mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 09:39:39 +07:00
0abd8e70d2
On a senario like writing out the first dirty page of the inode as the inline data, we only cleared dirty flags of the pages, but didn't clear the dirty tags of those pages in the radix tree. If we don't clear the dirty tags of the pages in the radix tree, the inodes which contain the pages will be marked with I_DIRTY_PAGES again and again, and writepages() for the inodes will be invoked in every writeback period. As a result, nothing will be done in every writepages() for the inodes and it will just consume CPU time meaninglessly. Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
684 lines
16 KiB
C
684 lines
16 KiB
C
/*
|
|
* fs/f2fs/inline.c
|
|
* Copyright (c) 2013, Intel Corporation
|
|
* Authors: Huajun Li <huajun.li@intel.com>
|
|
* Haicheng Li <haicheng.li@intel.com>
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
|
|
bool f2fs_may_inline_data(struct inode *inode)
|
|
{
|
|
if (f2fs_is_atomic_file(inode))
|
|
return false;
|
|
|
|
if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
|
|
return false;
|
|
|
|
if (i_size_read(inode) > MAX_INLINE_DATA(inode))
|
|
return false;
|
|
|
|
if (f2fs_encrypted_file(inode))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool f2fs_may_inline_dentry(struct inode *inode)
|
|
{
|
|
if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
|
|
return false;
|
|
|
|
if (!S_ISDIR(inode->i_mode))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void read_inline_data(struct page *page, struct page *ipage)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
void *src_addr, *dst_addr;
|
|
|
|
if (PageUptodate(page))
|
|
return;
|
|
|
|
f2fs_bug_on(F2FS_P_SB(page), page->index);
|
|
|
|
zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
|
|
|
|
/* Copy the whole inline data block */
|
|
src_addr = inline_data_addr(inode, ipage);
|
|
dst_addr = kmap_atomic(page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(dst_addr);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
|
|
{
|
|
void *addr;
|
|
|
|
if (from >= MAX_INLINE_DATA(inode))
|
|
return;
|
|
|
|
addr = inline_data_addr(inode, ipage);
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true);
|
|
memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
|
|
set_page_dirty(ipage);
|
|
|
|
if (from == 0)
|
|
clear_inode_flag(inode, FI_DATA_EXIST);
|
|
}
|
|
|
|
int f2fs_read_inline_data(struct inode *inode, struct page *page)
|
|
{
|
|
struct page *ipage;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
unlock_page(page);
|
|
return PTR_ERR(ipage);
|
|
}
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (page->index)
|
|
zero_user_segment(page, 0, PAGE_SIZE);
|
|
else
|
|
read_inline_data(page, ipage);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
f2fs_put_page(ipage, 1);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
|
|
{
|
|
struct f2fs_io_info fio = {
|
|
.sbi = F2FS_I_SB(dn->inode),
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = REQ_SYNC | REQ_PRIO,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
.io_type = FS_DATA_IO,
|
|
};
|
|
int dirty, err;
|
|
|
|
if (!f2fs_exist_data(dn->inode))
|
|
goto clear_out;
|
|
|
|
err = f2fs_reserve_block(dn, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
|
|
|
|
read_inline_data(page, dn->inode_page);
|
|
set_page_dirty(page);
|
|
|
|
/* clear dirty state */
|
|
dirty = clear_page_dirty_for_io(page);
|
|
|
|
/* write data page to try to make data consistent */
|
|
set_page_writeback(page);
|
|
fio.old_blkaddr = dn->data_blkaddr;
|
|
set_inode_flag(dn->inode, FI_HOT_DATA);
|
|
write_data_page(dn, &fio);
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
if (dirty) {
|
|
inode_dec_dirty_pages(dn->inode);
|
|
remove_dirty_inode(dn->inode);
|
|
}
|
|
|
|
/* this converted inline_data should be recovered. */
|
|
set_inode_flag(dn->inode, FI_APPEND_WRITE);
|
|
|
|
/* clear inline data and flag after data writeback */
|
|
truncate_inline_inode(dn->inode, dn->inode_page, 0);
|
|
clear_inline_node(dn->inode_page);
|
|
clear_out:
|
|
stat_dec_inline_inode(dn->inode);
|
|
clear_inode_flag(dn->inode, FI_INLINE_DATA);
|
|
f2fs_put_dnode(dn);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_convert_inline_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
