linux_dsm_epyc7002/drivers/media/dvb-frontends/cx22700.c
Mauro Carvalho Chehab 0df289a209 [media] dvb: Get rid of typedev usage for enums
The DVB API was originally defined using typedefs. This is against
Kernel CodingStyle, and there's no good usage here. While we can't
remove its usage on userspace, we can avoid its usage in Kernelspace.

So, let's do it.

This patch was generated by this shell script:

	for j in $(grep typedef include/uapi/linux/dvb/frontend.h |cut -d' ' -f 3); do for i in $(find drivers/media -name '*.[ch]' -type f) $(find drivers/staging/media -name '*.[ch]' -type f); do sed "s,${j}_t,enum $j," <$i >a && mv a $i; done; done

While here, make CodingStyle fixes on the affected lines.

Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
Acked-by: Stefan Richter <stefanr@s5r6.in-berlin.de> # for drivers/media/firewire/*
2015-06-09 17:47:35 -03:00

448 lines
11 KiB
C

/*
Conexant cx22700 DVB OFDM demodulator driver
Copyright (C) 2001-2002 Convergence Integrated Media GmbH
Holger Waechtler <holger@convergence.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "cx22700.h"
struct cx22700_state {
struct i2c_adapter* i2c;
const struct cx22700_config* config;
struct dvb_frontend frontend;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "cx22700: " args); \
} while (0)
static u8 init_tab [] = {
0x04, 0x10,
0x05, 0x09,
0x06, 0x00,
0x08, 0x04,
0x09, 0x00,
0x0a, 0x01,
0x15, 0x40,
0x16, 0x10,
0x17, 0x87,
0x18, 0x17,
0x1a, 0x10,
0x25, 0x04,
0x2e, 0x00,
0x39, 0x00,
0x3a, 0x04,
0x45, 0x08,
0x46, 0x02,
0x47, 0x05,
};
static int cx22700_writereg (struct cx22700_state* state, u8 reg, u8 data)
{
int ret;
u8 buf [] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
dprintk ("%s\n", __func__);
ret = i2c_transfer (state->i2c, &msg, 1);
if (ret != 1)
printk("%s: writereg error (reg == 0x%02x, val == 0x%02x, ret == %i)\n",
__func__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int cx22700_readreg (struct cx22700_state* state, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
dprintk ("%s\n", __func__);
ret = i2c_transfer (state->i2c, msg, 2);
if (ret != 2) return -EIO;
return b1[0];
}
static int cx22700_set_inversion (struct cx22700_state* state, int inversion)
{
u8 val;
dprintk ("%s\n", __func__);
switch (inversion) {
case INVERSION_AUTO:
return -EOPNOTSUPP;
case INVERSION_ON:
val = cx22700_readreg (state, 0x09);
return cx22700_writereg (state, 0x09, val | 0x01);
case INVERSION_OFF:
val = cx22700_readreg (state, 0x09);
return cx22700_writereg (state, 0x09, val & 0xfe);
default:
return -EINVAL;
}
}
static int cx22700_set_tps(struct cx22700_state *state,
struct dtv_frontend_properties *p)
{
static const u8 qam_tab [4] = { 0, 1, 0, 2 };
static const u8 fec_tab [6] = { 0, 1, 2, 0, 3, 4 };
u8 val;
dprintk ("%s\n", __func__);
if (p->code_rate_HP < FEC_1_2 || p->code_rate_HP > FEC_7_8)
return -EINVAL;
if (p->code_rate_LP < FEC_1_2 || p->code_rate_LP > FEC_7_8)
return -EINVAL;
if (p->code_rate_HP == FEC_4_5 || p->code_rate_LP == FEC_4_5)
return -EINVAL;
if ((int)p->guard_interval < GUARD_INTERVAL_1_32 ||
p->guard_interval > GUARD_INTERVAL_1_4)
return -EINVAL;
if (p->transmission_mode != TRANSMISSION_MODE_2K &&
p->transmission_mode != TRANSMISSION_MODE_8K)
return -EINVAL;
if (p->modulation != QPSK &&
