mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 22:07:45 +07:00
2e8e1ea88c
When seeding KALSR on a system where we have architecture level random number generation make use of that entropy, mixing it in with the seed passed by the bootloader. Since this is run very early in init before feature detection is complete we open code rather than use archrandom.h. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Will Deacon <will@kernel.org>
220 lines
5.9 KiB
C
220 lines
5.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/init.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/kernel-pgtable.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/sections.h>
|
|
|
|
enum kaslr_status {
|
|
KASLR_ENABLED,
|
|
KASLR_DISABLED_CMDLINE,
|
|
KASLR_DISABLED_NO_SEED,
|
|
KASLR_DISABLED_FDT_REMAP,
|
|
};
|
|
|
|
static enum kaslr_status __initdata kaslr_status;
|
|
u64 __ro_after_init module_alloc_base;
|
|
u16 __initdata memstart_offset_seed;
|
|
|
|
static __init u64 get_kaslr_seed(void *fdt)
|
|
{
|
|
int node, len;
|
|
fdt64_t *prop;
|
|
u64 ret;
|
|
|
|
node = fdt_path_offset(fdt, "/chosen");
|
|
if (node < 0)
|
|
return 0;
|
|
|
|
prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
|
|
if (!prop || len != sizeof(u64))
|
|
return 0;
|
|
|
|
ret = fdt64_to_cpu(*prop);
|
|
*prop = 0;
|
|
return ret;
|
|
}
|
|
|
|
static __init const u8 *kaslr_get_cmdline(void *fdt)
|
|
{
|
|
static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
|
|
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
|
|
int node;
|
|
const u8 *prop;
|
|
|
|
node = fdt_path_offset(fdt, "/chosen");
|
|
if (node < 0)
|
|
goto out;
|
|
|
|
prop = fdt_getprop(fdt, node, "bootargs", NULL);
|
|
if (!prop)
|
|
goto out;
|
|
return prop;
|
|
}
|
|
out:
|
|
return default_cmdline;
|
|
}
|
|
|
|
/*
|
|
* This routine will be executed with the kernel mapped at its default virtual
|
|
* address, and if it returns successfully, the kernel will be remapped, and
|
|
* start_kernel() will be executed from a randomized virtual offset. The
|
|
* relocation will result in all absolute references (e.g., static variables
|
|
* containing function pointers) to be reinitialized, and zero-initialized
|
|
* .bss variables will be reset to 0.
|
|
*/
|
|
u64 __init kaslr_early_init(u64 dt_phys)
|
|
{
|
|
void *fdt;
|
|
u64 seed, offset, mask, module_range;
|
|
const u8 *cmdline, *str;
|
|
int size;
|
|
|
|
/*
|
|
* Set a reasonable default for module_alloc_base in case
|
|
* we end up running with module randomization disabled.
|
|
*/
|
|
module_alloc_base = (u64)_etext - MODULES_VSIZE;
|
|
__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
|
|
|
|
/*
|
|
* Try to map the FDT early. If this fails, we simply bail,
|
|
* and proceed with KASLR disabled. We will make another
|
|
* attempt at mapping the FDT in setup_machine()
|
|
*/
|
|
early_fixmap_init();
|
|
fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
|
|
if (!fdt) {
|
|
kaslr_status = KASLR_DISABLED_FDT_REMAP;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Retrieve (and wipe) the seed from the FDT
|
|
*/
|
|
seed = get_kaslr_seed(fdt);
|
|
|
|
/*
|
|
* Check if 'nokaslr' appears on the command line, and
|
|
* return 0 if that is the case.
|
|
*/
|
|
cmdline = kaslr_get_cmdline(fdt);
|
|
str = strstr(cmdline, "nokaslr");
|
|
if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) {
|
|
kaslr_status = KASLR_DISABLED_CMDLINE;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mix in any entropy obtainable architecturally, open coded
|
|
* since this runs extremely early.
|
|
*/
|
|
if (__early_cpu_has_rndr()) {
|
|
unsigned long raw;
|
|
|
|
if (__arm64_rndr(&raw))
|
|
seed ^= raw;
|
|
}
|
|
|
|
if (!seed) {
|
|
kaslr_status = KASLR_DISABLED_NO_SEED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
|
|
* kernel image offset from the seed. Let's place the kernel in the
|
|
* middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
|
|
* the lower and upper quarters to avoid colliding with other
|
|
* allocations.
|
|
* Even if we could randomize at page granularity for 16k and 64k pages,
|
|
* let's always round to 2 MB so we don't interfere with the ability to
|
|
* map using contiguous PTEs
|
|
*/
|
|
mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
|
|
offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
|
|
|
|
/* use the top 16 bits to randomize the linear region */
|
|
memstart_offset_seed = seed >> 48;
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN))
|
|
/*
|
|
* KASAN does not expect the module region to intersect the
|
|
* vmalloc region, since shadow memory is allocated for each
|
|
* module at load time, whereas the vmalloc region is shadowed
|
|
* by KASAN zero pages. So keep modules out of the vmalloc
|
|
* region if KASAN is enabled, and put the kernel well within
|
|
* 4 GB of the module region.
|
|
*/
|
|
return offset % SZ_2G;
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
|
|
/*
|
|
* Randomize the module region over a 2 GB window covering the
|
|
* kernel. This reduces the risk of modules leaking information
|
|
* about the address of the kernel itself, but results in
|
|
* branches between modules and the core kernel that are
|
|
* resolved via PLTs. (Branches between modules will be
|
|
* resolved normally.)
|
|
*/
|
|
module_range = SZ_2G - (u64)(_end - _stext);
|
|
module_alloc_base = max((u64)_end + offset - SZ_2G,
|
|
(u64)MODULES_VADDR);
|
|
} else {
|
|
/*
|
|
* Randomize the module region by setting module_alloc_base to
|
|
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
|
|
* _stext) . This guarantees that the resulting region still
|
|
* covers [_stext, _etext], and that all relative branches can
|
|
* be resolved without veneers.
|
|
*/
|
|
module_range = MODULES_VSIZE - (u64)(_etext - _stext);
|
|
module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
|
|
}
|
|
|
|
/* use the lower 21 bits to randomize the base of the module region */
|
|
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
|
|
module_alloc_base &= PAGE_MASK;
|
|
|
|
__flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base));
|
|
__flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed));
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int __init kaslr_init(void)
|
|
{
|
|
switch (kaslr_status) {
|
|
case KASLR_ENABLED:
|
|
pr_info("KASLR enabled\n");
|
|
break;
|
|
case KASLR_DISABLED_CMDLINE:
|
|
pr_info("KASLR disabled on command line\n");
|
|
break;
|
|
case KASLR_DISABLED_NO_SEED:
|
|
pr_warn("KASLR disabled due to lack of seed\n");
|
|
break;
|
|
case KASLR_DISABLED_FDT_REMAP:
|
|
pr_warn("KASLR disabled due to FDT remapping failure\n");
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(kaslr_init)
|