mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
49404665b9
In preparation for unconditionally passing the struct timer_list pointer to all timer callbacks, switch to using the new timer_setup() and from_timer() to pass the timer pointer explicitly. Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Pavel Machek <pavel@ucw.cz> Cc: Willy Tarreau <w@1wt.eu> Cc: linux-leds@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Jacek Anaszewski <jacek.anaszewski@gmail.com>
276 lines
8.0 KiB
C
276 lines
8.0 KiB
C
/*
|
|
* Activity LED trigger
|
|
*
|
|
* Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
|
|
* Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/leds.h>
|
|
#include <linux/module.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/timer.h>
|
|
#include "../leds.h"
|
|
|
|
static int panic_detected;
|
|
|
|
struct activity_data {
|
|
struct timer_list timer;
|
|
struct led_classdev *led_cdev;
|
|
u64 last_used;
|
|
u64 last_boot;
|
|
int time_left;
|
|
int state;
|
|
int invert;
|
|
};
|
|
|
|
static void led_activity_function(struct timer_list *t)
|
|
{
|
|
struct activity_data *activity_data = from_timer(activity_data, t,
|
|
timer);
|
|
struct led_classdev *led_cdev = activity_data->led_cdev;
|
|
struct timespec boot_time;
|
|
unsigned int target;
|
|
unsigned int usage;
|
|
int delay;
|
|
u64 curr_used;
|
|
u64 curr_boot;
|
|
s32 diff_used;
|
|
s32 diff_boot;
|
|
int cpus;
|
|
int i;
|
|
|
|
if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
|
|
led_cdev->blink_brightness = led_cdev->new_blink_brightness;
|
|
|
|
if (unlikely(panic_detected)) {
|
|
/* full brightness in case of panic */
|
|
led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
|
|
return;
|
|
}
|
|
|
|
get_monotonic_boottime(&boot_time);
|
|
|
|
cpus = 0;
|
|
curr_used = 0;
|
|
|
|
for_each_possible_cpu(i) {
|
|
curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
|
|
+ kcpustat_cpu(i).cpustat[CPUTIME_NICE]
|
|
+ kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
|
|
+ kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
|
|
+ kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
|
|
cpus++;
|
|
}
|
|
|
|
/* We come here every 100ms in the worst case, so that's 100M ns of
|
|
* cumulated time. By dividing by 2^16, we get the time resolution
|
|
* down to 16us, ensuring we won't overflow 32-bit computations below
|
|
* even up to 3k CPUs, while keeping divides cheap on smaller systems.
|
|
*/
|
|
curr_boot = timespec_to_ns(&boot_time) * cpus;
|
|
diff_boot = (curr_boot - activity_data->last_boot) >> 16;
|
|
diff_used = (curr_used - activity_data->last_used) >> 16;
|
|
activity_data->last_boot = curr_boot;
|
|
activity_data->last_used = curr_used;
|
|
|
|
if (diff_boot <= 0 || diff_used < 0)
|
|
usage = 0;
|
|
else if (diff_used >= diff_boot)
|
|
usage = 100;
|
|
else
|
|
usage = 100 * diff_used / diff_boot;
|
|
|
|
/*
|
|
* Now we know the total boot_time multiplied by the number of CPUs, and
|
|
* the total idle+wait time for all CPUs. We'll compare how they evolved
|
|
* since last call. The % of overall CPU usage is :
|
|
*
|
|
* 1 - delta_idle / delta_boot
|
|
*
|
|
* What we want is that when the CPU usage is zero, the LED must blink
|
|
* slowly with very faint flashes that are detectable but not disturbing
|
|
* (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
|
|
* blinking frequency to increase up to the point where the load is
|
|
* enough to saturate one core in multi-core systems or 50% in single
|
|
* core systems. At this point it should reach 10 Hz with a 10/90 duty
|
|
* cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
|
|
* remains stable (10 Hz) and only the duty cycle increases to report
|
|
* the activity, up to the point where we have 90ms ON, 10ms OFF when
|
|
* all cores are saturated. It's important that the LED never stays in
|
|
* a steady state so that it's easy to distinguish an idle or saturated
|
|
* machine from a hung one.
|
|
*
|
|
* This gives us :
|
|
* - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
|
|
* (10ms ON, 90ms OFF)
|
|
* - below target :
|
|
* ON_ms = 10
|
|
* OFF_ms = 90 + (1 - usage/target) * 900
|
|
* - above target :
|
|
* ON_ms = 10 + (usage-target)/(100%-target) * 80
|
|
* OFF_ms = 90 - (usage-target)/(100%-target) * 80
|
|
*
|
|
* In order to keep a good responsiveness, we cap the sleep time to
|
|
* 100 ms and keep track of the sleep time left. This allows us to
|
|
* quickly change it if needed.
