 + (n & 1) + 2;
}
static void chcr_verify_tag(struct aead_request *req, u8 *input, int *err)
{
u8 temp[SHA512_DIGEST_SIZE];
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int authsize = crypto_aead_authsize(tfm);
struct cpl_fw6_pld *fw6_pld;
int cmp = 0;
fw6_pld = (struct cpl_fw6_pld *)input;
if ((get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) ||
(get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_GCM)) {
cmp = crypto_memneq(&fw6_pld->data[2], (fw6_pld + 1), authsize);
} else {
sg_pcopy_to_buffer(req->src, sg_nents(req->src), temp,
authsize, req->assoclen +
req->cryptlen - authsize);
cmp = crypto_memneq(temp, (fw6_pld + 1), authsize);
}
if (cmp)
*err = -EBADMSG;
else
*err = 0;
}
/*
* chcr_handle_resp - Unmap the DMA buffers associated with the request
* @req: crypto request
*/
int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input,
int err)
{
struct crypto_tfm *tfm = req->tfm;
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct chcr_req_ctx ctx_req;
unsigned int digestsize, updated_digestsize;
struct adapter *adap = padap(ctx->dev);
switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_AEAD:
ctx_req.req.aead_req = aead_request_cast(req);
ctx_req.ctx.reqctx = aead_request_ctx(ctx_req.req.aead_req);
dma_unmap_sg(&u_ctx->lldi.pdev->dev, ctx_req.ctx.reqctx->dst,
ctx_req.ctx.reqctx->dst_nents, DMA_FROM_DEVICE);
if (ctx_req.ctx.reqctx->skb) {
kfree_skb(ctx_req.ctx.reqctx->skb);
ctx_req.ctx.reqctx->skb = NULL;
}
free_new_sg(ctx_req.ctx.reqctx->newdstsg);
ctx_req.ctx.reqctx->newdstsg = NULL;
if (ctx_req.ctx.reqctx->verify == VERIFY_SW) {
chcr_verify_tag(ctx_req.req.aead_req, input,
&err);
ctx_req.ctx.reqctx->verify = VERIFY_HW;
}
ctx_req.req.aead_req->base.complete(req, err);
break;
case CRYPTO_ALG_TYPE_ABLKCIPHER:
err = chcr_handle_cipher_resp(ablkcipher_request_cast(req),
input, err);
break;
case CRYPTO_ALG_TYPE_AHASH:
ctx_req.req.ahash_req = ahash_request_cast(req);
ctx_req.ctx.ahash_ctx =
ahash_request_ctx(ctx_req.req.ahash_req);
digestsize =
crypto_ahash_digestsize(crypto_ahash_reqtfm(
ctx_req.req.ahash_req));
updated_digestsize = digestsize;
if (digestsize == SHA224_DIGEST_SIZE)
updated_digestsize = SHA256_DIGEST_SIZE;
else if (digestsize == SHA384_DIGEST_SIZE)
updated_digestsize = SHA512_DIGEST_SIZE;
if (ctx_req.ctx.ahash_ctx->skb) {
kfree_skb(ctx_req.ctx.ahash_ctx->skb);
ctx_req.ctx.ahash_ctx->skb = NULL;
}
if (ctx_req.ctx.ahash_ctx->result == 1) {
ctx_req.ctx.ahash_ctx->result = 0;
memcpy(ctx_req.req.ahash_req->result, input +
sizeof(struct cpl_fw6_pld),
digestsize);
} else {
memcpy(ctx_req.ctx.ahash_ctx->partial_hash, input +
sizeof(struct cpl_fw6_pld),
updated_digestsize);
}
ctx_req.req.ahash_req->base.complete(req, err);
break;
}
atomic_inc(&adap->chcr_stats.complete);
return err;
}
/*
* calc_tx_flits_ofld - calculate # of flits for an offload packet
* @skb: the packet
* Returns the number of flits needed for the given offload packet.
* These packets are already fully constructed and no additional headers
* will be added.
*/
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
unsigned int flits, cnt;
if (is_ofld_imm(skb))
return DIV_ROUND_UP(skb->len, 8);
flits = skb_transport_offset(skb) / 8; /* headers */
cnt = skb_shinfo(skb)->nr_frags;
if (skb_tail_pointer(skb) != skb_transport_header(skb))
cnt++;
return flits + sgl_len(cnt);
}
static inline void get_aes_decrypt_key(unsigned char *dec_key,
const unsigned char *key,
unsigned int keylength)
{
u32 temp;
u32 w_ring[MAX_NK];
int i, j, k;
u8 nr, nk;
switch (keylength) {
case AES_KEYLENGTH_128BIT:
nk = KEYLENGTH_4BYTES;
nr = NUMBER_OF_ROUNDS_10;
break;
case AES_KEYLENGTH_192BIT:
nk = KEYLENGTH_6BYTES;
nr = NUMBER_OF_ROUNDS_12;
break;
case AES_KEYLENGTH_256BIT:
nk = KEYLENGTH_8BYTES;
nr = NUMBER_OF_ROUNDS_14;
break;
default:
return;
}
for (i = 0; i < nk; i++)
w_ring[i] = be32_to_cpu(*(u32 *)&key[4 * i]);
i = 0;
temp = w_ring[nk - 1];
while (i + nk < (nr + 1) * 4) {
if (!(i % nk)) {
/* RotWord(temp) */
temp = (temp << 8) | (temp >> 24);
temp = aes_ks_subword(temp);
temp ^= round_constant[i / nk];
} else if (nk == 8 && (i % 4 == 0)) {
temp = aes_ks_subword(temp);
}
w_ring[i % nk] ^= temp;
temp = w_ring[i % nk];
i++;
}
i--;
for (k = 0, j = i % nk; k < nk; k++) {
*((u32 *)dec_key + k) = htonl(w_ring[j]);
j--;
if (j < 0)
j += nk;
}
}
static struct crypto_shash *chcr_alloc_shash(unsigned int ds)
{
struct crypto_shash *base_hash = ERR_PTR(-EINVAL);
switch (ds) {
case SHA1_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha1", 0, 0);
break;
case SHA224_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha224", 0, 0);
break;
case SHA256_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha256", 0, 0);
break;
case SHA384_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha384", 0, 0);
break;
case SHA512_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha512", 0, 0);
break;
}
return base_hash;
}
static int chcr_compute_partial_hash(struct shash_desc *desc,
char *iopad, char *result_hash,
int digest_size)
{
struct sha1_state sha1_st;
struct sha256_state sha256_st;
struct sha512_state sha512_st;
int error;
if (digest_size == SHA1_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA1_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha1_st);
memcpy(result_hash, sha1_st.state, SHA1_DIGEST_SIZE);
} else if (digest_size == SHA224_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha256_st);
memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);
} else if (digest_size == SHA256_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha256_st);
memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);
} else if (digest_size == SHA384_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha512_st);
memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
} else if (digest_size == SHA512_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha512_st);
memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
} else {
error = -EINVAL;
pr_err("Unknown digest size %d\n", digest_size);
}
return error;
}
static void chcr_change_order(char *buf, int ds)
{
int i;
if (ds == SHA512_DIGEST_SIZE) {
for (i = 0; i < (ds / sizeof(u64)); i++)
*((__be64 *)buf + i) =
cpu_to_be64(*((u64 *)buf + i));
} else {
for (i = 0; i < (ds / sizeof(u32)); i++)
*((__be32 *)buf + i) =
cpu_to_be32(*((u32 *)buf + i));
}
}
static inline int is_hmac(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_alg_template *chcr_crypto_alg =
container_of(__crypto_ahash_alg(alg), struct chcr_alg_template,
alg.hash);
if (chcr_crypto_alg->type == CRYPTO_ALG_TYPE_HMAC)
return 1;
return 0;
}
static void write_phys_cpl(struct cpl_rx_phys_dsgl *phys_cpl,
struct scatterlist *sg,
struct phys_sge_parm *sg_param)
{
struct phys_sge_pairs *to;
unsigned int len = 0, left_size = sg_param->obsize;
unsigned int nents = sg_param->nents, i, j = 0;
phys_cpl->op_to_tid = htonl(CPL_RX_PHYS_DSGL_OPCODE_V(CPL_RX_PHYS_DSGL)
| CPL_RX_PHYS_DSGL_ISRDMA_V(0));
phys_cpl->pcirlxorder_to_noofsgentr =
htonl(CPL_RX_PHYS_DSGL_PCIRLXORDER_V(0) |
CPL_RX_PHYS_DSGL_PCINOSNOOP_V(0) |
CPL_RX_PHYS_DSGL_PCITPHNTENB_V(0) |
CPL_RX_PHYS_DSGL_PCITPHNT_V(0) |
CPL_RX_PHYS_DSGL_DCAID_V(0) |
CPL_RX_PHYS_DSGL_NOOFSGENTR_V(nents));
phys_cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
phys_cpl->rss_hdr_int.qid = htons(sg_param->qid);
phys_cpl->rss_hdr_int.hash_val = 0;
to = (struct phys_sge_pairs *)((unsigned char *)phys_cpl +
sizeof(struct cpl_rx_phys_dsgl));
for (i = 0; nents && left_size; to++) {
for (j = 0; j < 8 && nents && left_size; j++, nents--) {
len = min(left_size, sg_dma_len(sg));
to->len[j] = htons(len);
to->addr[j] = cpu_to_be64(sg_dma_address(sg));
left_size -= len;
sg = sg_next(sg);
}
}
}
static inline int map_writesg_phys_cpl(struct device *dev,
struct cpl_rx_phys_dsgl *phys_cpl,
struct scatterlist *sg,
struct phys_sge_parm *sg_param)
{
if (!sg || !sg_param->nents)
return -EINVAL;
sg_param->nents = dma_map_sg(dev, sg, sg_param->nents, DMA_FROM_DEVICE);
if (sg_param->nents == 0) {
pr_err("CHCR : DMA mapping failed\n");
return -EINVAL;
}
write_phys_cpl(phys_cpl, sg, sg_param);
return 0;
}
static inline int get_aead_subtype(struct crypto_aead *aead)
{
struct aead_alg *alg = crypto_aead_alg(aead);
struct chcr_alg_template *chcr_crypto_alg =
container_of(alg, struct chcr_alg_template, alg.aead);
return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK;
}
static inline int get_cryptoalg_subtype(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_alg_template *chcr_crypto_alg =
container_of(alg, struct chcr_alg_template, alg.crypto);
return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK;
}
static inline void write_buffer_to_skb(struct sk_buff *skb,
unsigned int *frags,
char *bfr,
u8 bfr_len)
{
skb->len += bfr_len;
skb->data_len += bfr_len;
skb->truesize += bfr_len;
get_page(virt_to_page(bfr));
skb_fill_page_desc(skb, *frags, virt_to_page(bfr),
offset_in_page(bfr), bfr_len);
(*frags)++;
}
static inline void
write_sg_to_skb(struct sk_buff *skb, unsigned int *frags,
struct scatterlist *sg, unsigned int count)
{
struct page *spage;
unsigned int page_len;
skb->len += count;
skb->data_len += count;
skb->truesize += count;
while (count > 0) {
if (!sg || (!(sg->length)))
break;
spage = sg_page(sg);
get_page(spage);
page_len = min(sg->length, count);
skb_fill_page_desc(skb, *frags, spage, sg->offset, page_len);
(*frags)++;
count -= page_len;
sg = sg_next(sg);
}
}
static int cxgb4_is_crypto_q_full(struct net_device *dev, unsigned int idx)
{
struct adapter *adap = netdev2adap(dev);
struct sge_uld_txq_info *txq_info =
adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
struct sge_uld_txq *txq;
int ret = 0;
local_bh_disable();
txq = &txq_info->uldtxq[idx];
spin_lock(&txq->sendq.lock);