p->modulation != QAM_16 &&
p->modulation != QAM_64)
return -EINVAL;
if ((int)p->hierarchy < HIERARCHY_NONE ||
p->hierarchy > HIERARCHY_4)
return -EINVAL;
if (p->bandwidth_hz > 8000000 || p->bandwidth_hz < 6000000)
return -EINVAL;
if (p->bandwidth_hz == 7000000)
cx22700_writereg (state, 0x09, cx22700_readreg (state, 0x09 | 0x10));
else
cx22700_writereg (state, 0x09, cx22700_readreg (state, 0x09 & ~0x10));
val = qam_tab[p->modulation - QPSK];
val |= p->hierarchy - HIERARCHY_NONE;
cx22700_writereg (state, 0x04, val);
if (p->code_rate_HP - FEC_1_2 >= sizeof(fec_tab) ||
p->code_rate_LP - FEC_1_2 >= sizeof(fec_tab))
return -EINVAL;
val = fec_tab[p->code_rate_HP - FEC_1_2] << 3;
val |= fec_tab[p->code_rate_LP - FEC_1_2];
cx22700_writereg (state, 0x05, val);
val = (p->guard_interval - GUARD_INTERVAL_1_32) << 2;
val |= p->transmission_mode - TRANSMISSION_MODE_2K;
cx22700_writereg (state, 0x06, val);
cx22700_writereg (state, 0x08, 0x04 | 0x02); /* use user tps parameters */
cx22700_writereg (state, 0x08, 0x04); /* restart acquisition */
return 0;
}
static int cx22700_get_tps(struct cx22700_state *state,
struct dtv_frontend_properties *p)
{
static const enum fe_modulation qam_tab[3] = { QPSK, QAM_16, QAM_64 };
static const enum fe_code_rate fec_tab[5] = {
FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8
};
u8 val;
dprintk ("%s\n", __func__);
if (!(cx22700_readreg(state, 0x07) & 0x20)) /* tps valid? */
return -EAGAIN;
val = cx22700_readreg (state, 0x01);
if ((val & 0x7) > 4)
p->hierarchy = HIERARCHY_AUTO;
else
p->hierarchy = HIERARCHY_NONE + (val & 0x7);
if (((val >> 3) & 0x3) > 2)
p->modulation = QAM_AUTO;
else
p->modulation = qam_tab[(val >> 3) & 0x3];
val = cx22700_readreg (state, 0x02);
if (((val >> 3) & 0x07) > 4)
p->code_rate_HP = FEC_AUTO;
else
p->code_rate_HP = fec_tab[(val >> 3) & 0x07];
if ((val & 0x07) > 4)
p->code_rate_LP = FEC_AUTO;
else
p->code_rate_LP = fec_tab[val & 0x07];
val = cx22700_readreg (state, 0x03);
p->guard_interval = GUARD_INTERVAL_1_32 + ((val >> 6) & 0x3);
p->transmission_mode = TRANSMISSION_MODE_2K + ((val >> 5) & 0x1);
return 0;
}
static int cx22700_init (struct dvb_frontend* fe)
{ struct cx22700_state* state = fe->demodulator_priv;
int i;
dprintk("cx22700_init: init chip\n");
cx22700_writereg (state, 0x00, 0x02); /* soft reset */
cx22700_writereg (state, 0x00, 0x00);
msleep(10);
for (i=0; i<sizeof(init_tab); i+=2)
cx22700_writereg (state, init_tab[i], init_tab[i+1]);
cx22700_writereg (state, 0x00, 0x01);
return 0;
}
static int cx22700_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct cx22700_state* state = fe->demodulator_priv;
u16 rs_ber = (cx22700_readreg (state, 0x0d) << 9)
| (cx22700_readreg (state, 0x0e) << 1);
u8 sync = cx22700_readreg (state, 0x07);
*status = 0;
if (rs_ber < 0xff00)
*status |= FE_HAS_SIGNAL;
if (sync & 0x20)
*status |= FE_HAS_CARRIER;
if (sync & 0x10)
*status |= FE_HAS_VITERBI;
if (sync & 0x10)
*status |= FE_HAS_SYNC;
if (*status == 0x0f)
*status |= FE_HAS_LOCK;
return 0;
}
static int cx22700_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct cx22700_state* state = fe->demodulator_priv;
*ber = cx22700_readreg (state, 0x0c) & 0x7f;
cx22700_writereg (state, 0x0c, 0x00);
return 0;
}
static int cx22700_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
