linux_dsm_epyc7002/arch/arm64/kvm/mmu.c
Will Deacon 54dc0d2404 KVM: arm64: Don't skip cache maintenance for read-only memslots
If a guest performs cache maintenance on a read-only memslot, we should
inform userspace rather than skip the instruction altogether.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200729102821.23392-4-will@kernel.org
2020-07-30 16:02:37 +01:00

2610 lines
67 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
#include <linux/hugetlb.h>
#include <linux/sched/signal.h>
#include <trace/events/kvm.h>
#include <asm/pgalloc.h>
#include <asm/cacheflush.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_ras.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/virt.h>
#include "trace.h"
static pgd_t *boot_hyp_pgd;
static pgd_t *hyp_pgd;
static pgd_t *merged_hyp_pgd;
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;
static unsigned long io_map_base;
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
static bool is_iomap(unsigned long flags)
{
return flags & KVM_S2PTE_FLAG_IS_IOMAP;
}
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
}
/**
* kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
* @kvm: pointer to kvm structure.
*
* Interface to HYP function to flush all VM TLB entries
*/
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
}
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
{
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
}
/*
* D-Cache management functions. They take the page table entries by
* value, as they are flushing the cache using the kernel mapping (or
* kmap on 32bit).
*/
static void kvm_flush_dcache_pte(pte_t pte)
{
__kvm_flush_dcache_pte(pte);
}
static void kvm_flush_dcache_pmd(pmd_t pmd)
{
__kvm_flush_dcache_pmd(pmd);
}
static void kvm_flush_dcache_pud(pud_t pud)
{
__kvm_flush_dcache_pud(pud);
}
static bool kvm_is_device_pfn(unsigned long pfn)
{
return !pfn_valid(pfn);
}
/**
* stage2_dissolve_pmd() - clear and flush huge PMD entry
* @kvm: pointer to kvm structure.
* @addr: IPA
* @pmd: pmd pointer for IPA
*
* Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
*/
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
if (!pmd_thp_or_huge(*pmd))
return;
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
put_page(virt_to_page(pmd));
}
/**
* stage2_dissolve_pud() - clear and flush huge PUD entry
* @kvm: pointer to kvm structure.
* @addr: IPA
* @pud: pud pointer for IPA
*
* Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
*/
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
if (!stage2_pud_huge(kvm, *pudp))
return;
stage2_pud_clear(kvm, pudp);
kvm_tlb_flush_vmid_ipa(kvm, addr);
put_page(virt_to_page(pudp));
}
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
int min, int max)
{
void *page;
BUG_ON(max > KVM_NR_MEM_OBJS);
if (cache->nobjs >= min)
return 0;
while (cache->nobjs < max) {
page = (void *)__get_free_page(GFP_PGTABLE_USER);
if (!page)
return -ENOMEM;
cache->objects[cache->nobjs++] = page;
}
return 0;
}
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
while (mc->nobjs)
free_page((unsigned long)mc->objects[--mc->nobjs]);
}
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
void *p;
BUG_ON(!mc || !mc->nobjs);
p = mc->objects[--mc->nobjs];
return p;
}
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
{
p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
stage2_pgd_clear(kvm, pgd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
stage2_p4d_free(kvm, p4d_table);
put_page(virt_to_page(pgd));
}
static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
{
pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
stage2_p4d_clear(kvm, p4d);
kvm_tlb_flush_vmid_ipa(kvm, addr);
stage2_pud_free(kvm, pud_table);
put_page(virt_to_page(p4d));
}
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
{
pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
VM_BUG_ON(stage2_pud_huge(kvm, *pud));
stage2_pud_clear(kvm, pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
stage2_pmd_free(kvm, pmd_table);
put_page(virt_to_page(pud));
}
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
{
pte_t *pte_table = pte_offset_kernel(pmd, 0);
VM_BUG_ON(pmd_thp_or_huge(*pmd));
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
free_page((unsigned long)pte_table);
put_page(virt_to_page(pmd));
}
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
WRITE_ONCE(*ptep, new_pte);
dsb(ishst);
}
static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
WRITE_ONCE(*pmdp, new_pmd);
dsb(ishst);
}
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}
static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
dsb(ishst);
}
static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
{
WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
dsb(ishst);
}
static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
{
#ifndef __PAGETABLE_P4D_FOLDED
WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
dsb(ishst);
#endif
}
/*
* Unmapping vs dcache management:
*
* If a guest maps certain memory pages as uncached, all writes will
* bypass the data cache and go directly to RAM. However, the CPUs
* can still speculate reads (not writes) and fill cache lines with
* data.
*
* Those cache lines will be *clean* cache lines though, so a
* clean+invalidate operation is equivalent to an invalidate
* operation, because no cache lines are marked dirty.
*
* Those clean cache lines could be filled prior to an uncached write
* by the guest, and the cache coherent IO subsystem would therefore
* end up writing old data to disk.
*
* This is why right after unmapping a page/section and invalidating
* the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
* the IO subsystem will never hit in the cache.
*
* This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
* we then fully enforce cacheability of RAM, no matter what the guest
* does.
*/
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
phys_addr_t addr, phys_addr_t end)
{
phys_addr_t start_addr = addr;
pte_t *pte, *start_pte;
start_pte = pte = pte_offset_kernel(pmd, addr);
do {
if (!pte_none(*pte)) {
pte_t old_pte = *pte;
kvm_set_pte(pte, __pte(0));
kvm_tlb_flush_vmid_ipa(kvm, addr);
/* No need to invalidate the cache for device mappings */
if (!kvm_is_device_pfn(pte_pfn(old_pte)))
kvm_flush_dcache_pte(old_pte);
put_page(virt_to_page(pte));
}
} while (pte++, addr += PAGE_SIZE, addr != end);
if (stage2_pte_table_empty(kvm, start_pte))
clear_stage2_pmd_entry(kvm, pmd, start_addr);
}
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
phys_addr_t addr, phys_addr_t end)
{
phys_addr_t next, start_addr = addr;
pmd_t *pmd, *start_pmd;
start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
do {
next = stage2_pmd_addr_end(kvm, addr, end);
if (!pmd_none(*pmd)) {
if (pmd_thp_or_huge(*pmd)) {
pmd_t old_pmd = *pmd;
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_flush_dcache_pmd(old_pmd);
put_page(virt_to_page(pmd));
} else {
unmap_stage2_ptes(kvm, pmd, addr, next);
}
}
} while (pmd++, addr = next, addr != end);
if (stage2_pmd_table_empty(kvm, start_pmd))
clear_stage2_pud_entry(kvm, pud, start_addr);
}
static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
phys_addr_t addr, phys_addr_t end)
{
phys_addr_t next, start_addr = addr;
pud_t *pud, *start_pud;
start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
do {
next = stage2_pud_addr_end(kvm, addr, end);
if (!stage2_pud_none(kvm, *pud)) {
if (stage2_pud_huge(kvm, *pud)) {
pud_t old_pud = *pud;
stage2_pud_clear(kvm, pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_flush_dcache_pud(old_pud);
put_page(virt_to_page(pud));
} else {
unmap_stage2_pmds(kvm, pud, addr, next);
}
}
} while (pud++, addr = next, addr != end);
if (stage2_pud_table_empty(kvm, start_pud))
clear_stage2_p4d_entry(kvm, p4d, start_addr);
}
static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
phys_addr_t addr, phys_addr_t end)
{
phys_addr_t next, start_addr = addr;
p4d_t *p4d, *start_p4d;
start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
do {
next = stage2_p4d_addr_end(kvm, addr, end);
if (!stage2_p4d_none(kvm, *p4d))
unmap_stage2_puds(kvm, p4d, addr, next);
} while (p4d++, addr = next, addr != end);
if (stage2_p4d_table_empty(kvm, start_p4d))
clear_stage2_pgd_entry(kvm, pgd, start_addr);
}
/**
* unmap_stage2_range -- Clear stage2 page table entries to unmap a range
* @kvm: The VM pointer
* @start: The intermediate physical base address of the range to unmap
* @size: The size of the area to unmap
*
* Clear a range of stage-2 mappings, lowering the various ref-counts. Must
* be called while holding mmu_lock (unless for freeing the stage2 pgd before
* destroying the VM), otherwise another faulting VCPU may come in and mess
* with things behind our backs.