if (txq->full)
ret = -1;
spin_unlock(&txq->sendq.lock);
local_bh_enable();
return ret;
}
static int generate_copy_rrkey(struct ablk_ctx *ablkctx,
struct _key_ctx *key_ctx)
{
if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) {
memcpy(key_ctx->key, ablkctx->rrkey, ablkctx->enckey_len);
} else {
memcpy(key_ctx->key,
ablkctx->key + (ablkctx->enckey_len >> 1),
ablkctx->enckey_len >> 1);
memcpy(key_ctx->key + (ablkctx->enckey_len >> 1),
ablkctx->rrkey, ablkctx->enckey_len >> 1);
}
return 0;
}
static int chcr_sg_ent_in_wr(struct scatterlist *src,
struct scatterlist *dst,
unsigned int minsg,
unsigned int space,
short int *sent,
short int *dent)
{
int srclen = 0, dstlen = 0;
int srcsg = minsg, dstsg = 0;
*sent = 0;
*dent = 0;
while (src && dst && ((srcsg + 1) <= MAX_SKB_FRAGS) &&
space > (sgl_ent_len[srcsg + 1] + dsgl_ent_len[dstsg])) {
srclen += src->length;
srcsg++;
while (dst && ((dstsg + 1) <= MAX_DSGL_ENT) &&
space > (sgl_ent_len[srcsg] + dsgl_ent_len[dstsg + 1])) {
if (srclen <= dstlen)
break;
dstlen += dst->length;
dst = sg_next(dst);
dstsg++;
}
src = sg_next(src);
}
*sent = srcsg - minsg;
*dent = dstsg;
return min(srclen, dstlen);
}
static int chcr_cipher_fallback(struct crypto_skcipher *cipher,
u32 flags,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int nbytes,
u8 *iv,
unsigned short op_type)
{
int err;
SKCIPHER_REQUEST_ON_STACK(subreq, cipher);
skcipher_request_set_tfm(subreq, cipher);
skcipher_request_set_callback(subreq, flags, NULL, NULL);
skcipher_request_set_crypt(subreq, src, dst,
nbytes, iv);
err = op_type ? crypto_skcipher_decrypt(subreq) :
crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static inline void create_wreq(struct chcr_context *ctx,
struct chcr_wr *chcr_req,
void *req, struct sk_buff *skb,
int kctx_len, int hash_sz,
int is_iv,
unsigned int sc_len,
unsigned int lcb)
{
struct uld_ctx *u_ctx = ULD_CTX(ctx);
int iv_loc = IV_DSGL;
int qid = u_ctx->lldi.rxq_ids[ctx->rx_qidx];
unsigned int immdatalen = 0, nr_frags = 0;
if (is_ofld_imm(skb)) {
immdatalen = skb->data_len;
iv_loc = IV_IMMEDIATE;
} else {
nr_frags = skb_shinfo(skb)->nr_frags;
}
chcr_req->wreq.op_to_cctx_size = FILL_WR_OP_CCTX_SIZE(immdatalen,
((sizeof(chcr_req->key_ctx) + kctx_len) >> 4));
chcr_req->wreq.pld_size_hash_size =
htonl(FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE_V(sgl_lengths[nr_frags]) |
FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(hash_sz));
chcr_req->wreq.len16_pkd =
htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP(
(calc_tx_flits_ofld(skb) * 8), 16)));
chcr_req->wreq.cookie = cpu_to_be64((uintptr_t)req);
chcr_req->wreq.rx_chid_to_rx_q_id =
FILL_WR_RX_Q_ID(ctx->dev->rx_channel_id, qid,
is_iv ? iv_loc : IV_NOP, !!lcb,
ctx->tx_qidx);
chcr_req->ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(ctx->dev->tx_channel_id,
qid);
chcr_req->ulptx.len = htonl((DIV_ROUND_UP((calc_tx_flits_ofld(skb) * 8),
16) - ((sizeof(chcr_req->wreq)) >> 4)));
chcr_req->sc_imm.cmd_more = FILL_CMD_MORE(immdatalen);
chcr_req->sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) +
sizeof(chcr_req->key_ctx) +
kctx_len + sc_len + immdatalen);
}
/**
* create_cipher_wr - form the WR for cipher operations
* @req: cipher req.
* @ctx: crypto driver context of the request.
* @qid: ingress qid where response of this WR should be received.
* @op_type: encryption or decryption
*/
static struct sk_buff *create_cipher_wr(struct cipher_wr_param *wrparam)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(wrparam->req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct chcr_blkcipher_req_ctx *reqctx =
ablkcipher_request_ctx(wrparam->req);
struct phys_sge_parm sg_param;
unsigned int frags = 0, transhdr_len, phys_dsgl;
int error;
unsigned int ivsize = AES_BLOCK_SIZE, kctx_len;
gfp_t flags = wrparam->req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
phys_dsgl = get_space_for_phys_dsgl(reqctx->dst_nents);
kctx_len = (DIV_ROUND_UP(ablkctx->enckey_len, 16) * 16);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, phys_dsgl);
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
chcr_req = __skb_put_zero(skb, transhdr_len);
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(ctx->dev->rx_channel_id, 2, 1);
chcr_req->sec_cpl.pldlen = htonl(ivsize + wrparam->bytes);
chcr_req->sec_cpl.aadstart_cipherstop_hi =
FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, ivsize + 1, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, 0, 0, 0);
chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op, 0,
ablkctx->ciph_mode,
0, 0, ivsize >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 0,
0, 1, phys_dsgl);
chcr_req->key_ctx.ctx_hdr = ablkctx->key_ctx_hdr;
if ((reqctx->op == CHCR_DECRYPT_OP) &&
(!(get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm)) ==
CRYPTO_ALG_SUB_TYPE_CTR)) &&
(!(get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm)) ==
CRYPTO_ALG_SUB_TYPE_CTR_RFC3686))) {
generate_copy_rrkey(ablkctx, &chcr_req->key_ctx);
} else {
if ((ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) ||
(ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CTR)) {
memcpy(chcr_req->key_ctx.key, ablkctx->key,
ablkctx->enckey_len);
} else {
memcpy(chcr_req->key_ctx.key, ablkctx->key +
(ablkctx->enckey_len >> 1),
ablkctx->enckey_len >> 1);
memcpy(chcr_req->key_ctx.key +
(ablkctx->enckey_len >> 1),
ablkctx->key,
ablkctx->enckey_len >> 1);
}
}
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
sg_param.nents = reqctx->dst_nents;
sg_param.obsize = wrparam->bytes;
sg_param.qid = wrparam->qid;
error = map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl,
reqctx->dst, &sg_param);
if (error)
goto map_fail1;
skb_set_transport_header(skb, transhdr_len);
write_buffer_to_skb(skb, &frags, reqctx->iv, ivsize);
write_sg_to_skb(skb, &frags, wrparam->srcsg, wrparam->bytes);
atomic_inc(&adap->chcr_stats.cipher_rqst);
create_wreq(ctx, chcr_req, &(wrparam->req->base), skb, kctx_len, 0, 1,
sizeof(struct cpl_rx_phys_dsgl) + phys_dsgl,
ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC);
reqctx->skb = skb;
skb_get(skb);
return skb;
map_fail1:
kfree_skb(skb);
err:
return ERR_PTR(error);
}
static inline int chcr_keyctx_ck_size(unsigned int keylen)
{
int ck_size = 0;
if (keylen == AES_KEYSIZE_128)
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
else if (keylen == AES_KEYSIZE_192)
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
else if (keylen == AES_KEYSIZE_256)
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
else
ck_size = 0;
return ck_size;
}
static int chcr_cipher_fallback_setkey(struct crypto_ablkcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct chcr_context *ctx = crypto_ablkcipher_ctx(cipher);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
int err = 0;
crypto_skcipher_clear_flags(ablkctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ablkctx->sw_cipher, cipher->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(ablkctx->sw_cipher, key, keylen);
tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->crt_flags |=
crypto_skcipher_get_flags(ablkctx->sw_cipher) &
CRYPTO_TFM_RES_MASK;
return err;
}
static int chcr_aes_cbc_setkey(struct crypto_ablkcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_ablkcipher_ctx(cipher);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
unsigned int ck_size, context_size;
u16 alignment = 0;
int err;
err = chcr_cipher_fallback_setkey(cipher, key, keylen);
if (err)
goto badkey_err;
ck_size = chcr_keyctx_ck_size(keylen);
alignment = ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192 ? 8 : 0;
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, keylen << 3);
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC;
return 0;
badkey_err:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
ablkctx->enckey_len = 0;
return err;
}
static int chcr_aes_ctr_setkey(struct crypto_ablkcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_ablkcipher_ctx(cipher);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
unsigned int ck_size, context_size;
u16 alignment = 0;
int err;
err = chcr_cipher_fallback_setkey(cipher, key, keylen);
if (err)
goto badkey_err;
ck_size = chcr_keyctx_ck_size(keylen);
alignment = (ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ? 8 : 0;
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR;
return 0;
badkey_err:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
ablkctx->enckey_len = 0;
return err;
}
static int chcr_aes_rfc3686_setkey(struct crypto_ablkcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_ablkcipher_ctx(cipher);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
unsigned int ck_size, context_size;
u16 alignment = 0;
int err;
if (keylen < CTR_RFC3686_NONCE_SIZE)
return -EINVAL;
memcpy(ablkctx->nonce, key + (keylen - CTR_RFC3686_NONCE_SIZE),
CTR_RFC3686_NONCE_SIZE);
keylen -= CTR_RFC3686_NONCE_SIZE;
err = chcr_cipher_fallback_setkey(cipher, key, keylen);
if (err)
goto badkey_err;
ck_size = chcr_keyctx_ck_size(keylen);
alignment = (ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ? 8 : 0;
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR;
return 0;
badkey_err:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
ablkctx->enckey_len = 0;
return err;
}
static void ctr_add_iv(u8 *dstiv, u8 *srciv, u32 add)
{
unsigned int size = AES_BLOCK_SIZE;
__be32 *b = (__be32 *)(dstiv + size);
u32 c, prev;
memcpy(dstiv, srciv, AES_BLOCK_SIZE);
for (; size >= 4; size -= 4) {
prev = be32_to_cpu(*--b);
c = prev + add;
*b = cpu_to_be32(c);
if (prev < c)
break;
add = 1;
}
}
static unsigned int adjust_ctr_overflow(u8 *iv, u32 bytes)
{
__be32 *b = (__be32 *)(iv + AES_BLOCK_SIZE);
u64 c;
u32 temp = be32_to_cpu(*--b);
temp = ~temp;
c = (u64)temp + 1; // No of block can processed withou overflow