struct page *ipage, *page;
|
|
int err = 0;
|
|
|
|
if (!f2fs_has_inline_data(inode))
|
|
return 0;
|
|
|
|
page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode))
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_put_page(page, 1);
|
|
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
|
|
return err;
|
|
}
|
|
|
|
int f2fs_write_inline_data(struct inode *inode, struct page *page)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
struct dnode_of_data dn;
|
|
struct address_space *mapping = page_mapping(page);
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
f2fs_put_dnode(&dn);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
f2fs_bug_on(F2FS_I_SB(inode), page->index);
|
|
|
|
f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
|
|
src_addr = kmap_atomic(page);
|
|
dst_addr = inline_data_addr(inode, dn.inode_page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
|
|
kunmap_atomic(src_addr);
|
|
set_page_dirty(dn.inode_page);
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
radix_tree_tag_clear(&mapping->page_tree, page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
|
|
set_inode_flag(inode, FI_APPEND_WRITE);
|
|
set_inode_flag(inode, FI_DATA_EXIST);
|
|
|
|
clear_inline_node(dn.inode_page);
|
|
f2fs_put_dnode(&dn);
|
|
return 0;
|
|
}
|
|
|
|
bool recover_inline_data(struct inode *inode, struct page *npage)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode *ri = NULL;
|
|
void *src_addr, *dst_addr;
|
|
struct page *ipage;
|
|
|
|
/*
|
|
* The inline_data recovery policy is as follows.
|
|
* [prev.] [next] of inline_data flag
|
|
* o o -> recover inline_data
|
|
* o x -> remove inline_data, and then recover data blocks
|
|
* x o -> remove inline_data, and then recover inline_data
|
|
* x x -> recover data blocks
|
|
*/
|
|
if (IS_INODE(npage))
|
|
ri = F2FS_INODE(npage);
|
|
|
|
if (f2fs_has_inline_data(inode) &&
|
|
ri && (ri->i_inline & F2FS_INLINE_DATA)) {
|
|
process_inline:
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
f2fs_bug_on(sbi, IS_ERR(ipage));
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true);
|
|
|
|
src_addr = inline_data_addr(inode, npage);
|
|
dst_addr = inline_data_addr(inode, ipage);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
|
|
|
|
set_inode_flag(inode, FI_INLINE_DATA);
|
|
set_inode_flag(inode, FI_DATA_EXIST);
|
|
|
|
set_page_dirty(ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
return true;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
f2fs_bug_on(sbi, IS_ERR(ipage));
|
|
truncate_inline_inode(inode, ipage, 0);
|
|
clear_inode_flag(inode, FI_INLINE_DATA);
|
|
f2fs_put_page(ipage, 1);
|
|
} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
|
|
if (truncate_blocks(inode, 0, false))
|
|
return false;
|
|
goto process_inline;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
|
|
struct fscrypt_name *fname, struct page **res_page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
|
struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
|
|
struct f2fs_dir_entry *de;
|
|
struct f2fs_dentry_ptr d;
|
|
struct page *ipage;
|
|
void *inline_dentry;
|
|
f2fs_hash_t namehash;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
*res_page = ipage;
|
|
return NULL;
|
|
}
|
|
|
|
namehash = f2fs_dentry_hash(&name, fname);
|
|
|
|
inline_dentry = inline_data_addr(dir, ipage);
|
|
|
|
make_dentry_ptr_inline(dir, &d, inline_dentry);
|
|
de = find_target_dentry(fname, namehash, NULL, &d);
|
|
unlock_page(ipage);
|
|
if (de)
|
|
*res_page = ipage;
|
|
else
|
|
f2fs_put_page(ipage, 0);
|
|
|
|
return de;
|
|
}
|
|
|
|
int make_empty_inline_dir(struct inode *inode, struct inode *parent,
|
|
struct page *ipage)
|
|
{
|
|
struct f2fs_dentry_ptr d;
|
|
void *inline_dentry;
|
|
|
|
inline_dentry = inline_data_addr(inode, ipage);
|
|
|
|
make_dentry_ptr_inline(inode, &d, inline_dentry);
|
|
do_make_empty_dir(inode, parent, &d);
|
|
|
|
set_page_dirty(ipage);
|
|
|
|
/* update i_size to MAX_INLINE_DATA */
|
|
if (i_size_read(inode) < MAX_INLINE_DATA(inode))
|
|
f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE: ipage is grabbed by caller, but if any error occurs, we should
|
|
* release ipage in this function.