*/
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
pgd_t *pgd;
phys_addr_t addr = start, end = start + size;
phys_addr_t next;
assert_spin_locked(&kvm->mmu_lock);
WARN_ON(size & ~PAGE_MASK);
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
do {
/*
* Make sure the page table is still active, as another thread
* could have possibly freed the page table, while we released
* the lock.
*/
if (!READ_ONCE(kvm->arch.pgd))
break;
next = stage2_pgd_addr_end(kvm, addr, end);
if (!stage2_pgd_none(kvm, *pgd))
unmap_stage2_p4ds(kvm, pgd, addr, next);
/*
* If the range is too large, release the kvm->mmu_lock
* to prevent starvation and lockup detector warnings.
*/
if (next != end)
cond_resched_lock(&kvm->mmu_lock);
} while (pgd++, addr = next, addr != end);
}
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
phys_addr_t addr, phys_addr_t end)
{
pte_t *pte;
pte = pte_offset_kernel(pmd, addr);
do {
if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
kvm_flush_dcache_pte(*pte);
} while (pte++, addr += PAGE_SIZE, addr != end);
}
static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
phys_addr_t addr, phys_addr_t end)
{
pmd_t *pmd;
phys_addr_t next;
pmd = stage2_pmd_offset(kvm, pud, addr);
do {
next = stage2_pmd_addr_end(kvm, addr, end);
if (!pmd_none(*pmd)) {
if (pmd_thp_or_huge(*pmd))
kvm_flush_dcache_pmd(*pmd);
else
stage2_flush_ptes(kvm, pmd, addr, next);
}
} while (pmd++, addr = next, addr != end);
}
static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
phys_addr_t addr, phys_addr_t end)
{
pud_t *pud;
phys_addr_t next;
pud = stage2_pud_offset(kvm, p4d, addr);
do {
next = stage2_pud_addr_end(kvm, addr, end);
if (!stage2_pud_none(kvm, *pud)) {
if (stage2_pud_huge(kvm, *pud))
kvm_flush_dcache_pud(*pud);
else
stage2_flush_pmds(kvm, pud, addr, next);
}
} while (pud++, addr = next, addr != end);
}
static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
phys_addr_t addr, phys_addr_t end)
{
p4d_t *p4d;
phys_addr_t next;
p4d = stage2_p4d_offset(kvm, pgd, addr);
do {
next = stage2_p4d_addr_end(kvm, addr, end);
if (!stage2_p4d_none(kvm, *p4d))
stage2_flush_puds(kvm, p4d, addr, next);
} while (p4d++, addr = next, addr != end);
}
static void stage2_flush_memslot(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
phys_addr_t next;
pgd_t *pgd;
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
do {
next = stage2_pgd_addr_end(kvm, addr, end);
if (!stage2_pgd_none(kvm, *pgd))
stage2_flush_p4ds(kvm, pgd, addr, next);
if (next != end)
cond_resched_lock(&kvm->mmu_lock);
} while (pgd++, addr = next, addr != end);
}
/**
* stage2_flush_vm - Invalidate cache for pages mapped in stage 2
* @kvm: The struct kvm pointer
*
* Go through the stage 2 page tables and invalidate any cache lines
* backing memory already mapped to the VM.
*/
static void stage2_flush_vm(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int idx;
idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots)
stage2_flush_memslot(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
}
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
pgd_clear(pgd);
p4d_free(NULL, p4d_table);
put_page(virt_to_page(pgd));
}
static void clear_hyp_p4d_entry(p4d_t *p4d)
{
pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
VM_BUG_ON(p4d_huge(*p4d));
p4d_clear(p4d);
pud_free(NULL, pud_table);
put_page(virt_to_page(p4d));
}
static void clear_hyp_pud_entry(pud_t *pud)
{
pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
VM_BUG_ON(pud_huge(*pud));
pud_clear(pud);
pmd_free(NULL, pmd_table);
put_page(virt_to_page(pud));
}
static void clear_hyp_pmd_entry(pmd_t *pmd)
{
pte_t *pte_table = pte_offset_kernel(pmd, 0);
VM_BUG_ON(pmd_thp_or_huge(*pmd));
pmd_clear(pmd);
pte_free_kernel(NULL, pte_table);
put_page(virt_to_page(pmd));
}
static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
pte_t *pte, *start_pte;
start_pte = pte = pte_offset_kernel(pmd, addr);
do {
if (!pte_none(*pte)) {
kvm_set_pte(pte, __pte(0));
put_page(virt_to_page(pte));
}
} while (pte++, addr += PAGE_SIZE, addr != end);
if (hyp_pte_table_empty(start_pte))
clear_hyp_pmd_entry(pmd);
}
static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
phys_addr_t next;
pmd_t *pmd, *start_pmd;
start_pmd = pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
/* Hyp doesn't use huge pmds */
if (!pmd_none(*pmd))
unmap_hyp_ptes(pmd, addr, next);
} while (pmd++, addr = next, addr != end);
if (hyp_pmd_table_empty(start_pmd))
clear_hyp_pud_entry(pud);
}
static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
{
phys_addr_t next;
pud_t *pud, *start_pud;
start_pud = pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
/* Hyp doesn't use huge puds */
if (!pud_none(*pud))
unmap_hyp_pmds(pud, addr, next);
} while (pud++, addr = next, addr != end);
if (hyp_pud_table_empty(start_pud))
clear_hyp_p4d_entry(p4d);
}
static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
phys_addr_t next;
p4d_t *p4d, *start_p4d;
start_p4d = p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
/* Hyp doesn't use huge p4ds */
if (!p4d_none(*p4d))
unmap_hyp_puds(p4d, addr, next);
} while (p4d++, addr = next, addr != end);
if (hyp_p4d_table_empty(start_p4d))
clear_hyp_pgd_entry(pgd);
}
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}
static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
phys_addr_t start, u64 size)
{
pgd_t *pgd;
phys_addr_t addr = start, end = start + size;
phys_addr_t next;
/*
* We don't unmap anything from HYP, except at the hyp tear down.
* Hence, we don't have to invalidate the TLBs here.
*/
pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
do {
next = pgd_addr_end(addr, end);
if (!pgd_none(*pgd))
unmap_hyp_p4ds(pgd, addr, next);
} while (pgd++, addr = next, addr != end);
}
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}
static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}
/**
* free_hyp_pgds - free Hyp-mode page tables
*
* Assumes hyp_pgd is a page table used strictly in Hyp-mode and
* therefore contains either mappings in the kernel memory area (above
* PAGE_OFFSET), or device mappings in the idmap range.