if ((bytes / AES_BLOCK_SIZE) > c)
bytes = c * AES_BLOCK_SIZE;
return bytes;
}
static int chcr_update_tweak(struct ablkcipher_request *req, u8 *iv)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
struct chcr_blkcipher_req_ctx *reqctx = ablkcipher_request_ctx(req);
struct crypto_cipher *cipher;
int ret, i;
u8 *key;
unsigned int keylen;
cipher = crypto_alloc_cipher("aes-generic", 0, 0);
memcpy(iv, req->info, AES_BLOCK_SIZE);
if (IS_ERR(cipher)) {
ret = -ENOMEM;
goto out;
}
keylen = ablkctx->enckey_len / 2;
key = ablkctx->key + keylen;
ret = crypto_cipher_setkey(cipher, key, keylen);
if (ret)
goto out1;
crypto_cipher_encrypt_one(cipher, iv, iv);
for (i = 0; i < (reqctx->processed / AES_BLOCK_SIZE); i++)
gf128mul_x_ble((le128 *)iv, (le128 *)iv);
crypto_cipher_decrypt_one(cipher, iv, iv);
out1:
crypto_free_cipher(cipher);
out:
return ret;
}
static int chcr_update_cipher_iv(struct ablkcipher_request *req,
struct cpl_fw6_pld *fw6_pld, u8 *iv)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_blkcipher_req_ctx *reqctx = ablkcipher_request_ctx(req);
int subtype = get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm));
int ret = 0;
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR)
ctr_add_iv(iv, req->info, (reqctx->processed /
AES_BLOCK_SIZE));
else if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686)
*(__be32 *)(reqctx->iv + CTR_RFC3686_NONCE_SIZE +
CTR_RFC3686_IV_SIZE) = cpu_to_be32((reqctx->processed /
AES_BLOCK_SIZE) + 1);
else if (subtype == CRYPTO_ALG_SUB_TYPE_XTS)
ret = chcr_update_tweak(req, iv);
else if (subtype == CRYPTO_ALG_SUB_TYPE_CBC) {
if (reqctx->op)
sg_pcopy_to_buffer(req->src, sg_nents(req->src), iv,
16,
reqctx->processed - AES_BLOCK_SIZE);
else
memcpy(iv, &fw6_pld->data[2], AES_BLOCK_SIZE);
}
return ret;
}
/* We need separate function for final iv because in rfc3686 Initial counter
* starts from 1 and buffer size of iv is 8 byte only which remains constant
* for subsequent update requests
*/
static int chcr_final_cipher_iv(struct ablkcipher_request *req,
struct cpl_fw6_pld *fw6_pld, u8 *iv)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_blkcipher_req_ctx *reqctx = ablkcipher_request_ctx(req);
int subtype = get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm));
int ret = 0;
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR)
ctr_add_iv(iv, req->info, (reqctx->processed /
AES_BLOCK_SIZE));
else if (subtype == CRYPTO_ALG_SUB_TYPE_XTS)
ret = chcr_update_tweak(req, iv);
else if (subtype == CRYPTO_ALG_SUB_TYPE_CBC) {
if (reqctx->op)
sg_pcopy_to_buffer(req->src, sg_nents(req->src), iv,
16,
reqctx->processed - AES_BLOCK_SIZE);
else
memcpy(iv, &fw6_pld->data[2], AES_BLOCK_SIZE);
}
return ret;
}
static int chcr_handle_cipher_resp(struct ablkcipher_request *req,
unsigned char *input, int err)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
struct sk_buff *skb;
struct cpl_fw6_pld *fw6_pld = (struct cpl_fw6_pld *)input;
struct chcr_blkcipher_req_ctx *reqctx = ablkcipher_request_ctx(req);
struct cipher_wr_param wrparam;
int bytes;
dma_unmap_sg(&u_ctx->lldi.pdev->dev, reqctx->dst, reqctx->dst_nents,
DMA_FROM_DEVICE);
if (reqctx->skb) {
kfree_skb(reqctx->skb);
reqctx->skb = NULL;
}
if (err)
goto complete;
if (req->nbytes == reqctx->processed) {
err = chcr_final_cipher_iv(req, fw6_pld, req->info);
goto complete;
}
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY;
goto complete;
}
}
wrparam.srcsg = scatterwalk_ffwd(reqctx->srcffwd, req->src,
reqctx->processed);
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd, reqctx->dstsg,
reqctx->processed);
if (!wrparam.srcsg || !reqctx->dst) {
pr_err("Input sg list length less that nbytes\n");
err = -EINVAL;
goto complete;
}
bytes = chcr_sg_ent_in_wr(wrparam.srcsg, reqctx->dst, 1,
SPACE_LEFT(ablkctx->enckey_len),
&wrparam.snent, &reqctx->dst_nents);
if ((bytes + reqctx->processed) >= req->nbytes)
bytes = req->nbytes - reqctx->processed;
else
bytes = ROUND_16(bytes);
err = chcr_update_cipher_iv(req, fw6_pld, reqctx->iv);
if (err)
goto complete;
if (unlikely(bytes == 0)) {
err = chcr_cipher_fallback(ablkctx->sw_cipher,
req->base.flags,
wrparam.srcsg,
reqctx->dst,
req->nbytes - reqctx->processed,
reqctx->iv,
reqctx->op);
goto complete;
}
if (get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm)) ==
CRYPTO_ALG_SUB_TYPE_CTR)
bytes = adjust_ctr_overflow(reqctx->iv, bytes);
reqctx->processed += bytes;
wrparam.qid = u_ctx->lldi.rxq_ids[ctx->rx_qidx];
wrparam.req = req;
wrparam.bytes = bytes;
skb = create_cipher_wr(&wrparam);
if (IS_ERR(skb)) {
pr_err("chcr : %s : Failed to form WR. No memory\n", __func__);
err = PTR_ERR(skb);
goto complete;
}
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return 0;
complete:
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
req->base.complete(&req->base, err);
return err;
}
static int process_cipher(struct ablkcipher_request *req,
unsigned short qid,
struct sk_buff **skb,
unsigned short op_type)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
struct chcr_blkcipher_req_ctx *reqctx = ablkcipher_request_ctx(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
struct cipher_wr_param wrparam;
int bytes, nents, err = -EINVAL;
reqctx->newdstsg = NULL;
reqctx->processed = 0;
if (!req->info)
goto error;
if ((ablkctx->enckey_len == 0) || (ivsize > AES_BLOCK_SIZE) ||
(req->nbytes == 0) ||
(req->nbytes % crypto_ablkcipher_blocksize(tfm))) {
pr_err("AES: Invalid value of Key Len %d nbytes %d IV Len %d\n",
ablkctx->enckey_len, req->nbytes, ivsize);
goto error;
}
wrparam.srcsg = req->src;
if (is_newsg(req->dst, &nents)) {
reqctx->newdstsg = alloc_new_sg(req->dst, nents);
if (IS_ERR(reqctx->newdstsg))
return PTR_ERR(reqctx->newdstsg);
reqctx->dstsg = reqctx->newdstsg;
} else {
reqctx->dstsg = req->dst;
}
bytes = chcr_sg_ent_in_wr(wrparam.srcsg, reqctx->dstsg, MIN_CIPHER_SG,
SPACE_LEFT(ablkctx->enckey_len),
&wrparam.snent,
&reqctx->dst_nents);
if ((bytes + reqctx->processed) >= req->nbytes)
bytes = req->nbytes - reqctx->processed;
else
bytes = ROUND_16(bytes);
if (unlikely(bytes > req->nbytes))
bytes = req->nbytes;
if (get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm)) ==
CRYPTO_ALG_SUB_TYPE_CTR) {
bytes = adjust_ctr_overflow(req->info, bytes);
}
if (get_cryptoalg_subtype(crypto_ablkcipher_tfm(tfm)) ==
CRYPTO_ALG_SUB_TYPE_CTR_RFC3686) {
memcpy(reqctx->iv, ablkctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(reqctx->iv + CTR_RFC3686_NONCE_SIZE, req->info,
CTR_RFC3686_IV_SIZE);
/* initialize counter portion of counter block */
*(__be32 *)(reqctx->iv + CTR_RFC3686_NONCE_SIZE +
CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
} else {
memcpy(reqctx->iv, req->info, ivsize);
}
if (unlikely(bytes == 0)) {
err = chcr_cipher_fallback(ablkctx->sw_cipher,
req->base.flags,
req->src,
req->dst,
req->nbytes,
req->info,
op_type);
goto error;
}
reqctx->processed = bytes;
reqctx->dst = reqctx->dstsg;
reqctx->op = op_type;
wrparam.qid = qid;
wrparam.req = req;
wrparam.bytes = bytes;
*skb = create_cipher_wr(&wrparam);
if (IS_ERR(*skb)) {
err = PTR_ERR(*skb);
goto error;
}
return 0;
error:
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return err;
}
static int chcr_aes_encrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct sk_buff *skb = NULL;
int err;
struct uld_ctx *u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
err = process_cipher(req, u_ctx->lldi.rxq_ids[ctx->rx_qidx], &skb,
CHCR_ENCRYPT_OP);
if (err || !skb)
return err;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_aes_decrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct sk_buff *skb = NULL;
int err;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
err = process_cipher(req, u_ctx->lldi.rxq_ids[ctx->rx_qidx], &skb,
CHCR_DECRYPT_OP);
if (err || !skb)
return err;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_device_init(struct chcr_context *ctx)
{
struct uld_ctx *u_ctx = NULL;
struct adapter *adap;
unsigned int id;
int txq_perchan, txq_idx, ntxq;
int err = 0, rxq_perchan, rxq_idx;
id = smp_processor_id();
if (!ctx->dev) {
u_ctx = assign_chcr_device();
if (!u_ctx) {
pr_err("chcr device assignment fails\n");
goto out;
}
ctx->dev = u_ctx->dev;
adap = padap(ctx->dev);
ntxq = min_not_zero((unsigned int)u_ctx->lldi.nrxq,
adap->vres.ncrypto_fc);
rxq_perchan = u_ctx->lldi.nrxq / u_ctx->lldi.nchan;
txq_perchan = ntxq / u_ctx->lldi.nchan;
rxq_idx = ctx->dev->tx_channel_id * rxq_perchan;
rxq_idx += id % rxq_perchan;
txq_idx = ctx->dev->tx_channel_id * txq_perchan;
txq_idx += id % txq_perchan;
spin_lock(&ctx->dev->lock_chcr_dev);
ctx->rx_qidx = rxq_idx;
ctx->tx_qidx = txq_idx;
ctx->dev->tx_channel_id = !ctx->dev->tx_channel_id;
ctx->dev->rx_channel_id = 0;
spin_unlock(&ctx->dev->lock_chcr_dev);
}
out:
return err;
}
static int chcr_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
ablkctx->sw_cipher = crypto_alloc_skcipher(alg->cra_name, 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ablkctx->sw_cipher)) {
pr_err("failed to allocate fallback for %s\n", alg->cra_name);
return PTR_ERR(ablkctx->sw_cipher);
}
tfm->crt_ablkcipher.reqsize = sizeof(struct chcr_blkcipher_req_ctx);
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static int chcr_rfc3686_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
/*RFC3686 initialises IV counter value to 1, rfc3686(ctr(aes))
* cannot be used as fallback in chcr_handle_cipher_response
*/
ablkctx->sw_cipher = crypto_alloc_skcipher("ctr(aes)", 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ablkctx->sw_cipher)) {
pr_err("failed to allocate fallback for %s\n", alg->cra_name);
return PTR_ERR(ablkctx->sw_cipher);
}
tfm->crt_ablkcipher.reqsize = sizeof(struct chcr_blkcipher_req_ctx);
