mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 08:35:10 +07:00
1b9c53e849
In case 1, it passes down the BLACK color from G to p and u, and maintains the color of n. By doing so, it maintains the black height of the sub-tree. While in the comment, it marks the color of n to BLACK. This is a typo and not consistents with the code. This patch fixs this typo in comment. Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com> Acked-by: Michel Lespinasse <walken@google.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
561 lines
15 KiB
C
561 lines
15 KiB
C
/*
|
|
Red Black Trees
|
|
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
|
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
|
(C) 2012 Michel Lespinasse <walken@google.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
linux/lib/rbtree.c
|
|
*/
|
|
|
|
#include <linux/rbtree_augmented.h>
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
|
|
*
|
|
* 1) A node is either red or black
|
|
* 2) The root is black
|
|
* 3) All leaves (NULL) are black
|
|
* 4) Both children of every red node are black
|
|
* 5) Every simple path from root to leaves contains the same number
|
|
* of black nodes.
|
|
*
|
|
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
|
* consecutive red nodes in a path and every red node is therefore followed by
|
|
* a black. So if B is the number of black nodes on every simple path (as per
|
|
* 5), then the longest possible path due to 4 is 2B.
|
|
*
|
|
* We shall indicate color with case, where black nodes are uppercase and red
|
|
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
|
* parentheses and have some accompanying text comment.
|
|
*/
|
|
|
|
static inline void rb_set_black(struct rb_node *rb)
|
|
{
|
|
rb->__rb_parent_color |= RB_BLACK;
|
|
}
|
|
|
|
static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
|
{
|
|
return (struct rb_node *)red->__rb_parent_color;
|
|
}
|
|
|
|
/*
|
|
* Helper function for rotations:
|
|
* - old's parent and color get assigned to new
|
|
* - old gets assigned new as a parent and 'color' as a color.
|
|
*/
|
|
static inline void
|
|
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
|
struct rb_root *root, int color)
|
|
{
|
|
struct rb_node *parent = rb_parent(old);
|
|
new->__rb_parent_color = old->__rb_parent_color;
|
|
rb_set_parent_color(old, new, color);
|
|
__rb_change_child(old, new, parent, root);
|
|
}
|
|
|
|
static __always_inline void
|
|
__rb_insert(struct rb_node *node, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
|
|
|
while (true) {
|
|
/*
|
|
* Loop invariant: node is red
|
|
*
|
|
* If there is a black parent, we are done.
|
|
* Otherwise, take some corrective action as we don't
|
|
* want a red root or two consecutive red nodes.
|
|
*/
|
|
if (!parent) {
|
|
rb_set_parent_color(node, NULL, RB_BLACK);
|
|
break;
|
|
} else if (rb_is_black(parent))
|
|
break;
|
|
|
|
gparent = rb_red_parent(parent);
|
|
|
|
tmp = gparent->rb_right;
|
|
if (parent != tmp) { /* parent == gparent->rb_left */
|
|
if (tmp && rb_is_red(tmp)) {
|
|
/*
|
|
* Case 1 - color flips
|
|
*
|
|
* G g
|
|
* / \ / \
|
|
* p u --> P U
|
|
* / /
|
|
* n n
|
|
*
|
|
* However, since g's parent might be red, and
|
|
* 4) does not allow this, we need to recurse
|
|
* at g.
|
|
*/
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
node = gparent;
|
|
parent = rb_parent(node);
|
|
rb_set_parent_color(node, parent, RB_RED);
|
|
continue;
|
|
}
|
|
|
|
tmp = parent->rb_right;
|
|
if (node == tmp) {
|
|
/*
|
|
* Case 2 - left rotate at parent
|
|
*
|
|
* G G
|
|
* / \ / \
|
|
* p U --> n U
|
|
* \ /
|
|
* n p
|
|
*
|
|
* This still leaves us in violation of 4), the
|
|
* continuation into Case 3 will fix that.