*
* boot_hyp_pgd should only map the idmap range, and is only used in
* the extended idmap case.
*/
void free_hyp_pgds(void)
{
pgd_t *id_pgd;
mutex_lock(&kvm_hyp_pgd_mutex);
id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
if (id_pgd) {
/* In case we never called hyp_mmu_init() */
if (!io_map_base)
io_map_base = hyp_idmap_start;
unmap_hyp_idmap_range(id_pgd, io_map_base,
hyp_idmap_start + PAGE_SIZE - io_map_base);
}
if (boot_hyp_pgd) {
free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
boot_hyp_pgd = NULL;
}
if (hyp_pgd) {
unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
(uintptr_t)high_memory - PAGE_OFFSET);
free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
hyp_pgd = NULL;
}
if (merged_hyp_pgd) {
clear_page(merged_hyp_pgd);
free_page((unsigned long)merged_hyp_pgd);
merged_hyp_pgd = NULL;
}
mutex_unlock(&kvm_hyp_pgd_mutex);
}
static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
unsigned long end, unsigned long pfn,
pgprot_t prot)
{
pte_t *pte;
unsigned long addr;
addr = start;
do {
pte = pte_offset_kernel(pmd, addr);
kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
get_page(virt_to_page(pte));
pfn++;
} while (addr += PAGE_SIZE, addr != end);
}
static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
unsigned long end, unsigned long pfn,
pgprot_t prot)
{
pmd_t *pmd;
pte_t *pte;
unsigned long addr, next;
addr = start;
do {
pmd = pmd_offset(pud, addr);
BUG_ON(pmd_sect(*pmd));
if (pmd_none(*pmd)) {
pte = pte_alloc_one_kernel(NULL);
if (!pte) {
kvm_err("Cannot allocate Hyp pte\n");
return -ENOMEM;
}
kvm_pmd_populate(pmd, pte);
get_page(virt_to_page(pmd));
}
next = pmd_addr_end(addr, end);
create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
pfn += (next - addr) >> PAGE_SHIFT;
} while (addr = next, addr != end);
return 0;
}
static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
unsigned long end, unsigned long pfn,
pgprot_t prot)
{
pud_t *pud;
pmd_t *pmd;
unsigned long addr, next;
int ret;
addr = start;
do {
pud = pud_offset(p4d, addr);
if (pud_none_or_clear_bad(pud)) {
pmd = pmd_alloc_one(NULL, addr);
if (!pmd) {
kvm_err("Cannot allocate Hyp pmd\n");
return -ENOMEM;
}
kvm_pud_populate(pud, pmd);
get_page(virt_to_page(pud));
}
next = pud_addr_end(addr, end);
ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
if (ret)
return ret;
pfn += (next - addr) >> PAGE_SHIFT;
} while (addr = next, addr != end);
return 0;
}
static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
unsigned long end, unsigned long pfn,
pgprot_t prot)
{
p4d_t *p4d;
pud_t *pud;
unsigned long addr, next;
int ret;
addr = start;
do {
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d)) {
pud = pud_alloc_one(NULL, addr);
if (!pud) {
kvm_err("Cannot allocate Hyp pud\n");
return -ENOMEM;
}
kvm_p4d_populate(p4d, pud);
get_page(virt_to_page(p4d));
}
next = p4d_addr_end(addr, end);
ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
if (ret)
return ret;
pfn += (next - addr) >> PAGE_SHIFT;
} while (addr = next, addr != end);
return 0;
}
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
unsigned long start, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pgd_t *pgd;
p4d_t *p4d;
unsigned long addr, next;
int err = 0;
mutex_lock(&kvm_hyp_pgd_mutex);
addr = start & PAGE_MASK;
end = PAGE_ALIGN(end);
do {
pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
if (pgd_none(*pgd)) {
p4d = p4d_alloc_one(NULL, addr);
if (!p4d) {
kvm_err("Cannot allocate Hyp p4d\n");
err = -ENOMEM;
goto out;
}
kvm_pgd_populate(pgd, p4d);
get_page(virt_to_page(pgd));
}
next = pgd_addr_end(addr, end);
err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
if (err)
goto out;
pfn += (next - addr) >> PAGE_SHIFT;
} while (addr = next, addr != end);
out:
mutex_unlock(&kvm_hyp_pgd_mutex);
return err;
}
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
if (!is_vmalloc_addr(kaddr)) {
BUG_ON(!virt_addr_valid(kaddr));
return __pa(kaddr);
} else {
return page_to_phys(vmalloc_to_page(kaddr)) +
offset_in_page(kaddr);
}
}
/**
* create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
* @from: The virtual kernel start address of the range
* @to: The virtual kernel end address of the range (exclusive)
* @prot: The protection to be applied to this range
*
* The same virtual address as the kernel virtual address is also used
* in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
* physical pages.
*/
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
{
phys_addr_t phys_addr;
unsigned long virt_addr;
unsigned long start = kern_hyp_va((unsigned long)from);
unsigned long end = kern_hyp_va((unsigned long)to);
if (is_kernel_in_hyp_mode())
return 0;
start = start & PAGE_MASK;
end = PAGE_ALIGN(end);
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
int err;
phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
virt_addr, virt_addr + PAGE_SIZE,
__phys_to_pfn(phys_addr),
prot);
if (err)
return err;
}
return 0;
}
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
unsigned long *haddr, pgprot_t prot)
{
pgd_t *pgd = hyp_pgd;
unsigned long base;
int ret = 0;
mutex_lock(&kvm_hyp_pgd_mutex);
/*
* This assumes that we have enough space below the idmap
* page to allocate our VAs. If not, the check below will
* kick. A potential alternative would be to detect that
* overflow and switch to an allocation above the idmap.
*
* The allocated size is always a multiple of PAGE_SIZE.
*/
size = PAGE_ALIGN(size + offset_in_page(phys_addr));
base = io_map_base - size;
/*
* Verify that BIT(VA_BITS - 1) hasn't been flipped by
* allocating the new area, as it would indicate we've
* overflowed the idmap/IO address range.
*/
if ((base ^ io_map_base) & BIT(VA_BITS - 1))
ret = -ENOMEM;
else
io_map_base = base;
mutex_unlock(&kvm_hyp_pgd_mutex);
if (ret)
goto out;
if (__kvm_cpu_uses_extended_idmap())
pgd = boot_hyp_pgd;
ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
base, base + size,
__phys_to_pfn(phys_addr), prot);
if (ret)
goto out;
*haddr = base + offset_in_page(phys_addr);
out:
return ret;
}
/**
* create_hyp_io_mappings - Map IO into both kernel and HYP
* @phys_addr: The physical start address which gets mapped
* @size: Size of the region being mapped
* @kaddr: Kernel VA for this mapping
* @haddr: HYP VA for this mapping
*/
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
void __iomem **kaddr,
void __iomem **haddr)
{
unsigned long addr;
int ret;
*kaddr = ioremap(phys_addr, size);
if (!*kaddr)
return -ENOMEM;
if (is_kernel_in_hyp_mode()) {
*haddr = *kaddr;
return 0;
}
ret = __create_hyp_private_mapping(phys_addr, size,
&addr, PAGE_HYP_DEVICE);
if (ret) {
iounmap(*kaddr);
*kaddr = NULL;
*haddr = NULL;
return ret;
}
*haddr = (void __iomem *)addr;
return 0;
}
/**
* create_hyp_exec_mappings - Map an executable range into HYP
* @phys_addr: The physical start address which gets mapped
* @size: Size of the region being mapped
* @haddr: HYP VA for this mapping
*/
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
void **haddr)
{
unsigned long addr;
int ret;
BUG_ON(is_kernel_in_hyp_mode());
ret = __create_hyp_private_mapping(phys_addr, size,
&addr, PAGE_HYP_EXEC);
if (ret) {
*haddr = NULL;
return ret;
}
*haddr = (void *)addr;
return 0;
}
/**
* kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
* @kvm: The KVM struct pointer for the VM.