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static void chcr_cra_exit(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
crypto_free_skcipher(ablkctx->sw_cipher);
}
static int get_alg_config(struct algo_param *params,
unsigned int auth_size)
{
switch (auth_size) {
case SHA1_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA1;
params->result_size = SHA1_DIGEST_SIZE;
break;
case SHA224_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA224;
params->result_size = SHA256_DIGEST_SIZE;
break;
case SHA256_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA256;
params->result_size = SHA256_DIGEST_SIZE;
break;
case SHA384_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384;
params->result_size = SHA512_DIGEST_SIZE;
break;
case SHA512_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512;
params->result_size = SHA512_DIGEST_SIZE;
break;
default:
pr_err("chcr : ERROR, unsupported digest size\n");
return -EINVAL;
}
return 0;
}
static inline void chcr_free_shash(struct crypto_shash *base_hash)
{
crypto_free_shash(base_hash);
}
/**
* create_hash_wr - Create hash work request
* @req - Cipher req base
*/
static struct sk_buff *create_hash_wr(struct ahash_request *req,
struct hash_wr_param *param)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
unsigned int frags = 0, transhdr_len, iopad_alignment = 0;
unsigned int digestsize = crypto_ahash_digestsize(tfm);
unsigned int kctx_len = 0;
u8 hash_size_in_response = 0;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
iopad_alignment = KEYCTX_ALIGN_PAD(digestsize);
kctx_len = param->alg_prm.result_size + iopad_alignment;
if (param->opad_needed)
kctx_len += param->alg_prm.result_size + iopad_alignment;
if (req_ctx->result)
hash_size_in_response = digestsize;
else
hash_size_in_response = param->alg_prm.result_size;
transhdr_len = HASH_TRANSHDR_SIZE(kctx_len);
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb)
return skb;
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
chcr_req = __skb_put_zero(skb, transhdr_len);
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(ctx->dev->rx_channel_id, 2, 0);
chcr_req->sec_cpl.pldlen = htonl(param->bfr_len + param->sg_len);
chcr_req->sec_cpl.aadstart_cipherstop_hi =
FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, 0, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, 1, 0, 0);
chcr_req->sec_cpl.seqno_numivs =
FILL_SEC_CPL_SCMD0_SEQNO(0, 0, 0, param->alg_prm.auth_mode,
param->opad_needed, 0);
chcr_req->sec_cpl.ivgen_hdrlen =
FILL_SEC_CPL_IVGEN_HDRLEN(param->last, param->more, 0, 1, 0, 0);
memcpy(chcr_req->key_ctx.key, req_ctx->partial_hash,
param->alg_prm.result_size);
if (param->opad_needed)
memcpy(chcr_req->key_ctx.key +
((param->alg_prm.result_size <= 32) ? 32 :
CHCR_HASH_MAX_DIGEST_SIZE),
hmacctx->opad, param->alg_prm.result_size);
chcr_req->key_ctx.ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_NO_KEY,
param->alg_prm.mk_size, 0,
param->opad_needed,
((kctx_len +
sizeof(chcr_req->key_ctx)) >> 4));
chcr_req->sec_cpl.scmd1 = cpu_to_be64((u64)param->scmd1);
skb_set_transport_header(skb, transhdr_len);
if (param->bfr_len != 0)
write_buffer_to_skb(skb, &frags, req_ctx->reqbfr,
param->bfr_len);
if (param->sg_len != 0)
write_sg_to_skb(skb, &frags, req->src, param->sg_len);
atomic_inc(&adap->chcr_stats.digest_rqst);
create_wreq(ctx, chcr_req, &req->base, skb, kctx_len,
hash_size_in_response, 0, DUMMY_BYTES, 0);
req_ctx->skb = skb;
skb_get(skb);
return skb;
}
static int chcr_ahash_update(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct uld_ctx *u_ctx = NULL;
struct sk_buff *skb;
u8 remainder = 0, bs;
unsigned int nbytes = req->nbytes;
struct hash_wr_param params;
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
if (nbytes + req_ctx->reqlen >= bs) {
remainder = (nbytes + req_ctx->reqlen) % bs;
nbytes = nbytes + req_ctx->reqlen - remainder;
} else {
sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->reqbfr
+ req_ctx->reqlen, nbytes, 0);
req_ctx->reqlen += nbytes;
return 0;
}
params.opad_needed = 0;
params.more = 1;
params.last = 0;
params.sg_len = nbytes - req_ctx->reqlen;
params.bfr_len = req_ctx->reqlen;
params.scmd1 = 0;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->result = 0;
req_ctx->data_len += params.sg_len + params.bfr_len;
skb = create_hash_wr(req, &params);
if (!skb)
return -ENOMEM;
if (remainder) {
u8 *temp;
/* Swap buffers */
temp = req_ctx->reqbfr;
req_ctx->reqbfr = req_ctx->skbfr;
req_ctx->skbfr = temp;
sg_pcopy_to_buffer(req->src, sg_nents(req->src),
req_ctx->reqbfr, remainder, req->nbytes -
remainder);
}
req_ctx->reqlen = remainder;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static void create_last_hash_block(char *bfr_ptr, unsigned int bs, u64 scmd1)
{
memset(bfr_ptr, 0, bs);
*bfr_ptr = 0x80;
if (bs == 64)
*(__be64 *)(bfr_ptr + 56) = cpu_to_be64(scmd1 << 3);
else
*(__be64 *)(bfr_ptr + 120) = cpu_to_be64(scmd1 << 3);
}
static int chcr_ahash_final(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct hash_wr_param params;
struct sk_buff *skb;
struct uld_ctx *u_ctx = NULL;
u8 bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.sg_len = 0;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->result = 1;
params.bfr_len = req_ctx->reqlen;
req_ctx->data_len += params.bfr_len + params.sg_len;
if (req_ctx->reqlen == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.bfr_len = bs;
} else {
params.scmd1 = req_ctx->data_len;
params.last = 1;
params.more = 0;
}
skb = create_hash_wr(req, &params);
if (!skb)
return -ENOMEM;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_ahash_finup(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct uld_ctx *u_ctx = NULL;
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.sg_len = req->nbytes;
params.bfr_len = req_ctx->reqlen;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->data_len += params.bfr_len + params.sg_len;
req_ctx->result = 1;
if ((req_ctx->reqlen + req->nbytes) == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.bfr_len = bs;
} else {
params.scmd1 = req_ctx->data_len;
params.last = 1;
params.more = 0;
}
skb = create_hash_wr(req, &params);
if (!skb)
return -ENOMEM;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_ahash_digest(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct uld_ctx *u_ctx = NULL;
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
rtfm->init(req);
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.last = 0;
params.more = 0;
params.sg_len = req->nbytes;
params.bfr_len = 0;
params.scmd1 = 0;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->result = 1;
req_ctx->data_len += params.bfr_len + params.sg_len;
if (req->nbytes == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, 0);
params.more = 1;
params.bfr_len = bs;
}
skb = create_hash_wr(req, &params);
if (!skb)
return -ENOMEM;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_ahash_export(struct ahash_request *areq, void *out)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct chcr_ahash_req_ctx *state = out;
state->reqlen = req_ctx->reqlen;
state->data_len = req_ctx->data_len;
memcpy(state->bfr1, req_ctx->reqbfr, req_ctx->reqlen);
memcpy(state->partial_hash, req_ctx->partial_hash,
CHCR_HASH_MAX_DIGEST_SIZE);
return 0;
}
static int chcr_ahash_import(struct ahash_request *areq, const void *in)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct chcr_ahash_req_ctx *state = (struct chcr_ahash_req_ctx *)in;
req_ctx->reqlen = state->reqlen;
req_ctx->data_len = state->data_len;
req_ctx->reqbfr = req_ctx->bfr1;
req_ctx->skbfr = req_ctx->bfr2;
memcpy(req_ctx->bfr1, state->bfr1, CHCR_HASH_MAX_BLOCK_SIZE_128);
memcpy(req_ctx->partial_hash, state->partial_hash,
CHCR_HASH_MAX_DIGEST_SIZE);
return 0;
}
static int chcr_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize = crypto_ahash_digestsize(tfm);
unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int i, err = 0, updated_digestsize;
SHASH_DESC_ON_STACK(shash, hmacctx->base_hash);
/* use the key to calculate the ipad and opad. ipad will sent with the
* first request's data. opad will be sent with the final hash result
* ipad in hmacctx->ipad and opad in hmacctx->opad location
*/
shash->tfm = hmacctx->base_hash;
shash->flags = crypto_shash_get_flags(hmacctx->base_hash);
if (keylen > bs) {
err = crypto_shash_digest(shash, key, keylen,
hmacctx->ipad);
if (err)
goto out;
keylen = digestsize;
} else {
memcpy(hmacctx->ipad, key, keylen);
}
memset(hmacctx->ipad + keylen, 0, bs - keylen);
memcpy(hmacctx->opad, hmacctx->ipad, bs);
for (i = 0; i < bs / sizeof(int); i++) {
*((unsigned int *)(&hmacctx->ipad) + i) ^= IPAD_DATA;
*((unsigned int *)(&hmacctx->opad) + i) ^= OPAD_DATA;
}
updated_digestsize = digestsize;
if (digestsize == SHA224_DIGEST_SIZE)
updated_digestsize = SHA256_DIGEST_SIZE;
else if (digestsize == SHA384_DIGEST_SIZE)
updated_digestsize = SHA512_DIGEST_SIZE;
err = chcr_compute_partial_hash(shash, hmacctx->ipad,
hmacctx->ipad, digestsize);
if (err)
goto out;
chcr_change_order(hmacctx->ipad, updated_digestsize);
err = chcr_compute_partial_hash(shash, hmacctx->opad,
hmacctx->opad, digestsize);
if (err)
goto out;
chcr_change_order(hmacctx->opad, updated_digestsize);
out:
return err;
}
static int chcr_aes_xts_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int key_len)
{
struct chcr_context *ctx = crypto_ablkcipher_ctx(cipher);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
unsigned short context_size = 0;
int err;
err = chcr_cipher_fallback_setkey(cipher, key, key_len);
if (err)
goto badkey_err;
memcpy(ablkctx->key, key, key_len);
ablkctx->enckey_len = key_len;
get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, key_len << 2);
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len) >> 4;
ablkctx->key_ctx_hdr =
FILL_KEY_CTX_HDR((key_len == AES_KEYSIZE_256) ?