|
|
*/
|
|
parent->rb_right = tmp = node->rb_left;
|
|
node->rb_left = parent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, parent,
|
|
RB_BLACK);
|
|
rb_set_parent_color(parent, node, RB_RED);
|
|
augment_rotate(parent, node);
|
|
parent = node;
|
|
tmp = node->rb_right;
|
|
}
|
|
|
|
/*
|
|
* Case 3 - right rotate at gparent
|
|
*
|
|
* G P
|
|
* / \ / \
|
|
* p U --> n g
|
|
* / \
|
|
* n U
|
|
*/
|
|
gparent->rb_left = tmp; /* == parent->rb_right */
|
|
parent->rb_right = gparent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
augment_rotate(gparent, parent);
|
|
break;
|
|
} else {
|
|
tmp = gparent->rb_left;
|
|
if (tmp && rb_is_red(tmp)) {
|
|
/* Case 1 - color flips */
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
node = gparent;
|
|
parent = rb_parent(node);
|
|
rb_set_parent_color(node, parent, RB_RED);
|
|
continue;
|
|
}
|
|
|
|
tmp = parent->rb_left;
|
|
if (node == tmp) {
|
|
/* Case 2 - right rotate at parent */
|
|
parent->rb_left = tmp = node->rb_right;
|
|
node->rb_right = parent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, parent,
|
|
RB_BLACK);
|
|
rb_set_parent_color(parent, node, RB_RED);
|
|
augment_rotate(parent, node);
|
|
parent = node;
|
|
tmp = node->rb_left;
|
|
}
|
|
|
|
/* Case 3 - left rotate at gparent */
|
|
gparent->rb_right = tmp; /* == parent->rb_left */
|
|
parent->rb_left = gparent;
|
|
if (tmp)
|
|
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
augment_rotate(gparent, parent);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inline version for rb_erase() use - we want to be able to inline
|
|
* and eliminate the dummy_rotate callback there
|
|
*/
|
|
static __always_inline void
|
|
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
|
|
|
while (true) {
|
|
/*
|
|
* Loop invariants:
|
|
* - node is black (or NULL on first iteration)
|
|
* - node is not the root (parent is not NULL)
|
|
* - All leaf paths going through parent and node have a
|
|
* black node count that is 1 lower than other leaf paths.
|
|
*/
|
|
sibling = parent->rb_right;
|
|
if (node != sibling) { /* node == parent->rb_left */
|
|
if (rb_is_red(sibling)) {
|
|
/*
|
|
* Case 1 - left rotate at parent
|
|
*
|
|
* P S
|
|
* / \ / \
|
|
* N s --> p Sr
|
|
* / \ / \
|
|
* Sl Sr N Sl
|
|
*/
|
|
parent->rb_right = tmp1 = sibling->rb_left;
|
|
sibling->rb_left = parent;
|
|
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_RED);
|
|
augment_rotate(parent, sibling);
|
|
sibling = tmp1;
|
|
}
|
|
tmp1 = sibling->rb_right;
|
|
if (!tmp1 || rb_is_black(tmp1)) {
|
|
tmp2 = sibling->rb_left;
|
|
if (!tmp2 || rb_is_black(tmp2)) {
|
|
/*
|
|
* Case 2 - sibling color flip
|
|
* (p could be either color here)
|
|
*
|
|
* (p) (p)
|
|
* / \ / \
|
|
* N S --> N s
|
|
* / \ / \
|
|
* Sl Sr Sl Sr
|
|
*
|
|
* This leaves us violating 5) which
|
|
* can be fixed by flipping p to black
|
|
* if it was red, or by recursing at p.
|
|
* p is red when coming from Case 1.
|
|
*/
|
|
rb_set_parent_color(sibling, parent,
|
|
RB_RED);
|
|
if (rb_is_red(parent))
|
|
rb_set_black(parent);
|
|
else {
|
|
node = parent;
|
|
parent = rb_parent(node);
|
|
if (parent)
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* Case 3 - right rotate at sibling
|
|
* (p could be either color here)
|
|
*
|
|
* (p) (p)
|
|
* / \ / \
|
|
* N S --> N Sl
|
|
* / \ \
|
|
* sl Sr s
|
|
* \
|
|
* Sr
|
|
*/
|
|
sibling->rb_left = tmp1 = tmp2->rb_right;
|
|
tmp2->rb_right = sibling;
|
|
parent->rb_right = tmp2;
|
|
if (tmp1)
|
|
rb_set_parent_color(tmp1, sibling,
|
|
RB_BLACK);
|
|
augment_rotate(sibling, tmp2);
|
|
tmp1 = sibling;
|
|
sibling = tmp2;
|
|
}
|
|
/*
|
|
* Case 4 - left rotate at parent + color flips
|
|
* (p and sl could be either color here.