*
* Allocates only the stage-2 HW PGD level table(s) of size defined by
* stage2_pgd_size(kvm).
*
* Note we don't need locking here as this is only called when the VM is
* created, which can only be done once.
*/
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
phys_addr_t pgd_phys;
pgd_t *pgd;
if (kvm->arch.pgd != NULL) {
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
/* Allocate the HW PGD, making sure that each page gets its own refcount */
pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
if (!pgd)
return -ENOMEM;
pgd_phys = virt_to_phys(pgd);
if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
return -EINVAL;
kvm->arch.pgd = pgd;
kvm->arch.pgd_phys = pgd_phys;
return 0;
}
static void stage2_unmap_memslot(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
hva_t hva = memslot->userspace_addr;
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t size = PAGE_SIZE * memslot->npages;
hva_t reg_end = hva + size;
/*
* A memory region could potentially cover multiple VMAs, and any holes
* between them, so iterate over all of them to find out if we should
* unmap any of them.
*
* +--------------------------------------------+
* +---------------+----------------+ +----------------+
* | : VMA 1 | VMA 2 | | VMA 3 : |
* +---------------+----------------+ +----------------+
* | memory region |
* +--------------------------------------------+
*/
do {
struct vm_area_struct *vma = find_vma(current->mm, hva);
hva_t vm_start, vm_end;
if (!vma || vma->vm_start >= reg_end)
break;
/*
* Take the intersection of this VMA with the memory region
*/
vm_start = max(hva, vma->vm_start);
vm_end = min(reg_end, vma->vm_end);
if (!(vma->vm_flags & VM_PFNMAP)) {
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
unmap_stage2_range(kvm, gpa, vm_end - vm_start);
}
hva = vm_end;
} while (hva < reg_end);
}
/**
* stage2_unmap_vm - Unmap Stage-2 RAM mappings
* @kvm: The struct kvm pointer
*
* Go through the memregions and unmap any regular RAM
* backing memory already mapped to the VM.
*/
void stage2_unmap_vm(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int idx;
idx = srcu_read_lock(&kvm->srcu);
mmap_read_lock(current->mm);
spin_lock(&kvm->mmu_lock);
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots)
stage2_unmap_memslot(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
mmap_read_unlock(current->mm);
srcu_read_unlock(&kvm->srcu, idx);
}
/**
* kvm_free_stage2_pgd - free all stage-2 tables
* @kvm: The KVM struct pointer for the VM.
*
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
* underlying level-2 and level-3 tables before freeing the actual level-1 table
* and setting the struct pointer to NULL.
*/
void kvm_free_stage2_pgd(struct kvm *kvm)
{
void *pgd = NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) {
unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0;
}
spin_unlock(&kvm->mmu_lock);
/* Free the HW pgd, one page at a time */
if (pgd)
free_pages_exact(pgd, stage2_pgd_size(kvm));
}
static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr)
{
pgd_t *pgd;
p4d_t *p4d;
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
if (stage2_pgd_none(kvm, *pgd)) {
if (!cache)
return NULL;
p4d = mmu_memory_cache_alloc(cache);
stage2_pgd_populate(kvm, pgd, p4d);
get_page(virt_to_page(pgd));
}
return stage2_p4d_offset(kvm, pgd, addr);
}
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr)
{
p4d_t *p4d;
pud_t *pud;
p4d = stage2_get_p4d(kvm, cache, addr);
if (stage2_p4d_none(kvm, *p4d)) {
if (!cache)
return NULL;
pud = mmu_memory_cache_alloc(cache);
stage2_p4d_populate(kvm, p4d, pud);
get_page(virt_to_page(p4d));
}
return stage2_pud_offset(kvm, p4d, addr);
}
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr)
{
pud_t *pud;
pmd_t *pmd;
pud = stage2_get_pud(kvm, cache, addr);
if (!pud || stage2_pud_huge(kvm, *pud))
return NULL;
if (stage2_pud_none(kvm, *pud)) {
if (!cache)
return NULL;
pmd = mmu_memory_cache_alloc(cache);
stage2_pud_populate(kvm, pud, pmd);
get_page(virt_to_page(pud));
}
return stage2_pmd_offset(kvm, pud, addr);
}
static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
*cache, phys_addr_t addr, const pmd_t *new_pmd)
{
pmd_t *pmd, old_pmd;
retry:
pmd = stage2_get_pmd(kvm, cache, addr);
VM_BUG_ON(!pmd);
old_pmd = *pmd;
/*
* Multiple vcpus faulting on the same PMD entry, can
* lead to them sequentially updating the PMD with the
* same value. Following the break-before-make
* (pmd_clear() followed by tlb_flush()) process can
* hinder forward progress due to refaults generated
* on missing translations.
*
* Skip updating the page table if the entry is
* unchanged.
*/
if (pmd_val(old_pmd) == pmd_val(*new_pmd))
return 0;
if (pmd_present(old_pmd)) {
/*
* If we already have PTE level mapping for this block,
* we must unmap it to avoid inconsistent TLB state and
* leaking the table page. We could end up in this situation
* if the memory slot was marked for dirty logging and was
* reverted, leaving PTE level mappings for the pages accessed
* during the period. So, unmap the PTE level mapping for this
* block and retry, as we could have released the upper level
* table in the process.
*
* Normal THP split/merge follows mmu_notifier callbacks and do
* get handled accordingly.
*/
if (!pmd_thp_or_huge(old_pmd)) {
unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
goto retry;
}
/*
* Mapping in huge pages should only happen through a
* fault. If a page is merged into a transparent huge
* page, the individual subpages of that huge page
* should be unmapped through MMU notifiers before we
* get here.
*
* Merging of CompoundPages is not supported; they
* should become splitting first, unmapped, merged,
* and mapped back in on-demand.
*/
WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
} else {
get_page(virt_to_page(pmd));
}
kvm_set_pmd(pmd, *new_pmd);
return 0;
}
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pud_t *new_pudp)
{
pud_t *pudp, old_pud;
retry:
pudp = stage2_get_pud(kvm, cache, addr);
VM_BUG_ON(!pudp);
old_pud = *pudp;
/*
* A large number of vcpus faulting on the same stage 2 entry,
* can lead to a refault due to the stage2_pud_clear()/tlb_flush().
* Skip updating the page tables if there is no change.
*/
if (pud_val(old_pud) == pud_val(*new_pudp))
return 0;
if (stage2_pud_present(kvm, old_pud)) {
/*
* If we already have table level mapping for this block, unmap
* the range for this block and retry.
*/
if (!stage2_pud_huge(kvm, old_pud)) {
unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
goto retry;
}
WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
stage2_pud_clear(kvm, pudp);
kvm_tlb_flush_vmid_ipa(kvm, addr);
} else {
get_page(virt_to_page(pudp));
}
kvm_set_pud(pudp, *new_pudp);
return 0;
}
/*
* stage2_get_leaf_entry - walk the stage2 VM page tables and return
* true if a valid and present leaf-entry is found. A pointer to the
* leaf-entry is returned in the appropriate level variable - pudpp,
* pmdpp, ptepp.