CHCR_KEYCTX_CIPHER_KEY_SIZE_128 :
CHCR_KEYCTX_CIPHER_KEY_SIZE_256,
CHCR_KEYCTX_NO_KEY, 1,
0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS;
return 0;
badkey_err:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
ablkctx->enckey_len = 0;
return err;
}
static int chcr_sha_init(struct ahash_request *areq)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
int digestsize = crypto_ahash_digestsize(tfm);
req_ctx->data_len = 0;
req_ctx->reqlen = 0;
req_ctx->reqbfr = req_ctx->bfr1;
req_ctx->skbfr = req_ctx->bfr2;
req_ctx->skb = NULL;
req_ctx->result = 0;
copy_hash_init_values(req_ctx->partial_hash, digestsize);
return 0;
}
static int chcr_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct chcr_ahash_req_ctx));
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static int chcr_hmac_init(struct ahash_request *areq)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(areq);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize = crypto_ahash_digestsize(rtfm);
unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
chcr_sha_init(areq);
req_ctx->data_len = bs;
if (is_hmac(crypto_ahash_tfm(rtfm))) {
if (digestsize == SHA224_DIGEST_SIZE)
memcpy(req_ctx->partial_hash, hmacctx->ipad,
SHA256_DIGEST_SIZE);
else if (digestsize == SHA384_DIGEST_SIZE)
memcpy(req_ctx->partial_hash, hmacctx->ipad,
SHA512_DIGEST_SIZE);
else
memcpy(req_ctx->partial_hash, hmacctx->ipad,
digestsize);
}
return 0;
}
static int chcr_hmac_cra_init(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize =
crypto_ahash_digestsize(__crypto_ahash_cast(tfm));
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct chcr_ahash_req_ctx));
hmacctx->base_hash = chcr_alloc_shash(digestsize);
if (IS_ERR(hmacctx->base_hash))
return PTR_ERR(hmacctx->base_hash);
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static void chcr_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
if (hmacctx->base_hash) {
chcr_free_shash(hmacctx->base_hash);
hmacctx->base_hash = NULL;
}
}
static int is_newsg(struct scatterlist *sgl, unsigned int *newents)
{
int nents = 0;
int ret = 0;
while (sgl) {
if (sgl->length > CHCR_SG_SIZE)
ret = 1;
nents += DIV_ROUND_UP(sgl->length, CHCR_SG_SIZE);
sgl = sg_next(sgl);
}
*newents = nents;
return ret;
}
static inline void free_new_sg(struct scatterlist *sgl)
{
kfree(sgl);
}
static struct scatterlist *alloc_new_sg(struct scatterlist *sgl,
unsigned int nents)
{
struct scatterlist *newsg, *sg;
int i, len, processed = 0;
struct page *spage;
int offset;
newsg = kmalloc_array(nents, sizeof(struct scatterlist), GFP_KERNEL);
if (!newsg)
return ERR_PTR(-ENOMEM);
sg = newsg;
sg_init_table(sg, nents);
offset = sgl->offset;
spage = sg_page(sgl);
for (i = 0; i < nents; i++) {
len = min_t(u32, sgl->length - processed, CHCR_SG_SIZE);
sg_set_page(sg, spage, len, offset);
processed += len;
offset += len;
if (offset >= PAGE_SIZE) {
offset = offset % PAGE_SIZE;
spage++;
}
if (processed == sgl->length) {
processed = 0;
sgl = sg_next(sgl);
if (!sgl)
break;
spage = sg_page(sgl);
offset = sgl->offset;
}
sg = sg_next(sg);
}
return newsg;
}
static int chcr_copy_assoc(struct aead_request *req,
struct chcr_aead_ctx *ctx)
{
SKCIPHER_REQUEST_ON_STACK(skreq, ctx->null);
skcipher_request_set_tfm(skreq, ctx->null);
skcipher_request_set_callback(skreq, aead_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(skreq, req->src, req->dst, req->assoclen,
NULL);
return crypto_skcipher_encrypt(skreq);
}
static int chcr_aead_need_fallback(struct aead_request *req, int src_nent,
int aadmax, int wrlen,
unsigned short op_type)
{
unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req));
if (((req->cryptlen - (op_type ? authsize : 0)) == 0) ||
(req->assoclen > aadmax) ||
(src_nent > MAX_SKB_FRAGS) ||
(wrlen > MAX_WR_SIZE))
return 1;
return 0;
}
static int chcr_aead_fallback(struct aead_request *req, unsigned short op_type)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct aead_request *subreq = aead_request_ctx(req);
aead_request_set_tfm(subreq, aeadctx->sw_cipher);
aead_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
req->iv);
aead_request_set_ad(subreq, req->assoclen);
return op_type ? crypto_aead_decrypt(subreq) :
crypto_aead_encrypt(subreq);
}
static struct sk_buff *create_authenc_wr(struct aead_request *req,
unsigned short qid,
int size,
unsigned short op_type)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct phys_sge_parm sg_param;
struct scatterlist *src;
unsigned int frags = 0, transhdr_len;
unsigned int ivsize = crypto_aead_ivsize(tfm), dst_size = 0;
unsigned int kctx_len = 0, nents;
unsigned short stop_offset = 0;
unsigned int assoclen = req->assoclen;
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL, src_nent;
int null = 0;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
reqctx->newdstsg = NULL;
dst_size = req->assoclen + req->cryptlen + (op_type ? -authsize :
authsize);
if (aeadctx->enckey_len == 0 || (req->cryptlen <= 0))
goto err;
if (op_type && req->cryptlen < crypto_aead_authsize(tfm))
goto err;
src_nent = sg_nents_for_len(req->src, req->assoclen + req->cryptlen);
if (src_nent < 0)
goto err;
src = scatterwalk_ffwd(reqctx->srcffwd, req->src, req->assoclen);
if (req->src != req->dst) {
error = chcr_copy_assoc(req, aeadctx);
if (error)
return ERR_PTR(error);
}
if (dst_size && is_newsg(req->dst, &nents)) {
reqctx->newdstsg = alloc_new_sg(req->dst, nents);
if (IS_ERR(reqctx->newdstsg))
return ERR_CAST(reqctx->newdstsg);
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd,
reqctx->newdstsg, req->assoclen);
} else {
if (req->src == req->dst)
reqctx->dst = src;
else
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd,
req->dst, req->assoclen);
}
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_NULL) {
null = 1;
assoclen = 0;
}
reqctx->dst_nents = sg_nents_for_len(reqctx->dst, req->cryptlen +
(op_type ? -authsize : authsize));
if (reqctx->dst_nents < 0) {
pr_err("AUTHENC:Invalid Destination sg entries\n");
error = -EINVAL;
goto err;
}
dst_size = get_space_for_phys_dsgl(reqctx->dst_nents);
kctx_len = (ntohl(KEY_CONTEXT_CTX_LEN_V(aeadctx->key_ctx_hdr)) << 4)
- sizeof(chcr_req->key_ctx);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
if (chcr_aead_need_fallback(req, src_nent + MIN_AUTH_SG,
T6_MAX_AAD_SIZE,
transhdr_len + (sgl_len(src_nent + MIN_AUTH_SG) * 8),
op_type)) {
atomic_inc(&adap->chcr_stats.fallback);
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return ERR_PTR(chcr_aead_fallback(req, op_type));
}
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
/* LLD is going to write the sge hdr. */
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
/* Write WR */
chcr_req = __skb_put_zero(skb, transhdr_len);
stop_offset = (op_type == CHCR_ENCRYPT_OP) ? 0 : authsize;
/*
* Input order is AAD,IV and Payload. where IV should be included as
* the part of authdata. All other fields should be filled according
* to the hardware spec
*/
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(ctx->dev->rx_channel_id, 2,
(ivsize ? (assoclen + 1) : 0));
chcr_req->sec_cpl.pldlen = htonl(assoclen + ivsize + req->cryptlen);
chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(
assoclen ? 1 : 0, assoclen,
assoclen + ivsize + 1,
(stop_offset & 0x1F0) >> 4);
chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(
stop_offset & 0xF,
null ? 0 : assoclen + ivsize + 1,
stop_offset, stop_offset);
chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type,
(op_type == CHCR_ENCRYPT_OP) ? 1 : 0,
CHCR_SCMD_CIPHER_MODE_AES_CBC,
actx->auth_mode, aeadctx->hmac_ctrl,
ivsize >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1,
0, 1, dst_size);
chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr;
if (op_type == CHCR_ENCRYPT_OP)
memcpy(chcr_req->key_ctx.key, aeadctx->key,
aeadctx->enckey_len);
else
memcpy(chcr_req->key_ctx.key, actx->dec_rrkey,
aeadctx->enckey_len);
memcpy(chcr_req->key_ctx.key + (DIV_ROUND_UP(aeadctx->enckey_len, 16) <<
4), actx->h_iopad, kctx_len -
(DIV_ROUND_UP(aeadctx->enckey_len, 16) << 4));
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
sg_param.nents = reqctx->dst_nents;
sg_param.obsize = req->cryptlen + (op_type ? -authsize : authsize);
sg_param.qid = qid;
error = map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl,
reqctx->dst, &sg_param);
if (error)
goto dstmap_fail;
skb_set_transport_header(skb, transhdr_len);
if (assoclen) {
/* AAD buffer in */
write_sg_to_skb(skb, &frags, req->src, assoclen);
}
write_buffer_to_skb(skb, &frags, req->iv, ivsize);
write_sg_to_skb(skb, &frags, src, req->cryptlen);
atomic_inc(&adap->chcr_stats.cipher_rqst);
create_wreq(ctx, chcr_req, &req->base, skb, kctx_len, size, 1,
sizeof(struct cpl_rx_phys_dsgl) + dst_size, 0);
reqctx->skb = skb;
skb_get(skb);
return skb;
dstmap_fail:
/* ivmap_fail: */
kfree_skb(skb);
err:
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return ERR_PTR(error);
}
static int set_msg_len(u8 *block, unsigned int msglen, int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (unsigned int)(1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static void generate_b0(struct aead_request *req,
struct chcr_aead_ctx *aeadctx,
unsigned short op_type)
{
unsigned int l, lp, m;
int rc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
u8 *b0 = reqctx->scratch_pad;
m = crypto_aead_authsize(aead);
memcpy(b0, reqctx->iv, 16);
lp = b0[0];
l = lp + 1;
/* set m, bits 3-5 */
*b0 |= (8 * ((m - 2) / 2));
/* set adata, bit 6, if associated data is used */
if (req->assoclen)
*b0 |= 64;
rc = set_msg_len(b0 + 16 - l,
(op_type == CHCR_DECRYPT_OP) ?
req->cryptlen - m : req->cryptlen, l);
}
static inline int crypto_ccm_check_iv(const u8 *iv)
{
/* 2 <= L <= 8, so 1 <= L' <= 7. */
if (iv[0] < 1 || iv[0] > 7)
return -EINVAL;
return 0;
}
static int ccm_format_packet(struct aead_request *req,
struct chcr_aead_ctx *aeadctx,
unsigned int sub_type,
unsigned short op_type)
{
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
int rc = 0;
if (sub_type == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) {
reqctx->iv[0] = 3;
memcpy(reqctx->iv + 1, &aeadctx->salt[0], 3);
memcpy(reqctx->iv + 4, req->iv, 8);
memset(reqctx->iv + 12, 0, 4);
*((unsigned short *)(reqctx->scratch_pad + 16)) =
htons(req->assoclen - 8);
} else {
memcpy(reqctx->iv, req->iv, 16);
*((unsigned short *)(reqctx->scratch_pad + 16)) =
htons(req->assoclen);
}
generate_b0(req, aeadctx, op_type);
/* zero the ctr value */
memset(reqctx->iv + 15 - reqctx->iv[0], 0, reqctx->iv[0] + 1);
return rc;
}
static void fill_sec_cpl_for_aead(struct cpl_tx_sec_pdu *sec_cpl,
unsigned int dst_size,
struct aead_request *req,
unsigned short op_type,
struct chcr_context *chcrctx)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
unsigned int ivsize = AES_BLOCK_SIZE;
unsigned int cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CCM;
unsigned int mac_mode = CHCR_SCMD_AUTH_MODE_CBCMAC;
unsigned int c_id = chcrctx->dev->rx_channel_id;
unsigned int ccm_xtra;
unsigned char tag_offset = 0, auth_offset = 0;
unsigned int assoclen;
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309)
assoclen = req->assoclen - 8;
else
assoclen = req->assoclen;
ccm_xtra = CCM_B0_SIZE +
((assoclen) ? CCM_AAD_FIELD_SIZE : 0);
auth_offset = req->cryptlen ?