|
|
* After rotation, p becomes black, s acquires
|
|
* p's color, and sl keeps its color)
|
|
*
|
|
* (p) (s)
|
|
* / \ / \
|
|
* N S --> P Sr
|
|
* / \ / \
|
|
* (sl) sr N (sl)
|
|
*/
|
|
parent->rb_right = tmp2 = sibling->rb_left;
|
|
sibling->rb_left = parent;
|
|
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
if (tmp2)
|
|
rb_set_parent(tmp2, parent);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_BLACK);
|
|
augment_rotate(parent, sibling);
|
|
break;
|
|
} else {
|
|
sibling = parent->rb_left;
|
|
if (rb_is_red(sibling)) {
|
|
/* Case 1 - right rotate at parent */
|
|
parent->rb_left = tmp1 = sibling->rb_right;
|
|
sibling->rb_right = parent;
|
|
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_RED);
|
|
augment_rotate(parent, sibling);
|
|
sibling = tmp1;
|
|
}
|
|
tmp1 = sibling->rb_left;
|
|
if (!tmp1 || rb_is_black(tmp1)) {
|
|
tmp2 = sibling->rb_right;
|
|
if (!tmp2 || rb_is_black(tmp2)) {
|
|
/* Case 2 - sibling color flip */
|
|
rb_set_parent_color(sibling, parent,
|
|
RB_RED);
|
|
if (rb_is_red(parent))
|
|
rb_set_black(parent);
|
|
else {
|
|
node = parent;
|
|
parent = rb_parent(node);
|
|
if (parent)
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
/* Case 3 - right rotate at sibling */
|
|
sibling->rb_right = tmp1 = tmp2->rb_left;
|
|
tmp2->rb_left = sibling;
|
|
parent->rb_left = tmp2;
|
|
if (tmp1)
|
|
rb_set_parent_color(tmp1, sibling,
|
|
RB_BLACK);
|
|
augment_rotate(sibling, tmp2);
|
|
tmp1 = sibling;
|
|
sibling = tmp2;
|
|
}
|
|
/* Case 4 - left rotate at parent + color flips */
|
|
parent->rb_left = tmp2 = sibling->rb_right;
|
|
sibling->rb_right = parent;
|
|
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
if (tmp2)
|
|
rb_set_parent(tmp2, parent);
|
|
__rb_rotate_set_parents(parent, sibling, root,
|
|
RB_BLACK);
|
|
augment_rotate(parent, sibling);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Non-inline version for rb_erase_augmented() use */
|
|
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
____rb_erase_color(parent, root, augment_rotate);
|
|
}
|
|
EXPORT_SYMBOL(__rb_erase_color);
|
|
|
|
/*
|
|
* Non-augmented rbtree manipulation functions.
|
|
*
|
|
* We use dummy augmented callbacks here, and have the compiler optimize them
|
|
* out of the rb_insert_color() and rb_erase() function definitions.
|
|
*/
|
|
|
|
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
|
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
|
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
|
|
|
static const struct rb_augment_callbacks dummy_callbacks = {
|
|
dummy_propagate, dummy_copy, dummy_rotate
|
|
};
|
|
|
|
void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
|
{
|
|
__rb_insert(node, root, dummy_rotate);
|
|
}
|
|
EXPORT_SYMBOL(rb_insert_color);
|
|
|
|
void rb_erase(struct rb_node *node, struct rb_root *root)
|
|
{
|
|
struct rb_node *rebalance;
|
|
rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
|
if (rebalance)
|
|
____rb_erase_color(rebalance, root, dummy_rotate);
|
|
}
|
|
EXPORT_SYMBOL(rb_erase);
|
|
|
|
/*
|
|
* Augmented rbtree manipulation functions.
|
|
*
|
|
* This instantiates the same __always_inline functions as in the non-augmented
|
|
* case, but this time with user-defined callbacks.
|
|
*/
|
|
|
|
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
|
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
{
|
|
__rb_insert(node, root, augment_rotate);
|
|
}
|
|
EXPORT_SYMBOL(__rb_insert_augmented);
|
|
|
|
/*
|
|
* This function returns the first node (in sort order) of the tree.