*/
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
{
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
*pudpp = NULL;
*pmdpp = NULL;
*ptepp = NULL;
pudp = stage2_get_pud(kvm, NULL, addr);
if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
return false;
if (stage2_pud_huge(kvm, *pudp)) {
*pudpp = pudp;
return true;
}
pmdp = stage2_pmd_offset(kvm, pudp, addr);
if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
return false;
if (pmd_thp_or_huge(*pmdp)) {
*pmdpp = pmdp;
return true;
}
ptep = pte_offset_kernel(pmdp, addr);
if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
return false;
*ptepp = ptep;
return true;
}
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
bool found;
found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
if (!found)
return false;
if (pudp)
return kvm_s2pud_exec(pudp);
else if (pmdp)
return kvm_s2pmd_exec(pmdp);
else
return kvm_s2pte_exec(ptep);
}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pte_t *new_pte,
unsigned long flags)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte, old_pte;
bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
VM_BUG_ON(logging_active && !cache);
/* Create stage-2 page table mapping - Levels 0 and 1 */
pud = stage2_get_pud(kvm, cache, addr);
if (!pud) {
/*
* Ignore calls from kvm_set_spte_hva for unallocated
* address ranges.
*/
return 0;
}
/*
* While dirty page logging - dissolve huge PUD, then continue
* on to allocate page.
*/
if (logging_active)
stage2_dissolve_pud(kvm, addr, pud);
if (stage2_pud_none(kvm, *pud)) {
if (!cache)
return 0; /* ignore calls from kvm_set_spte_hva */
pmd = mmu_memory_cache_alloc(cache);
stage2_pud_populate(kvm, pud, pmd);
get_page(virt_to_page(pud));
}
pmd = stage2_pmd_offset(kvm, pud, addr);
if (!pmd) {
/*
* Ignore calls from kvm_set_spte_hva for unallocated
* address ranges.
*/
return 0;
}
/*
* While dirty page logging - dissolve huge PMD, then continue on to
* allocate page.
*/
if (logging_active)
stage2_dissolve_pmd(kvm, addr, pmd);
/* Create stage-2 page mappings - Level 2 */
if (pmd_none(*pmd)) {
if (!cache)
return 0; /* ignore calls from kvm_set_spte_hva */
pte = mmu_memory_cache_alloc(cache);
kvm_pmd_populate(pmd, pte);
get_page(virt_to_page(pmd));
}
pte = pte_offset_kernel(pmd, addr);
if (iomap && pte_present(*pte))
return -EFAULT;
/* Create 2nd stage page table mapping - Level 3 */
old_pte = *pte;
if (pte_present(old_pte)) {
/* Skip page table update if there is no change */
if (pte_val(old_pte) == pte_val(*new_pte))
return 0;
kvm_set_pte(pte, __pte(0));
kvm_tlb_flush_vmid_ipa(kvm, addr);
} else {
get_page(virt_to_page(pte));
}
kvm_set_pte(pte, *new_pte);
return 0;
}
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
if (pte_young(*pte)) {
*pte = pte_mkold(*pte);
return 1;
}
return 0;
}
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
return __ptep_test_and_clear_young(pte);
}
#endif
static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
return stage2_ptep_test_and_clear_young((pte_t *)pud);
}
/**
* kvm_phys_addr_ioremap - map a device range to guest IPA
*
* @kvm: The KVM pointer
* @guest_ipa: The IPA at which to insert the mapping
* @pa: The physical address of the device
* @size: The size of the mapping
*/
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
phys_addr_t pa, unsigned long size, bool writable)
{
phys_addr_t addr, end;
int ret = 0;
unsigned long pfn;
struct kvm_mmu_memory_cache cache = { 0, };
end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
pfn = __phys_to_pfn(pa);
for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
if (writable)
pte = kvm_s2pte_mkwrite(pte);
ret = mmu_topup_memory_cache(&cache,
kvm_mmu_cache_min_pages(kvm),
KVM_NR_MEM_OBJS);
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = stage2_set_pte(kvm, &cache, addr, &pte,
KVM_S2PTE_FLAG_IS_IOMAP);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
pfn++;
}
out:
mmu_free_memory_cache(&cache);
return ret;
}
/**
* stage2_wp_ptes - write protect PMD range
* @pmd: pointer to pmd entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
pte_t *pte;
pte = pte_offset_kernel(pmd, addr);
do {
if (!pte_none(*pte)) {
if (!kvm_s2pte_readonly(pte))
kvm_set_s2pte_readonly(pte);
}
} while (pte++, addr += PAGE_SIZE, addr != end);
}
/**
* stage2_wp_pmds - write protect PUD range
* kvm: kvm instance for the VM
* @pud: pointer to pud entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
phys_addr_t addr, phys_addr_t end)
{
pmd_t *pmd;
phys_addr_t next;
pmd = stage2_pmd_offset(kvm, pud, addr);
do {
next = stage2_pmd_addr_end(kvm, addr, end);
if (!pmd_none(*pmd)) {
if (pmd_thp_or_huge(*pmd)) {
if (!kvm_s2pmd_readonly(pmd))
kvm_set_s2pmd_readonly(pmd);
} else {
stage2_wp_ptes(pmd, addr, next);
}
}
} while (pmd++, addr = next, addr != end);
}
/**
* stage2_wp_puds - write protect P4D range
* @pgd: pointer to pgd entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
phys_addr_t addr, phys_addr_t end)
{
pud_t *pud;
phys_addr_t next;
pud = stage2_pud_offset(kvm, p4d, addr);
do {
next = stage2_pud_addr_end(kvm, addr, end);
if (!stage2_pud_none(kvm, *pud)) {
if (stage2_pud_huge(kvm, *pud)) {
if (!kvm_s2pud_readonly(pud))
kvm_set_s2pud_readonly(pud);
} else {
stage2_wp_pmds(kvm, pud, addr, next);
}
}
} while (pud++, addr = next, addr != end);
}
/**
* stage2_wp_p4ds - write protect PGD range
* @pgd: pointer to pgd entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
phys_addr_t addr, phys_addr_t end)
{
p4d_t *p4d;
phys_addr_t next;
p4d = stage2_p4d_offset(kvm, pgd, addr);
do {
next = stage2_p4d_addr_end(kvm, addr, end);
if (!stage2_p4d_none(kvm, *p4d))
stage2_wp_puds(kvm, p4d, addr, next);
} while (p4d++, addr = next, addr != end);
}
/**
* stage2_wp_range() - write protect stage2 memory region range
* @kvm: The KVM pointer
* @addr: Start address of range
* @end: End address of range
*/
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
pgd_t *pgd;
phys_addr_t next;
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
do {
/*
* Release kvm_mmu_lock periodically if the memory region is
* large. Otherwise, we may see kernel panics with
* CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
* CONFIG_LOCKDEP. Additionally, holding the lock too long
* will also starve other vCPUs. We have to also make sure
* that the page tables are not freed while we released
* the lock.