(assoclen + ivsize + 1 + ccm_xtra) : 0;
if (op_type == CHCR_DECRYPT_OP) {
if (crypto_aead_authsize(tfm) != req->cryptlen)
tag_offset = crypto_aead_authsize(tfm);
else
auth_offset = 0;
}
sec_cpl->op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(c_id,
2, (ivsize ? (assoclen + 1) : 0) +
ccm_xtra);
sec_cpl->pldlen =
htonl(assoclen + ivsize + req->cryptlen + ccm_xtra);
/* For CCM there wil be b0 always. So AAD start will be 1 always */
sec_cpl->aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(
1, assoclen + ccm_xtra, assoclen
+ ivsize + 1 + ccm_xtra, 0);
sec_cpl->cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0,
auth_offset, tag_offset,
(op_type == CHCR_ENCRYPT_OP) ? 0 :
crypto_aead_authsize(tfm));
sec_cpl->seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type,
(op_type == CHCR_ENCRYPT_OP) ? 0 : 1,
cipher_mode, mac_mode,
aeadctx->hmac_ctrl, ivsize >> 1);
sec_cpl->ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0,
1, dst_size);
}
int aead_ccm_validate_input(unsigned short op_type,
struct aead_request *req,
struct chcr_aead_ctx *aeadctx,
unsigned int sub_type)
{
if (sub_type != CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) {
if (crypto_ccm_check_iv(req->iv)) {
pr_err("CCM: IV check fails\n");
return -EINVAL;
}
} else {
if (req->assoclen != 16 && req->assoclen != 20) {
pr_err("RFC4309: Invalid AAD length %d\n",
req->assoclen);
return -EINVAL;
}
}
if (aeadctx->enckey_len == 0) {
pr_err("CCM: Encryption key not set\n");
return -EINVAL;
}
return 0;
}
unsigned int fill_aead_req_fields(struct sk_buff *skb,
struct aead_request *req,
struct scatterlist *src,
unsigned int ivsize,
struct chcr_aead_ctx *aeadctx)
{
unsigned int frags = 0;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
/* b0 and aad length(if available) */
write_buffer_to_skb(skb, &frags, reqctx->scratch_pad, CCM_B0_SIZE +
(req->assoclen ? CCM_AAD_FIELD_SIZE : 0));
if (req->assoclen) {
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309)
write_sg_to_skb(skb, &frags, req->src,
req->assoclen - 8);
else
write_sg_to_skb(skb, &frags, req->src, req->assoclen);
}
write_buffer_to_skb(skb, &frags, reqctx->iv, ivsize);
if (req->cryptlen)
write_sg_to_skb(skb, &frags, src, req->cryptlen);
return frags;
}
static struct sk_buff *create_aead_ccm_wr(struct aead_request *req,
unsigned short qid,
int size,
unsigned short op_type)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct phys_sge_parm sg_param;
struct scatterlist *src;
unsigned int frags = 0, transhdr_len, ivsize = AES_BLOCK_SIZE;
unsigned int dst_size = 0, kctx_len, nents;
unsigned int sub_type;
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL, src_nent;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
dst_size = req->assoclen + req->cryptlen + (op_type ? -authsize :
authsize);
reqctx->newdstsg = NULL;
if (op_type && req->cryptlen < crypto_aead_authsize(tfm))
goto err;
src_nent = sg_nents_for_len(req->src, req->assoclen + req->cryptlen);
if (src_nent < 0)
goto err;
sub_type = get_aead_subtype(tfm);
src = scatterwalk_ffwd(reqctx->srcffwd, req->src, req->assoclen);
if (req->src != req->dst) {
error = chcr_copy_assoc(req, aeadctx);
if (error) {
pr_err("AAD copy to destination buffer fails\n");
return ERR_PTR(error);
}
}
if (dst_size && is_newsg(req->dst, &nents)) {
reqctx->newdstsg = alloc_new_sg(req->dst, nents);
if (IS_ERR(reqctx->newdstsg))
return ERR_CAST(reqctx->newdstsg);
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd,
reqctx->newdstsg, req->assoclen);
} else {
if (req->src == req->dst)
reqctx->dst = src;
else
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd,
req->dst, req->assoclen);
}
reqctx->dst_nents = sg_nents_for_len(reqctx->dst, req->cryptlen +
(op_type ? -authsize : authsize));
if (reqctx->dst_nents < 0) {
pr_err("CCM:Invalid Destination sg entries\n");
error = -EINVAL;
goto err;
}
error = aead_ccm_validate_input(op_type, req, aeadctx, sub_type);
if (error)
goto err;
dst_size = get_space_for_phys_dsgl(reqctx->dst_nents);
kctx_len = ((DIV_ROUND_UP(aeadctx->enckey_len, 16)) << 4) * 2;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
if (chcr_aead_need_fallback(req, src_nent + MIN_CCM_SG,
T6_MAX_AAD_SIZE - 18,
transhdr_len + (sgl_len(src_nent + MIN_CCM_SG) * 8),
op_type)) {
atomic_inc(&adap->chcr_stats.fallback);
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return ERR_PTR(chcr_aead_fallback(req, op_type));
}
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
chcr_req = __skb_put_zero(skb, transhdr_len);
fill_sec_cpl_for_aead(&chcr_req->sec_cpl, dst_size, req, op_type, ctx);
chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr;
memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len);
memcpy(chcr_req->key_ctx.key + (DIV_ROUND_UP(aeadctx->enckey_len, 16) *
16), aeadctx->key, aeadctx->enckey_len);
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
error = ccm_format_packet(req, aeadctx, sub_type, op_type);
if (error)
goto dstmap_fail;
sg_param.nents = reqctx->dst_nents;
sg_param.obsize = req->cryptlen + (op_type ? -authsize : authsize);
sg_param.qid = qid;
error = map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl,
reqctx->dst, &sg_param);
if (error)
goto dstmap_fail;
skb_set_transport_header(skb, transhdr_len);
frags = fill_aead_req_fields(skb, req, src, ivsize, aeadctx);
atomic_inc(&adap->chcr_stats.aead_rqst);
create_wreq(ctx, chcr_req, &req->base, skb, kctx_len, 0, 1,
sizeof(struct cpl_rx_phys_dsgl) + dst_size, 0);
reqctx->skb = skb;
skb_get(skb);
return skb;
dstmap_fail:
kfree_skb(skb);
err:
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return ERR_PTR(error);
}
static struct sk_buff *create_gcm_wr(struct aead_request *req,
unsigned short qid,
int size,
unsigned short op_type)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct phys_sge_parm sg_param;
struct scatterlist *src;
unsigned int frags = 0, transhdr_len;
unsigned int ivsize = AES_BLOCK_SIZE;
unsigned int dst_size = 0, kctx_len, nents, assoclen = req->assoclen;
unsigned char tag_offset = 0;
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL, src_nent;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
reqctx->newdstsg = NULL;
dst_size = assoclen + req->cryptlen + (op_type ? -authsize :
authsize);
/* validate key size */
if (aeadctx->enckey_len == 0)
goto err;
if (op_type && req->cryptlen < crypto_aead_authsize(tfm))
goto err;
src_nent = sg_nents_for_len(req->src, assoclen + req->cryptlen);
if (src_nent < 0)
goto err;
src = scatterwalk_ffwd(reqctx->srcffwd, req->src, assoclen);
if (req->src != req->dst) {
error = chcr_copy_assoc(req, aeadctx);
if (error)
return ERR_PTR(error);
}
if (dst_size && is_newsg(req->dst, &nents)) {
reqctx->newdstsg = alloc_new_sg(req->dst, nents);
if (IS_ERR(reqctx->newdstsg))
return ERR_CAST(reqctx->newdstsg);
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd,
reqctx->newdstsg, assoclen);
} else {
if (req->src == req->dst)
reqctx->dst = src;
else
reqctx->dst = scatterwalk_ffwd(reqctx->dstffwd,
req->dst, assoclen);
}
reqctx->dst_nents = sg_nents_for_len(reqctx->dst, req->cryptlen +
(op_type ? -authsize : authsize));
if (reqctx->dst_nents < 0) {
pr_err("GCM:Invalid Destination sg entries\n");
error = -EINVAL;
goto err;
}
dst_size = get_space_for_phys_dsgl(reqctx->dst_nents);
kctx_len = ((DIV_ROUND_UP(aeadctx->enckey_len, 16)) << 4) +
AEAD_H_SIZE;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
if (chcr_aead_need_fallback(req, src_nent + MIN_GCM_SG,
T6_MAX_AAD_SIZE,
transhdr_len + (sgl_len(src_nent + MIN_GCM_SG) * 8),
op_type)) {
atomic_inc(&adap->chcr_stats.fallback);
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return ERR_PTR(chcr_aead_fallback(req, op_type));
}
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
/* NIC driver is going to write the sge hdr. */
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
chcr_req = __skb_put_zero(skb, transhdr_len);
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106)
assoclen = req->assoclen - 8;
tag_offset = (op_type == CHCR_ENCRYPT_OP) ? 0 : authsize;
chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(
ctx->dev->rx_channel_id, 2, (ivsize ?