|
|
*/
|
|
struct rb_node *rb_first(const struct rb_root *root)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = root->rb_node;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->rb_left)
|
|
n = n->rb_left;
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(rb_first);
|
|
|
|
struct rb_node *rb_last(const struct rb_root *root)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = root->rb_node;
|
|
if (!n)
|
|
return NULL;
|
|
while (n->rb_right)
|
|
n = n->rb_right;
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(rb_last);
|
|
|
|
struct rb_node *rb_next(const struct rb_node *node)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
if (RB_EMPTY_NODE(node))
|
|
return NULL;
|
|
|
|
/*
|
|
* If we have a right-hand child, go down and then left as far
|
|
* as we can.
|
|
*/
|
|
if (node->rb_right) {
|
|
node = node->rb_right;
|
|
while (node->rb_left)
|
|
node=node->rb_left;
|
|
return (struct rb_node *)node;
|
|
}
|
|
|
|
/*
|
|
* No right-hand children. Everything down and left is smaller than us,
|
|
* so any 'next' node must be in the general direction of our parent.
|
|
* Go up the tree; any time the ancestor is a right-hand child of its
|
|
* parent, keep going up. First time it's a left-hand child of its
|
|
* parent, said parent is our 'next' node.
|
|
*/
|
|
while ((parent = rb_parent(node)) && node == parent->rb_right)
|
|
node = parent;
|
|
|
|
return parent;
|
|
}
|
|
EXPORT_SYMBOL(rb_next);
|
|
|
|
struct rb_node *rb_prev(const struct rb_node *node)
|
|
{
|
|
struct rb_node *parent;
|
|
|
|
if (RB_EMPTY_NODE(node))
|
|
return NULL;
|
|
|
|
/*
|
|
* If we have a left-hand child, go down and then right as far
|
|
* as we can.
|
|
*/
|
|
if (node->rb_left) {
|
|
node = node->rb_left;
|
|
while (node->rb_right)
|
|
node=node->rb_right;
|
|
return (struct rb_node *)node;
|
|
}
|
|
|
|
/*
|
|
* No left-hand children. Go up till we find an ancestor which
|
|
* is a right-hand child of its parent.
|
|
*/
|
|
while ((parent = rb_parent(node)) && node == parent->rb_left)
|
|
node = parent;
|
|
|
|
return parent;
|
|
}
|
|
EXPORT_SYMBOL(rb_prev);
|
|
|
|
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
|
struct rb_root *root)
|
|
{
|
|
struct rb_node *parent = rb_parent(victim);
|
|
|
|
/* Set the surrounding nodes to point to the replacement */
|
|
__rb_change_child(victim, new, parent, root);
|
|
if (victim->rb_left)
|
|
rb_set_parent(victim->rb_left, new);
|
|
if (victim->rb_right)
|
|
rb_set_parent(victim->rb_right, new);
|
|
|
|
/* Copy the pointers/colour from the victim to the replacement */
|
|
*new = *victim;
|
|
}
|
|
EXPORT_SYMBOL(rb_replace_node);
|
|
|
|
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
|
{
|
|
for (;;) {
|
|
if (node->rb_left)
|
|
node = node->rb_left;
|
|
else if (node->rb_right)
|
|
node = node->rb_right;
|
|
else
|
|
return (struct rb_node *)node;
|
|
}
|
|
}
|
|
|
|
struct rb_node *rb_next_postorder(const struct rb_node *node)
|
|
{
|
|
const struct rb_node *parent;
|
|
if (!node)
|
|
return NULL;
|
|
parent = rb_parent(node);
|
|
|
|
/* If we're sitting on node, we've already seen our children */
|
|
if (parent && node == parent->rb_left && parent->rb_right) {
|
|
/* If we are the parent's left node, go to the parent's right
|
|
* node then all the way down to the left */
|
|
return rb_left_deepest_node(parent->rb_right);
|
|
} else
|
|
/* Otherwise we are the parent's right node, and the parent
|
|
* should be next */
|
|
return (struct rb_node *)parent;
|
|
}
|
|
EXPORT_SYMBOL(rb_next_postorder);
|
|
|
|
struct rb_node *rb_first_postorder(const struct rb_root *root)
|
|
{
|
|
if (!root->rb_node)
|
|
return NULL;
|
|
|
|
return rb_left_deepest_node(root->rb_node);
|
|
}
|
|
EXPORT_SYMBOL(rb_first_postorder);
|