|
|
*/
|
|
static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
|
|
void *inline_dentry)
|
|
{
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
struct f2fs_dentry_block *dentry_blk;
|
|
struct f2fs_dentry_ptr src, dst;
|
|
int err;
|
|
|
|
page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
|
|
if (!page) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_new_dnode(&dn, dir, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, 0);
|
|
if (err)
|
|
goto out;
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
zero_user_segment(page, MAX_INLINE_DATA(dir), PAGE_SIZE);
|
|
|
|
dentry_blk = kmap_atomic(page);
|
|
|
|
make_dentry_ptr_inline(dir, &src, inline_dentry);
|
|
make_dentry_ptr_block(dir, &dst, dentry_blk);
|
|
|
|
/* copy data from inline dentry block to new dentry block */
|
|
memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
|
|
memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
|
|
/*
|
|
* we do not need to zero out remainder part of dentry and filename
|
|
* field, since we have used bitmap for marking the usage status of
|
|
* them, besides, we can also ignore copying/zeroing reserved space
|
|
* of dentry block, because them haven't been used so far.
|
|
*/
|
|
memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
|
|
memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
|
|
|
|
kunmap_atomic(dentry_blk);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
set_page_dirty(page);
|
|
|
|
/* clear inline dir and flag after data writeback */
|
|
truncate_inline_inode(dir, ipage, 0);
|
|
|
|
stat_dec_inline_dir(dir);
|
|
clear_inode_flag(dir, FI_INLINE_DENTRY);
|
|
|
|
f2fs_i_depth_write(dir, 1);
|
|
if (i_size_read(dir) < PAGE_SIZE)
|
|
f2fs_i_size_write(dir, PAGE_SIZE);
|
|
out:
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
|
|
{
|
|
struct f2fs_dentry_ptr d;
|
|
unsigned long bit_pos = 0;
|
|
int err = 0;
|
|
|
|
make_dentry_ptr_inline(dir, &d, inline_dentry);
|
|
|
|
while (bit_pos < d.max) {
|
|
struct f2fs_dir_entry *de;
|
|
struct qstr new_name;
|
|
nid_t ino;
|
|
umode_t fake_mode;
|
|
|
|
if (!test_bit_le(bit_pos, d.bitmap)) {
|
|
bit_pos++;
|
|
continue;
|
|
}
|
|
|
|
de = &d.dentry[bit_pos];
|
|
|
|
if (unlikely(!de->name_len)) {
|
|
bit_pos++;
|
|
continue;
|
|
}
|
|
|
|
new_name.name = d.filename[bit_pos];
|
|
new_name.len = le16_to_cpu(de->name_len);
|
|
|
|
ino = le32_to_cpu(de->ino);
|
|
fake_mode = get_de_type(de) << S_SHIFT;
|
|
|
|
err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
|
|
ino, fake_mode);
|
|
if (err)
|
|
goto punch_dentry_pages;
|
|
|
|
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
|
|
}
|
|
return 0;
|
|
punch_dentry_pages:
|
|
truncate_inode_pages(&dir->i_data, 0);
|
|
truncate_blocks(dir, 0, false);
|
|
remove_dirty_inode(dir);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
|
|
void *inline_dentry)
|
|
{
|
|
void *backup_dentry;
|
|
int err;
|
|
|
|
backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
|
|
MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
|
|
if (!backup_dentry) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
|
|
truncate_inline_inode(dir, ipage, 0);
|
|
|
|
unlock_page(ipage);
|
|
|
|
err = f2fs_add_inline_entries(dir, backup_dentry);
|
|
if (err)
|
|
goto recover;
|
|
|
|
lock_page(ipage);
|
|
|
|
stat_dec_inline_dir(dir);
|
|
clear_inode_flag(dir, FI_INLINE_DENTRY);
|
|
kfree(backup_dentry);
|
|
return 0;
|
|
recover:
|
|
lock_page(ipage);
|
|
memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
|
|
f2fs_i_depth_write(dir, 0);
|
|
f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
|
|
set_page_dirty(ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
|
|
kfree(backup_dentry);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
|
|
void *inline_dentry)
|
|
{
|
|
if (!F2FS_I(dir)->i_dir_level)
|
|
return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
|
|
else
|
|
return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
|
|
}
|
|
|
|
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
|
|
const struct qstr *orig_name,