(assoclen + 1) : 0));
chcr_req->sec_cpl.pldlen =
htonl(assoclen + ivsize + req->cryptlen);
chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(
assoclen ? 1 : 0, assoclen,
assoclen + ivsize + 1, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, assoclen + ivsize + 1,
tag_offset, tag_offset);
chcr_req->sec_cpl.seqno_numivs =
FILL_SEC_CPL_SCMD0_SEQNO(op_type, (op_type ==
CHCR_ENCRYPT_OP) ? 1 : 0,
CHCR_SCMD_CIPHER_MODE_AES_GCM,
CHCR_SCMD_AUTH_MODE_GHASH,
aeadctx->hmac_ctrl, ivsize >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1,
0, 1, dst_size);
chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr;
memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len);
memcpy(chcr_req->key_ctx.key + (DIV_ROUND_UP(aeadctx->enckey_len, 16) *
16), GCM_CTX(aeadctx)->ghash_h, AEAD_H_SIZE);
/* prepare a 16 byte iv */
/* S A L T | IV | 0x00000001 */
if (get_aead_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) {
memcpy(reqctx->iv, aeadctx->salt, 4);
memcpy(reqctx->iv + 4, req->iv, 8);
} else {
memcpy(reqctx->iv, req->iv, 12);
}
*((unsigned int *)(reqctx->iv + 12)) = htonl(0x01);
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
sg_param.nents = reqctx->dst_nents;
sg_param.obsize = req->cryptlen + (op_type ? -authsize : authsize);
sg_param.qid = qid;
error = map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl,
reqctx->dst, &sg_param);
if (error)
goto dstmap_fail;
skb_set_transport_header(skb, transhdr_len);
write_sg_to_skb(skb, &frags, req->src, assoclen);
write_buffer_to_skb(skb, &frags, reqctx->iv, ivsize);
write_sg_to_skb(skb, &frags, src, req->cryptlen);
atomic_inc(&adap->chcr_stats.aead_rqst);
create_wreq(ctx, chcr_req, &req->base, skb, kctx_len, size, 1,
sizeof(struct cpl_rx_phys_dsgl) + dst_size,
reqctx->verify);
reqctx->skb = skb;
skb_get(skb);
return skb;
dstmap_fail:
/* ivmap_fail: */
kfree_skb(skb);
err:
free_new_sg(reqctx->newdstsg);
reqctx->newdstsg = NULL;
return ERR_PTR(error);
}
static int chcr_aead_cra_init(struct crypto_aead *tfm)
{
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct aead_alg *alg = crypto_aead_alg(tfm);
aeadctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC);
if (IS_ERR(aeadctx->sw_cipher))
return PTR_ERR(aeadctx->sw_cipher);
crypto_aead_set_reqsize(tfm, max(sizeof(struct chcr_aead_reqctx),
sizeof(struct aead_request) +
crypto_aead_reqsize(aeadctx->sw_cipher)));
aeadctx->null = crypto_get_default_null_skcipher();
if (IS_ERR(aeadctx->null))
return PTR_ERR(aeadctx->null);
return chcr_device_init(ctx);
}
static void chcr_aead_cra_exit(struct crypto_aead *tfm)
{
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
crypto_put_default_null_skcipher();
crypto_free_aead(aeadctx->sw_cipher);
}
static int chcr_authenc_null_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NOP;
aeadctx->mayverify = VERIFY_HW;
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_authenc_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
u32 maxauth = crypto_aead_maxauthsize(tfm);
/*SHA1 authsize in ipsec is 12 instead of 10 i.e maxauthsize / 2 is not
* true for sha1. authsize == 12 condition should be before
* authsize == (maxauth >> 1)
*/
if (authsize == ICV_4) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_6) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL2;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_10) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_12) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_14) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == (maxauth >> 1)) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == maxauth) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
} else {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_SW;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
switch (authsize) {
case ICV_4:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_8:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_12:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_14:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_16:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_13:
case ICV_15:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_SW;
break;
default:
crypto_tfm_set_flags((struct crypto_tfm *) tfm,
CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_4106_4309_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
switch (authsize) {
case ICV_8:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_12:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_16:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
break;
default:
crypto_tfm_set_flags((struct crypto_tfm *)tfm,
CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
switch (authsize) {
case ICV_4:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_6:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_8:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_10:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_12:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_14:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_16:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
break;
default:
crypto_tfm_set_flags((struct crypto_tfm *)tfm,
CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_ccm_common_setkey(struct crypto_aead *aead,
const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_aead_ctx(aead);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
unsigned char ck_size, mk_size;
int key_ctx_size = 0;
key_ctx_size = sizeof(struct _key_ctx) +
((DIV_ROUND_UP(keylen, 16)) << 4) * 2;
if (keylen == AES_KEYSIZE_128) {
mk_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_192;
} else if (keylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
} else {
crypto_tfm_set_flags((struct crypto_tfm *)aead,
CRYPTO_TFM_RES_BAD_KEY_LEN);
aeadctx->enckey_len = 0;
return -EINVAL;
}
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, mk_size, 0, 0,
key_ctx_size >> 4);
memcpy(aeadctx->key, key, keylen);
aeadctx->enckey_len = keylen;
return 0;
}
static int chcr_aead_ccm_setkey(struct crypto_aead *aead,
const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_aead_ctx(aead);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
int error;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
error = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
crypto_aead_clear_flags(aead, CRYPTO_TFM_RES_MASK);
crypto_aead_set_flags(aead, crypto_aead_get_flags(aeadctx->sw_cipher) &
CRYPTO_TFM_RES_MASK);
if (error)
return error;
return chcr_ccm_common_setkey(aead, key, keylen);
}
static int chcr_aead_rfc4309_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_aead_ctx(aead);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
int error;
if (keylen < 3) {
crypto_tfm_set_flags((struct crypto_tfm *)aead,
CRYPTO_TFM_RES_BAD_KEY_LEN);
aeadctx->enckey_len = 0;
return -EINVAL;
}
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
error = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
crypto_aead_clear_flags(aead, CRYPTO_TFM_RES_MASK);
crypto_aead_set_flags(aead, crypto_aead_get_flags(aeadctx->sw_cipher) &
CRYPTO_TFM_RES_MASK);
if (error)
return error;
keylen -= 3;
memcpy(aeadctx->salt, key + keylen, 3);
return chcr_ccm_common_setkey(aead, key, keylen);
}
static int chcr_gcm_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_aead_ctx(aead);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_gcm_ctx *gctx = GCM_CTX(aeadctx);
struct crypto_cipher *cipher;
unsigned int ck_size;
int ret = 0, key_ctx_size = 0;
aeadctx->enckey_len = 0;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead)
& CRYPTO_TFM_REQ_MASK);
ret = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
crypto_aead_clear_flags(aead, CRYPTO_TFM_RES_MASK);
crypto_aead_set_flags(aead, crypto_aead_get_flags(aeadctx->sw_cipher) &
CRYPTO_TFM_RES_MASK);
if (ret)
goto out;
if (get_aead_subtype(aead) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106 &&
keylen > 3) {
keylen -= 4; /* nonce/salt is present in the last 4 bytes */
memcpy(aeadctx->salt, key + keylen, 4);
}
if (keylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
crypto_tfm_set_flags((struct crypto_tfm *)aead,
CRYPTO_TFM_RES_BAD_KEY_LEN);
pr_err("GCM: Invalid key length %d\n", keylen);
ret = -EINVAL;
goto out;
}
memcpy(aeadctx->key, key, keylen);
aeadctx->enckey_len = keylen;
key_ctx_size = sizeof(struct _key_ctx) +
((DIV_ROUND_UP(keylen, 16)) << 4) +
AEAD_H_SIZE;
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
CHCR_KEYCTX_MAC_KEY_SIZE_128,
0, 0,
key_ctx_size >> 4);
/* Calculate the H = CIPH(K, 0 repeated 16 times).
* It will go in key context
*/
cipher = crypto_alloc_cipher("aes-generic", 0, 0);
if (IS_ERR(cipher)) {
aeadctx->enckey_len = 0;
ret = -ENOMEM;
goto out;
}
ret = crypto_cipher_setkey(cipher, key, keylen);
if (ret) {
aeadctx->enckey_len = 0;
goto out1;
}
memset(gctx->ghash_h, 0, AEAD_H_SIZE);
crypto_cipher_encrypt_one(cipher, gctx->ghash_h, gctx->ghash_h);
out1:
crypto_free_cipher(cipher);
out:
return ret;
}
static int chcr_authenc_setkey(struct crypto_aead *authenc, const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_aead_ctx(authenc);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx);
/* it contains auth and cipher key both*/
struct crypto_authenc_keys keys;
unsigned int bs;
unsigned int max_authsize = crypto_aead_alg(authenc)->maxauthsize;
int err = 0, i, key_ctx_len = 0;
unsigned char ck_size = 0;
unsigned char pad[CHCR_HASH_MAX_BLOCK_SIZE_128] = { 0 };
struct crypto_shash *base_hash = ERR_PTR(-EINVAL);
struct algo_param param;
int align;
u8 *o_ptr = NULL;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(authenc)
& CRYPTO_TFM_REQ_MASK);
err = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
crypto_aead_clear_flags(authenc, CRYPTO_TFM_RES_MASK);
crypto_aead_set_flags(authenc, crypto_aead_get_flags(aeadctx->sw_cipher)
& CRYPTO_TFM_RES_MASK);
if (err)
goto out;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) {
crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN);
goto out;
}
if (get_alg_config(&param, max_authsize)) {
pr_err("chcr : Unsupported digest size\n");
goto out;
}
if (keys.enckeylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keys.enckeylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keys.enckeylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
pr_err("chcr : Unsupported cipher key\n");
goto out;
}
/* Copy only encryption key. We use authkey to generate h(ipad) and
* h(opad) so authkey is not needed again. authkeylen size have the
* size of the hash digest size.