*/
cond_resched_lock(&kvm->mmu_lock);
if (!READ_ONCE(kvm->arch.pgd))
break;
next = stage2_pgd_addr_end(kvm, addr, end);
if (stage2_pgd_present(kvm, *pgd))
stage2_wp_p4ds(kvm, pgd, addr, next);
} while (pgd++, addr = next, addr != end);
}
/**
* kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
* @kvm: The KVM pointer
* @slot: The memory slot to write protect
*
* Called to start logging dirty pages after memory region
* KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
* all present PUD, PMD and PTEs are write protected in the memory region.
* Afterwards read of dirty page log can be called.
*
* Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
* serializing operations for VM memory regions.
*/
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
phys_addr_t start, end;
if (WARN_ON_ONCE(!memslot))
return;
start = memslot->base_gfn << PAGE_SHIFT;
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
stage2_wp_range(kvm, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
}
/**
* kvm_mmu_write_protect_pt_masked() - write protect dirty pages
* @kvm: The KVM pointer
* @slot: The memory slot associated with mask
* @gfn_offset: The gfn offset in memory slot
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
* slot to be write protected
*
* Walks bits set in mask write protects the associated pte's. Caller must
* acquire kvm_mmu_lock.
*/
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
stage2_wp_range(kvm, start, end);
}
/*
* kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
* dirty pages.
*
* It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
* enable dirty logging for them.
*/
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
{
__clean_dcache_guest_page(pfn, size);
}
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
{
__invalidate_icache_guest_page(pfn, size);
}
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
{
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
}
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
unsigned long hva,
unsigned long map_size)
{
gpa_t gpa_start;
hva_t uaddr_start, uaddr_end;
size_t size;
/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
if (map_size == PAGE_SIZE)
return true;
size = memslot->npages * PAGE_SIZE;
gpa_start = memslot->base_gfn << PAGE_SHIFT;
uaddr_start = memslot->userspace_addr;
uaddr_end = uaddr_start + size;
/*
* Pages belonging to memslots that don't have the same alignment
* within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
* PMD/PUD entries, because we'll end up mapping the wrong pages.
*
* Consider a layout like the following:
*
* memslot->userspace_addr:
* +-----+--------------------+--------------------+---+
* |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
* +-----+--------------------+--------------------+---+
*
* memslot->base_gfn << PAGE_SHIFT:
* +---+--------------------+--------------------+-----+
* |abc|def Stage-2 block | Stage-2 block |tvxyz|
* +---+--------------------+--------------------+-----+
*
* If we create those stage-2 blocks, we'll end up with this incorrect
* mapping:
* d -> f
* e -> g
* f -> h
*/
if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
return false;
/*
* Next, let's make sure we're not trying to map anything not covered
* by the memslot. This means we have to prohibit block size mappings
* for the beginning and end of a non-block aligned and non-block sized
* memory slot (illustrated by the head and tail parts of the
* userspace view above containing pages 'abcde' and 'xyz',
* respectively).
*
* Note that it doesn't matter if we do the check using the
* userspace_addr or the base_gfn, as both are equally aligned (per
* the check above) and equally sized.
*/
return (hva & ~(map_size - 1)) >= uaddr_start &&
(hva & ~(map_size - 1)) + map_size <= uaddr_end;
}
/*
* Check if the given hva is backed by a transparent huge page (THP) and
* whether it can be mapped using block mapping in stage2. If so, adjust
* the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
* supported. This will need to be updated to support other THP sizes.
*
* Returns the size of the mapping.
*/
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
unsigned long hva, kvm_pfn_t *pfnp,
phys_addr_t *ipap)
{
kvm_pfn_t pfn = *pfnp;
/*
* Make sure the adjustment is done only for THP pages. Also make
* sure that the HVA and IPA are sufficiently aligned and that the
* block map is contained within the memslot.
*/
if (kvm_is_transparent_hugepage(pfn) &&
fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
/*
* The address we faulted on is backed by a transparent huge
* page. However, because we map the compound huge page and
* not the individual tail page, we need to transfer the
* refcount to the head page. We have to be careful that the
* THP doesn't start to split while we are adjusting the
* refcounts.
*
* We are sure this doesn't happen, because mmu_notifier_retry
* was successful and we are holding the mmu_lock, so if this
* THP is trying to split, it will be blocked in the mmu
* notifier before touching any of the pages, specifically
* before being able to call __split_huge_page_refcount().
*
* We can therefore safely transfer the refcount from PG_tail
* to PG_head and switch the pfn from a tail page to the head
* page accordingly.
*/
*ipap &= PMD_MASK;
kvm_release_pfn_clean(pfn);
pfn &= ~(PTRS_PER_PMD - 1);
kvm_get_pfn(pfn);
*pfnp = pfn;
return PMD_SIZE;
}
/* Use page mapping if we cannot use block mapping. */
return PAGE_SIZE;
}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm_memory_slot *memslot, unsigned long hva,
unsigned long fault_status)
{
int ret;
bool write_fault, writable, force_pte = false;
bool exec_fault, needs_exec;
unsigned long mmu_seq;
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma;
short vma_shift;
kvm_pfn_t pfn;
pgprot_t mem_type = PAGE_S2;
bool logging_active = memslot_is_logging(memslot);
unsigned long vma_pagesize, flags = 0;
write_fault = kvm_is_write_fault(vcpu);
exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
VM_BUG_ON(write_fault && exec_fault);
if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
kvm_err("Unexpected L2 read permission error\n");
return -EFAULT;
}
/* Let's check if we will get back a huge page backed by hugetlbfs */
mmap_read_lock(current->mm);
vma = find_vma_intersection(current->mm, hva, hva + 1);
if (unlikely(!vma)) {
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
mmap_read_unlock(current->mm);
return -EFAULT;
}
if (is_vm_hugetlb_page(vma))
vma_shift = huge_page_shift(hstate_vma(vma));
else
vma_shift = PAGE_SHIFT;
vma_pagesize = 1ULL << vma_shift;
if (logging_active ||
(vma->vm_flags & VM_PFNMAP) ||
!fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
force_pte = true;
vma_pagesize = PAGE_SIZE;
}
/*
* The stage2 has a minimum of 2 level table (For arm64 see
* kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
* use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
* As for PUD huge maps, we must make sure that we have at least
* 3 levels, i.e, PMD is not folded.
*/
if (vma_pagesize == PMD_SIZE ||
(vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
mmap_read_unlock(current->mm);
/* We need minimum second+third level pages */
ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
KVM_NR_MEM_OBJS);
if (ret)
return ret;
mmu_seq = vcpu->kvm->mmu_notifier_seq;
/*
* Ensure the read of mmu_notifier_seq happens before we call
* gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
* the page we just got a reference to gets unmapped before we have a
* chance to grab the mmu_lock, which ensure that if the page gets
* unmapped afterwards, the call to kvm_unmap_hva will take it away
* from us again properly. This smp_rmb() interacts with the smp_wmb()
* in kvm_mmu_notifier_invalidate_<page|range_end>.
*/
smp_rmb();
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
if (pfn == KVM_PFN_ERR_HWPOISON) {
kvm_send_hwpoison_signal(hva, vma_shift);
return 0;
}
if (is_error_noslot_pfn(pfn))
return -EFAULT;
if (kvm_is_device_pfn(pfn)) {
mem_type = PAGE_S2_DEVICE;
flags |= KVM_S2PTE_FLAG_IS_IOMAP;
} else if (logging_active) {
/*
* Faults on pages in a memslot with logging enabled
* should not be mapped with huge pages (it introduces churn
* and performance degradation), so force a pte mapping.