|
|
struct inode *inode, nid_t ino, umode_t mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
unsigned int bit_pos;
|
|
f2fs_hash_t name_hash;
|
|
void *inline_dentry = NULL;
|
|
struct f2fs_dentry_ptr d;
|
|
int slots = GET_DENTRY_SLOTS(new_name->len);
|
|
struct page *page = NULL;
|
|
int err = 0;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
inline_dentry = inline_data_addr(dir, ipage);
|
|
make_dentry_ptr_inline(dir, &d, inline_dentry);
|
|
|
|
bit_pos = room_for_filename(d.bitmap, slots, d.max);
|
|
if (bit_pos >= d.max) {
|
|
err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
|
|
if (err)
|
|
return err;
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (inode) {
|
|
down_write(&F2FS_I(inode)->i_sem);
|
|
page = init_inode_metadata(inode, dir, new_name,
|
|
orig_name, ipage);
|
|
if (IS_ERR(page)) {
|
|
err = PTR_ERR(page);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE, true);
|
|
|
|
name_hash = f2fs_dentry_hash(new_name, NULL);
|
|
f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
|
|
|
|
set_page_dirty(ipage);
|
|
|
|
/* we don't need to mark_inode_dirty now */
|
|
if (inode) {
|
|
f2fs_i_pino_write(inode, dir->i_ino);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
update_parent_metadata(dir, inode, 0);
|
|
fail:
|
|
if (inode)
|
|
up_write(&F2FS_I(inode)->i_sem);
|
|
out:
|
|
f2fs_put_page(ipage, 1);
|
|
return err;
|
|
}
|
|
|
|
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
|
|
struct inode *dir, struct inode *inode)
|
|
{
|
|
struct f2fs_dentry_ptr d;
|
|
void *inline_dentry;
|
|
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
|
|
unsigned int bit_pos;
|
|
int i;
|
|
|
|
lock_page(page);
|
|
f2fs_wait_on_page_writeback(page, NODE, true);
|
|
|
|
inline_dentry = inline_data_addr(dir, page);
|
|
make_dentry_ptr_inline(dir, &d, inline_dentry);
|
|
|
|
bit_pos = dentry - d.dentry;
|
|
for (i = 0; i < slots; i++)
|
|
__clear_bit_le(bit_pos + i, d.bitmap);
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
dir->i_ctime = dir->i_mtime = current_time(dir);
|
|
f2fs_mark_inode_dirty_sync(dir, false);
|
|
|
|
if (inode)
|
|
f2fs_drop_nlink(dir, inode);
|
|
}
|
|
|
|
bool f2fs_empty_inline_dir(struct inode *dir)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
unsigned int bit_pos = 2;
|
|
void *inline_dentry;
|
|
struct f2fs_dentry_ptr d;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return false;
|
|
|
|
inline_dentry = inline_data_addr(dir, ipage);
|
|
make_dentry_ptr_inline(dir, &d, inline_dentry);
|
|
|
|
bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
|
|
|
|
f2fs_put_page(ipage, 1);
|
|
|
|
if (bit_pos < d.max)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
|
|
struct fscrypt_str *fstr)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct page *ipage = NULL;
|
|
struct f2fs_dentry_ptr d;
|
|
void *inline_dentry = NULL;
|
|
int err;
|
|
|
|
make_dentry_ptr_inline(inode, &d, inline_dentry);
|
|
|
|
if (ctx->pos == d.max)
|
|
return 0;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
inline_dentry = inline_data_addr(inode, ipage);
|
|
|
|
make_dentry_ptr_inline(inode, &d, inline_dentry);
|
|
|
|
err = f2fs_fill_dentries(ctx, &d, 0, fstr);
|
|
if (!err)
|
|
ctx->pos = d.max;
|
|
|
|
f2fs_put_page(ipage, 1);
|
|
return err < 0 ? err : 0;
|
|
}
|
|
|
|
int f2fs_inline_data_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
|
|
{
|
|
__u64 byteaddr, ilen;
|
|
__u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
|
|
FIEMAP_EXTENT_LAST;
|
|
struct node_info ni;
|
|
struct page *ipage;
|
|
int err = 0;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
|
|
if (start >= ilen)
|
|
goto out;
|
|
if (start + len < ilen)
|
|
ilen = start + len;
|
|
ilen -= start;
|
|
|
|
get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
|
|
byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
|
|
byteaddr += (char *)inline_data_addr(inode, ipage) -
|
|
(char *)F2FS_INODE(ipage);
|
|
err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
|
|
out:
|
|
f2fs_put_page(ipage, 1);
|
|
return err;
|
|
}
|