*/
memcpy(aeadctx->key, keys.enckey, keys.enckeylen);
aeadctx->enckey_len = keys.enckeylen;
get_aes_decrypt_key(actx->dec_rrkey, aeadctx->key,
aeadctx->enckey_len << 3);
base_hash = chcr_alloc_shash(max_authsize);
if (IS_ERR(base_hash)) {
pr_err("chcr : Base driver cannot be loaded\n");
aeadctx->enckey_len = 0;
return -EINVAL;
}
{
SHASH_DESC_ON_STACK(shash, base_hash);
shash->tfm = base_hash;
shash->flags = crypto_shash_get_flags(base_hash);
bs = crypto_shash_blocksize(base_hash);
align = KEYCTX_ALIGN_PAD(max_authsize);
o_ptr = actx->h_iopad + param.result_size + align;
if (keys.authkeylen > bs) {
err = crypto_shash_digest(shash, keys.authkey,
keys.authkeylen,
o_ptr);
if (err) {
pr_err("chcr : Base driver cannot be loaded\n");
goto out;
}
keys.authkeylen = max_authsize;
} else
memcpy(o_ptr, keys.authkey, keys.authkeylen);
/* Compute the ipad-digest*/
memset(pad + keys.authkeylen, 0, bs - keys.authkeylen);
memcpy(pad, o_ptr, keys.authkeylen);
for (i = 0; i < bs >> 2; i++)
*((unsigned int *)pad + i) ^= IPAD_DATA;
if (chcr_compute_partial_hash(shash, pad, actx->h_iopad,
max_authsize))
goto out;
/* Compute the opad-digest */
memset(pad + keys.authkeylen, 0, bs - keys.authkeylen);
memcpy(pad, o_ptr, keys.authkeylen);
for (i = 0; i < bs >> 2; i++)
*((unsigned int *)pad + i) ^= OPAD_DATA;
if (chcr_compute_partial_hash(shash, pad, o_ptr, max_authsize))
goto out;
/* convert the ipad and opad digest to network order */
chcr_change_order(actx->h_iopad, param.result_size);
chcr_change_order(o_ptr, param.result_size);
key_ctx_len = sizeof(struct _key_ctx) +
((DIV_ROUND_UP(keys.enckeylen, 16)) << 4) +
(param.result_size + align) * 2;
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, param.mk_size,
0, 1, key_ctx_len >> 4);
actx->auth_mode = param.auth_mode;
chcr_free_shash(base_hash);
return 0;
}
out:
aeadctx->enckey_len = 0;
if (!IS_ERR(base_hash))
chcr_free_shash(base_hash);
return -EINVAL;
}
static int chcr_aead_digest_null_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct chcr_context *ctx = crypto_aead_ctx(authenc);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx);
struct crypto_authenc_keys keys;
int err;
/* it contains auth and cipher key both*/
int key_ctx_len = 0;
unsigned char ck_size = 0;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(authenc)
& CRYPTO_TFM_REQ_MASK);
err = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
crypto_aead_clear_flags(authenc, CRYPTO_TFM_RES_MASK);
crypto_aead_set_flags(authenc, crypto_aead_get_flags(aeadctx->sw_cipher)
& CRYPTO_TFM_RES_MASK);
if (err)
goto out;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) {
crypto_aead_set_flags(authenc, CRYPTO_TFM_RES_BAD_KEY_LEN);
goto out;
}
if (keys.enckeylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keys.enckeylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keys.enckeylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
pr_err("chcr : Unsupported cipher key\n");
goto out;
}
memcpy(aeadctx->key, keys.enckey, keys.enckeylen);
aeadctx->enckey_len = keys.enckeylen;
get_aes_decrypt_key(actx->dec_rrkey, aeadctx->key,
aeadctx->enckey_len << 3);
key_ctx_len = sizeof(struct _key_ctx)
+ ((DIV_ROUND_UP(keys.enckeylen, 16)) << 4);
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0,
0, key_ctx_len >> 4);
actx->auth_mode = CHCR_SCMD_AUTH_MODE_NOP;
return 0;
out:
aeadctx->enckey_len = 0;
return -EINVAL;
}
static int chcr_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
reqctx->verify = VERIFY_HW;
switch (get_aead_subtype(tfm)) {
case CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC:
case CRYPTO_ALG_SUB_TYPE_AEAD_NULL:
return chcr_aead_op(req, CHCR_ENCRYPT_OP, 0,
create_authenc_wr);
case CRYPTO_ALG_SUB_TYPE_AEAD_CCM:
case CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309:
return chcr_aead_op(req, CHCR_ENCRYPT_OP, 0,
create_aead_ccm_wr);
default:
return chcr_aead_op(req, CHCR_ENCRYPT_OP, 0,
create_gcm_wr);
}
}
static int chcr_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(crypto_aead_ctx(tfm));
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
int size;
if (aeadctx->mayverify == VERIFY_SW) {
size = crypto_aead_maxauthsize(tfm);
reqctx->verify = VERIFY_SW;
} else {
size = 0;
reqctx->verify = VERIFY_HW;
}
switch (get_aead_subtype(tfm)) {
case CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC:
case CRYPTO_ALG_SUB_TYPE_AEAD_NULL:
return chcr_aead_op(req, CHCR_DECRYPT_OP, size,
create_authenc_wr);
case CRYPTO_ALG_SUB_TYPE_AEAD_CCM:
case CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309:
return chcr_aead_op(req, CHCR_DECRYPT_OP, size,
create_aead_ccm_wr);
default:
return chcr_aead_op(req, CHCR_DECRYPT_OP, size,
create_gcm_wr);
}
}
static int chcr_aead_op(struct aead_request *req,
unsigned short op_type,
int size,
create_wr_t create_wr_fn)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = crypto_aead_ctx(tfm);
struct uld_ctx *u_ctx;
struct sk_buff *skb;
if (!ctx->dev) {
pr_err("chcr : %s : No crypto device.\n", __func__);
return -ENXIO;
}
u_ctx = ULD_CTX(ctx);
if (cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_qidx)) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
/* Form a WR from req */
skb = create_wr_fn(req, u_ctx->lldi.rxq_ids[ctx->rx_qidx], size,
op_type);
if (IS_ERR(skb) || !skb)
return PTR_ERR(skb);
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_qidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static struct chcr_alg_template driver_algs[] = {
/* AES-CBC */
{
.type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_SUB_TYPE_CBC,
.is_registered = 0,
.alg.crypto = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_init = chcr_cra_init,
.cra_exit = chcr_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_cbc_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
}
},
{
.type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_SUB_TYPE_XTS,
.is_registered = 0,
.alg.crypto = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_init = chcr_cra_init,
.cra_exit = NULL,
.cra_u .ablkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_xts_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
}
},
{
.type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_SUB_TYPE_CTR,
.is_registered = 0,
.alg.crypto = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-chcr",
.cra_blocksize = 1,
.cra_init = chcr_cra_init,
.cra_exit = chcr_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_ctr_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
}
},
{
.type = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_SUB_TYPE_CTR_RFC3686,
.is_registered = 0,
.alg.crypto = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_init = chcr_rfc3686_init,
.cra_exit = chcr_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.setkey = chcr_aes_rfc3686_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
.geniv = "seqiv",
}
}
},
/* SHA */
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-chcr",
.cra_blocksize = SHA1_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-chcr",
.cra_blocksize = SHA256_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-chcr",
.cra_blocksize = SHA224_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "sha384-chcr",
.cra_blocksize = SHA384_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-chcr",
.cra_blocksize = SHA512_BLOCK_SIZE,
}
}
},
/* HMAC */
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-chcr",
.cra_blocksize = SHA1_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "hmac-sha224-chcr",
.cra_blocksize = SHA224_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac-sha256-chcr",
.cra_blocksize = SHA256_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "hmac-sha384-chcr",
.cra_blocksize = SHA384_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "hmac-sha512-chcr",
.cra_blocksize = SHA512_BLOCK_SIZE,
}
}
},
/* Add AEAD Algorithms */
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_GCM,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_gcm_ctx),
},
.ivsize = 12,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_gcm_setkey,
.setauthsize = chcr_gcm_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY + 1,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_gcm_ctx),
},
.ivsize = 8,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_gcm_setkey,
.setauthsize = chcr_4106_4309_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_CCM,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "ccm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_aead_ccm_setkey,
.setauthsize = chcr_ccm_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "rfc4309(ccm(aes))",
.cra_driver_name = "rfc4309-ccm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY + 1,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx),
},
.ivsize = 8,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_aead_rfc4309_setkey,
.setauthsize = chcr_4106_4309_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha1-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha256-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha224-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha384-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_AUTHENC,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha512-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_NULL,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(digest_null,cbc(aes))",
.cra_driver_name =
"authenc-digest_null-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = 0,
.setkey = chcr_aead_digest_null_setkey,
.setauthsize = chcr_authenc_null_setauthsize,
}
},
};
/*
* chcr_unregister_alg - Deregister crypto algorithms with
* kernel framework.
*/
static int chcr_unregister_alg(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
if (driver_algs[i].is_registered)
crypto_unregister_alg(
&driver_algs[i].alg.crypto);
break;
case CRYPTO_ALG_TYPE_AEAD:
if (driver_algs[i].is_registered)
crypto_unregister_aead(
&driver_algs[i].alg.aead);
break;
case CRYPTO_ALG_TYPE_AHASH:
if (driver_algs[i].is_registered)
crypto_unregister_ahash(
&driver_algs[i].alg.hash);
break;
}
driver_algs[i].is_registered = 0;
}
return 0;
}
#define SZ_AHASH_CTX sizeof(struct chcr_context)
#define SZ_AHASH_H_CTX (sizeof(struct chcr_context) + sizeof(struct hmac_ctx))
#define SZ_AHASH_REQ_CTX sizeof(struct chcr_ahash_req_ctx)
#define AHASH_CRA_FLAGS (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC)
/*
* chcr_register_alg - Register crypto algorithms with kernel framework.
*/
static int chcr_register_alg(void)
{
struct crypto_alg ai;
struct ahash_alg *a_hash;
int err = 0, i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
if (driver_algs[i].is_registered)
continue;
switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
driver_algs[i].alg.crypto.cra_priority =
CHCR_CRA_PRIORITY;
driver_algs[i].alg.crypto.cra_module = THIS_MODULE;
driver_algs[i].alg.crypto.cra_flags =
CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK;
driver_algs[i].alg.crypto.cra_ctxsize =
sizeof(struct chcr_context) +
sizeof(struct ablk_ctx);
driver_algs[i].alg.crypto.cra_alignmask = 0;
driver_algs[i].alg.crypto.cra_type =
&crypto_ablkcipher_type;
err = crypto_register_alg(&driver_algs[i].alg.crypto);
name = driver_algs[i].alg.crypto.cra_driver_name;
break;
case CRYPTO_ALG_TYPE_AEAD:
driver_algs[i].alg.aead.base.cra_flags =
CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK;
driver_algs[i].alg.aead.encrypt = chcr_aead_encrypt;
driver_algs[i].alg.aead.decrypt = chcr_aead_decrypt;
driver_algs[i].alg.aead.init = chcr_aead_cra_init;
driver_algs[i].alg.aead.exit = chcr_aead_cra_exit;
driver_algs[i].alg.aead.base.cra_module = THIS_MODULE;
err = crypto_register_aead(&driver_algs[i].alg.aead);
name = driver_algs[i].alg.aead.base.cra_driver_name;
break;
case CRYPTO_ALG_TYPE_AHASH:
a_hash = &driver_algs[i].alg.hash;
a_hash->update = chcr_ahash_update;
a_hash->final = chcr_ahash_final;
a_hash->finup = chcr_ahash_finup;
a_hash->digest = chcr_ahash_digest;
a_hash->export = chcr_ahash_export;
a_hash->import = chcr_ahash_import;
a_hash->halg.statesize = SZ_AHASH_REQ_CTX;
a_hash->halg.base.cra_priority = CHCR_CRA_PRIORITY;
a_hash->halg.base.cra_module = THIS_MODULE;
a_hash->halg.base.cra_flags = AHASH_CRA_FLAGS;
a_hash->halg.base.cra_alignmask = 0;
a_hash->halg.base.cra_exit = NULL;
a_hash->halg.base.cra_type = &crypto_ahash_type;
if (driver_algs[i].type == CRYPTO_ALG_TYPE_HMAC) {
a_hash->halg.base.cra_init = chcr_hmac_cra_init;
a_hash->halg.base.cra_exit = chcr_hmac_cra_exit;
a_hash->init = chcr_hmac_init;
a_hash->setkey = chcr_ahash_setkey;
a_hash->halg.base.cra_ctxsize = SZ_AHASH_H_CTX;
} else {
a_hash->init = chcr_sha_init;
a_hash->halg.base.cra_ctxsize = SZ_AHASH_CTX;
a_hash->halg.base.cra_init = chcr_sha_cra_init;
}
err = crypto_register_ahash(&driver_algs[i].alg.hash);
ai = driver_algs[i].alg.hash.halg.base;
name = ai.cra_driver_name;
break;
}
if (err) {
pr_err("chcr : %s : Algorithm registration failed\n",
name);
goto register_err;
} else {
driver_algs[i].is_registered = 1;
}
}
return 0;
register_err:
chcr_unregister_alg();
return err;
}
/*
* start_crypto - Register the crypto algorithms.
* This should called once when the first device comesup. After this
* kernel will start calling driver APIs for crypto operations.
*/
int start_crypto(void)
{
return chcr_register_alg();
}
/*
* stop_crypto - Deregister all the crypto algorithms with kernel.
* This should be called once when the last device goes down. After this
* kernel will not call the driver API for crypto operations.
*/
int stop_crypto(void)
{
chcr_unregister_alg();
return 0;
}