*/
flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
/*
* Only actually map the page as writable if this was a write
* fault.
*/
if (!write_fault)
writable = false;
}
if (exec_fault && is_iomap(flags))
return -ENOEXEC;
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq))
goto out_unlock;
/*
* If we are not forced to use page mapping, check if we are
* backed by a THP and thus use block mapping if possible.
*/
if (vma_pagesize == PAGE_SIZE && !force_pte)
vma_pagesize = transparent_hugepage_adjust(memslot, hva,
&pfn, &fault_ipa);
if (writable)
kvm_set_pfn_dirty(pfn);
if (fault_status != FSC_PERM && !is_iomap(flags))
clean_dcache_guest_page(pfn, vma_pagesize);
if (exec_fault)
invalidate_icache_guest_page(pfn, vma_pagesize);
/*
* If we took an execution fault we have made the
* icache/dcache coherent above and should now let the s2
* mapping be executable.
*
* Write faults (!exec_fault && FSC_PERM) are orthogonal to
* execute permissions, and we preserve whatever we have.
*/
needs_exec = exec_fault ||
(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
if (vma_pagesize == PUD_SIZE) {
pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
new_pud = kvm_pud_mkhuge(new_pud);
if (writable)
new_pud = kvm_s2pud_mkwrite(new_pud);
if (needs_exec)
new_pud = kvm_s2pud_mkexec(new_pud);
ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
} else if (vma_pagesize == PMD_SIZE) {
pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
new_pmd = kvm_pmd_mkhuge(new_pmd);
if (writable)
new_pmd = kvm_s2pmd_mkwrite(new_pmd);
if (needs_exec)
new_pmd = kvm_s2pmd_mkexec(new_pmd);
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
} else {
pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
if (writable) {
new_pte = kvm_s2pte_mkwrite(new_pte);
mark_page_dirty(kvm, gfn);
}
if (needs_exec)
new_pte = kvm_s2pte_mkexec(new_pte);
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
}
out_unlock:
spin_unlock(&kvm->mmu_lock);
kvm_set_pfn_accessed(pfn);
kvm_release_pfn_clean(pfn);
return ret;
}
/*
* Resolve the access fault by making the page young again.
* Note that because the faulting entry is guaranteed not to be
* cached in the TLB, we don't need to invalidate anything.
* Only the HW Access Flag updates are supported for Stage 2 (no DBM),
* so there is no need for atomic (pte|pmd)_mkyoung operations.
*/
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
kvm_pfn_t pfn;
bool pfn_valid = false;
trace_kvm_access_fault(fault_ipa);
spin_lock(&vcpu->kvm->mmu_lock);
if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
goto out;
if (pud) { /* HugeTLB */
*pud = kvm_s2pud_mkyoung(*pud);
pfn = kvm_pud_pfn(*pud);
pfn_valid = true;
} else if (pmd) { /* THP, HugeTLB */
*pmd = pmd_mkyoung(*pmd);
pfn = pmd_pfn(*pmd);
pfn_valid = true;
} else {
*pte = pte_mkyoung(*pte); /* Just a page... */
pfn = pte_pfn(*pte);
pfn_valid = true;
}
out:
spin_unlock(&vcpu->kvm->mmu_lock);
if (pfn_valid)
kvm_set_pfn_accessed(pfn);
}
/**
* kvm_handle_guest_abort - handles all 2nd stage aborts
* @vcpu: the VCPU pointer
* @run: the kvm_run structure
*
* Any abort that gets to the host is almost guaranteed to be caused by a
* missing second stage translation table entry, which can mean that either the
* guest simply needs more memory and we must allocate an appropriate page or it
* can mean that the guest tried to access I/O memory, which is emulated by user
* space. The distinction is based on the IPA causing the fault and whether this
* memory region has been registered as standard RAM by user space.
*/
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
unsigned long fault_status;
phys_addr_t fault_ipa;
struct kvm_memory_slot *memslot;
unsigned long hva;
bool is_iabt, write_fault, writable;
gfn_t gfn;
int ret, idx;
fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
/* Synchronous External Abort? */
if (kvm_vcpu_abt_issea(vcpu)) {
/*
* For RAS the host kernel may handle this abort.
* There is no need to pass the error into the guest.
*/
if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
kvm_inject_vabt(vcpu);
return 1;
}
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
kvm_vcpu_get_hfar(vcpu), fault_ipa);
/* Check the stage-2 fault is trans. fault or write fault */
if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
fault_status != FSC_ACCESS) {
kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
kvm_vcpu_trap_get_class(vcpu),
(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
(unsigned long)kvm_vcpu_get_esr(vcpu));
return -EFAULT;
}
idx = srcu_read_lock(&vcpu->kvm->srcu);
gfn = fault_ipa >> PAGE_SHIFT;
memslot = gfn_to_memslot(vcpu->kvm, gfn);
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
write_fault = kvm_is_write_fault(vcpu);
if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
if (is_iabt) {
/* Prefetch Abort on I/O address */
ret = -ENOEXEC;
goto out;
}
/*
* Check for a cache maintenance operation. Since we
* ended-up here, we know it is outside of any memory
* slot. But we can't find out if that is for a device,
* or if the guest is just being stupid. The only thing
* we know for sure is that this range cannot be cached.
*
* So let's assume that the guest is just being
* cautious, and skip the instruction.
*/
if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
ret = 1;
goto out_unlock;
}
/*
* The IPA is reported as [MAX:12], so we need to
* complement it with the bottom 12 bits from the
* faulting VA. This is always 12 bits, irrespective
* of the page size.
*/
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
ret = io_mem_abort(vcpu, run, fault_ipa);
goto out_unlock;
}
/* Userspace should not be able to register out-of-bounds IPAs */
VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
if (fault_status == FSC_ACCESS) {
handle_access_fault(vcpu, fault_ipa);
ret = 1;
goto out_unlock;
}
ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
if (ret == 0)
ret = 1;
out:
if (ret == -ENOEXEC) {
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
ret = 1;
}
out_unlock:
srcu_read_unlock(&vcpu->kvm->srcu, idx);
return ret;
}
static int handle_hva_to_gpa(struct kvm *kvm,
unsigned long start,
unsigned long end,
int (*handler)(struct kvm *kvm,
gpa_t gpa, u64 size,
void *data),
void *data)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int ret = 0;
slots = kvm_memslots(kvm);
/* we only care about the pages that the guest sees */
kvm_for_each_memslot(memslot, slots) {
unsigned long hva_start, hva_end;
gfn_t gpa;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
(memslot->npages << PAGE_SHIFT));
if (hva_start >= hva_end)
continue;
gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
}
return ret;
}
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
unmap_stage2_range(kvm, gpa, size);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end)
{
if (!kvm->arch.pgd)
return 0;
trace_kvm_unmap_hva_range(start, end);
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
return 0;
}
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
pte_t *pte = (pte_t *)data;
WARN_ON(size != PAGE_SIZE);
/*
* We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
* flag clear because MMU notifiers will have unmapped a huge PMD before
* calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
* therefore stage2_set_pte() never needs to clear out a huge PMD
* through this calling path.
*/
stage2_set_pte(kvm, NULL, gpa, pte, 0);
return 0;
}
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
unsigned long end = hva + PAGE_SIZE;
kvm_pfn_t pfn = pte_pfn(pte);
pte_t stage2_pte;
if (!kvm->arch.pgd)
return 0;
trace_kvm_set_spte_hva(hva);
/*
* We've moved a page around, probably through CoW, so let's treat it
* just like a translation fault and clean the cache to the PoC.