struct cx22700_state* state = fe->demodulator_priv;
u16 rs_ber = (cx22700_readreg (state, 0x0d) << 9)
| (cx22700_readreg (state, 0x0e) << 1);
*signal_strength = ~rs_ber;
return 0;
}
static int cx22700_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct cx22700_state* state = fe->demodulator_priv;
u16 rs_ber = (cx22700_readreg (state, 0x0d) << 9)
| (cx22700_readreg (state, 0x0e) << 1);
*snr = ~rs_ber;
return 0;
}
static int cx22700_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct cx22700_state* state = fe->demodulator_priv;
*ucblocks = cx22700_readreg (state, 0x0f);
cx22700_writereg (state, 0x0f, 0x00);
return 0;
}
static int cx22700_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct cx22700_state* state = fe->demodulator_priv;
cx22700_writereg (state, 0x00, 0x02); /* XXX CHECKME: soft reset*/
cx22700_writereg (state, 0x00, 0x00);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
cx22700_set_inversion(state, c->inversion);
cx22700_set_tps(state, c);
cx22700_writereg (state, 0x37, 0x01); /* PAL loop filter off */
cx22700_writereg (state, 0x00, 0x01); /* restart acquire */
return 0;
}
static int cx22700_get_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct cx22700_state* state = fe->demodulator_priv;
u8 reg09 = cx22700_readreg (state, 0x09);
c->inversion = reg09 & 0x1 ? INVERSION_ON : INVERSION_OFF;
return cx22700_get_tps(state, c);
}
static int cx22700_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct cx22700_state* state = fe->demodulator_priv;
if (enable) {
return cx22700_writereg(state, 0x0a, 0x00);
} else {
return cx22700_writereg(state, 0x0a, 0x01);
}
}
static int cx22700_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 150;
fesettings->step_size = 166667;
fesettings->max_drift = 166667*2;
return 0;
}
static void cx22700_release(struct dvb_frontend* fe)
{
struct cx22700_state* state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops cx22700_ops;
struct dvb_frontend* cx22700_attach(const struct cx22700_config* config,
struct i2c_adapter* i2c)
{
struct cx22700_state* state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct cx22700_state), GFP_KERNEL);
if (state == NULL) goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
/* check if the demod is there */
if (cx22700_readreg(state, 0x07) < 0) goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &cx22700_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops cx22700_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Conexant CX22700 DVB-T",
.frequency_min = 470000000,
.frequency_max = 860000000,
.frequency_stepsize = 166667,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
FE_CAN_RECOVER
},
.release = cx22700_release,
.init = cx22700_init,
.i2c_gate_ctrl = cx22700_i2c_gate_ctrl,
.set_frontend = cx22700_set_frontend,
.get_frontend = cx22700_get_frontend,
.get_tune_settings = cx22700_get_tune_settings,
.read_status = cx22700_read_status,
.read_ber = cx22700_read_ber,
.read_signal_strength = cx22700_read_signal_strength,
.read_snr = cx22700_read_snr,
.read_ucblocks = cx22700_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Conexant CX22700 DVB-T Demodulator driver");
MODULE_AUTHOR("Holger Waechtler");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(cx22700_attach);