|
|
*/
|
|
|
|
activity_data->time_left -= 100;
|
|
if (activity_data->time_left <= 0) {
|
|
activity_data->time_left = 0;
|
|
activity_data->state = !activity_data->state;
|
|
led_set_brightness_nosleep(led_cdev,
|
|
(activity_data->state ^ activity_data->invert) ?
|
|
led_cdev->blink_brightness : LED_OFF);
|
|
}
|
|
|
|
target = (cpus > 1) ? (100 / cpus) : 50;
|
|
|
|
if (usage < target)
|
|
delay = activity_data->state ?
|
|
10 : /* ON */
|
|
990 - 900 * usage / target; /* OFF */
|
|
else
|
|
delay = activity_data->state ?
|
|
10 + 80 * (usage - target) / (100 - target) : /* ON */
|
|
90 - 80 * (usage - target) / (100 - target); /* OFF */
|
|
|
|
|
|
if (!activity_data->time_left || delay <= activity_data->time_left)
|
|
activity_data->time_left = delay;
|
|
|
|
delay = min_t(int, activity_data->time_left, 100);
|
|
mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
|
|
}
|
|
|
|
static ssize_t led_invert_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct led_classdev *led_cdev = dev_get_drvdata(dev);
|
|
struct activity_data *activity_data = led_cdev->trigger_data;
|
|
|
|
return sprintf(buf, "%u\n", activity_data->invert);
|
|
}
|
|
|
|
static ssize_t led_invert_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
struct led_classdev *led_cdev = dev_get_drvdata(dev);
|
|
struct activity_data *activity_data = led_cdev->trigger_data;
|
|
unsigned long state;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 0, &state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
activity_data->invert = !!state;
|
|
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
|
|
|
|
static void activity_activate(struct led_classdev *led_cdev)
|
|
{
|
|
struct activity_data *activity_data;
|
|
int rc;
|
|
|
|
activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
|
|
if (!activity_data)
|
|
return;
|
|
|
|
led_cdev->trigger_data = activity_data;
|
|
rc = device_create_file(led_cdev->dev, &dev_attr_invert);
|
|
if (rc) {
|
|
kfree(led_cdev->trigger_data);
|
|
return;
|
|
}
|
|
|
|
activity_data->led_cdev = led_cdev;
|
|
timer_setup(&activity_data->timer, led_activity_function, 0);
|
|
if (!led_cdev->blink_brightness)
|
|
led_cdev->blink_brightness = led_cdev->max_brightness;
|
|
led_activity_function(&activity_data->timer);
|
|
set_bit(LED_BLINK_SW, &led_cdev->work_flags);
|
|
led_cdev->activated = true;
|
|
}
|
|
|
|
static void activity_deactivate(struct led_classdev *led_cdev)
|
|
{
|
|
struct activity_data *activity_data = led_cdev->trigger_data;
|
|
|
|
if (led_cdev->activated) {
|
|
del_timer_sync(&activity_data->timer);
|
|
device_remove_file(led_cdev->dev, &dev_attr_invert);
|
|
kfree(activity_data);
|
|
clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
|
|
led_cdev->activated = false;
|
|
}
|
|
}
|
|
|
|
static struct led_trigger activity_led_trigger = {
|
|
.name = "activity",
|
|
.activate = activity_activate,
|
|
.deactivate = activity_deactivate,
|
|
};
|
|
|
|
static int activity_reboot_notifier(struct notifier_block *nb,
|
|
unsigned long code, void *unused)
|
|
{
|
|
led_trigger_unregister(&activity_led_trigger);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static int activity_panic_notifier(struct notifier_block *nb,
|
|
unsigned long code, void *unused)
|
|
{
|
|
panic_detected = 1;
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block activity_reboot_nb = {
|
|
.notifier_call = activity_reboot_notifier,
|
|
};
|
|
|
|
static struct notifier_block activity_panic_nb = {
|
|
.notifier_call = activity_panic_notifier,
|
|
};
|
|
|
|
static int __init activity_init(void)
|
|
{
|
|
int rc = led_trigger_register(&activity_led_trigger);
|
|
|
|
if (!rc) {
|
|
atomic_notifier_chain_register(&panic_notifier_list,
|
|
&activity_panic_nb);
|
|
register_reboot_notifier(&activity_reboot_nb);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void __exit activity_exit(void)
|
|
{
|
|
unregister_reboot_notifier(&activity_reboot_nb);
|
|
atomic_notifier_chain_unregister(&panic_notifier_list,
|
|
&activity_panic_nb);
|
|
led_trigger_unregister(&activity_led_trigger);
|
|
}
|
|
|
|
module_init(activity_init);
|
|
module_exit(activity_exit);
|
|
|
|
MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
|
|
MODULE_DESCRIPTION("Activity LED trigger");
|
|
MODULE_LICENSE("GPL");
|