*/
clean_dcache_guest_page(pfn, PAGE_SIZE);
stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
return 0;
}
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
return 0;
if (pud)
return stage2_pudp_test_and_clear_young(pud);
else if (pmd)
return stage2_pmdp_test_and_clear_young(pmd);
else
return stage2_ptep_test_and_clear_young(pte);
}
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
return 0;
if (pud)
return kvm_s2pud_young(*pud);
else if (pmd)
return pmd_young(*pmd);
else
return pte_young(*pte);
}
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
if (!kvm->arch.pgd)
return 0;
trace_kvm_age_hva(start, end);
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
if (!kvm->arch.pgd)
return 0;
trace_kvm_test_age_hva(hva);
return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
kvm_test_age_hva_handler, NULL);
}
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}
phys_addr_t kvm_mmu_get_httbr(void)
{
if (__kvm_cpu_uses_extended_idmap())
return virt_to_phys(merged_hyp_pgd);
else
return virt_to_phys(hyp_pgd);
}
phys_addr_t kvm_get_idmap_vector(void)
{
return hyp_idmap_vector;
}
static int kvm_map_idmap_text(pgd_t *pgd)
{
int err;
/* Create the idmap in the boot page tables */
err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
hyp_idmap_start, hyp_idmap_end,
__phys_to_pfn(hyp_idmap_start),
PAGE_HYP_EXEC);
if (err)
kvm_err("Failed to idmap %lx-%lx\n",
hyp_idmap_start, hyp_idmap_end);
return err;
}
int kvm_mmu_init(void)
{
int err;
hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
/*
* We rely on the linker script to ensure at build time that the HYP
* init code does not cross a page boundary.
*/
BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
kvm_debug("HYP VA range: %lx:%lx\n",
kern_hyp_va(PAGE_OFFSET),
kern_hyp_va((unsigned long)high_memory - 1));
if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
/*
* The idmap page is intersecting with the VA space,
* it is not safe to continue further.
*/
kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
err = -EINVAL;
goto out;
}
hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
if (!hyp_pgd) {
kvm_err("Hyp mode PGD not allocated\n");
err = -ENOMEM;
goto out;
}
if (__kvm_cpu_uses_extended_idmap()) {
boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
hyp_pgd_order);
if (!boot_hyp_pgd) {
kvm_err("Hyp boot PGD not allocated\n");
err = -ENOMEM;
goto out;
}
err = kvm_map_idmap_text(boot_hyp_pgd);
if (err)
goto out;
merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (!merged_hyp_pgd) {
kvm_err("Failed to allocate extra HYP pgd\n");
goto out;
}
__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
hyp_idmap_start);
} else {
err = kvm_map_idmap_text(hyp_pgd);
if (err)
goto out;
}
io_map_base = hyp_idmap_start;
return 0;
out:
free_hyp_pgds();
return err;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be tracked while the
* memory slot is write protected.
*/
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
/*
* If we're with initial-all-set, we don't need to write
* protect any pages because they're all reported as dirty.
* Huge pages and normal pages will be write protect gradually.
*/
if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
kvm_mmu_wp_memory_region(kvm, mem->slot);
}
}
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
hva_t hva = mem->userspace_addr;
hva_t reg_end = hva + mem->memory_size;
bool writable = !(mem->flags & KVM_MEM_READONLY);
int ret = 0;
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
change != KVM_MR_FLAGS_ONLY)
return 0;
/*
* Prevent userspace from creating a memory region outside of the IPA
* space addressable by the KVM guest IPA space.
*/
if (memslot->base_gfn + memslot->npages >=
(kvm_phys_size(kvm) >> PAGE_SHIFT))
return -EFAULT;
mmap_read_lock(current->mm);
/*
* A memory region could potentially cover multiple VMAs, and any holes
* between them, so iterate over all of them to find out if we can map
* any of them right now.
*
* +--------------------------------------------+
* +---------------+----------------+ +----------------+
* | : VMA 1 | VMA 2 | | VMA 3 : |
* +---------------+----------------+ +----------------+
* | memory region |
* +--------------------------------------------+
*/
do {
struct vm_area_struct *vma = find_vma(current->mm, hva);
hva_t vm_start, vm_end;
if (!vma || vma->vm_start >= reg_end)
break;
/*
* Take the intersection of this VMA with the memory region
*/
vm_start = max(hva, vma->vm_start);
vm_end = min(reg_end, vma->vm_end);
if (vma->vm_flags & VM_PFNMAP) {
gpa_t gpa = mem->guest_phys_addr +
(vm_start - mem->userspace_addr);
phys_addr_t pa;
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
pa += vm_start - vma->vm_start;
/* IO region dirty page logging not allowed */
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
ret = -EINVAL;
goto out;
}
ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
vm_end - vm_start,
writable);
if (ret)
break;
}
hva = vm_end;
} while (hva < reg_end);
if (change == KVM_MR_FLAGS_ONLY)
goto out;
spin_lock(&kvm->mmu_lock);
if (ret)
unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
else
stage2_flush_memslot(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
out:
mmap_read_unlock(current->mm);
return ret;
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
}
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_free_stage2_pgd(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
phys_addr_t size = slot->npages << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
unmap_stage2_range(kvm, gpa, size);
spin_unlock(&kvm->mmu_lock);
}
/*
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
*
* Main problems:
* - S/W ops are local to a CPU (not broadcast)
* - We have line migration behind our back (speculation)
* - System caches don't support S/W at all (damn!)
*
* In the face of the above, the best we can do is to try and convert
* S/W ops to VA ops. Because the guest is not allowed to infer the
* S/W to PA mapping, it can only use S/W to nuke the whole cache,
* which is a rather good thing for us.
*
* Also, it is only used when turning caches on/off ("The expected
* usage of the cache maintenance instructions that operate by set/way
* is associated with the cache maintenance instructions associated
* with the powerdown and powerup of caches, if this is required by
* the implementation.").
*
* We use the following policy:
*
* - If we trap a S/W operation, we enable VM trapping to detect
* caches being turned on/off, and do a full clean.
*
* - We flush the caches on both caches being turned on and off.
*
* - Once the caches are enabled, we stop trapping VM ops.
*/
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
unsigned long hcr = *vcpu_hcr(vcpu);
/*
* If this is the first time we do a S/W operation
* (i.e. HCR_TVM not set) flush the whole memory, and set the
* VM trapping.
*
* Otherwise, rely on the VM trapping to wait for the MMU +
* Caches to be turned off. At that point, we'll be able to
* clean the caches again.
*/
if (!(hcr & HCR_TVM)) {
trace_kvm_set_way_flush(*vcpu_pc(vcpu),
vcpu_has_cache_enabled(vcpu));
stage2_flush_vm(vcpu->kvm);
*vcpu_hcr(vcpu) = hcr | HCR_TVM;
}
}
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
bool now_enabled = vcpu_has_cache_enabled(vcpu);
/*
* If switching the MMU+caches on, need to invalidate the caches.
* If switching it off, need to clean the caches.
* Clean + invalidate does the trick always.
*/
if (now_enabled != was_enabled)
stage2_flush_vm(vcpu->kvm);
/* Caches are now on, stop trapping VM ops (until a S/W op) */
if (now_enabled)
*vcpu_hcr(vcpu) &= ~HCR_TVM;
trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}