linux_dsm_epyc7002/drivers/gpu/drm/gma500/gma_display.c
Paul Kocialkowski f76c22ce8f drm/gma500: Add page flip support on psb/cdv
Legacy (non-atomic) page flip support is added to the driver by using the
mode_set_base CRTC function, that allows configuring a new framebuffer for
display. Since the function requires the primary plane's fb to be set
already, this is done prior to calling the function in the page flip helper
and reverted if the flip fails.

The vblank interrupt handler is also refactored to support passing an event.
The PIPE_TE_STATUS bit is also considered to indicate vblank on medfield
only, as explained in psb_enable_vblank.

It was tested by running weston on both poulsbo and cedartrail.

Signed-off-by: Paul Kocialkowski <paul.kocialkowski@bootlin.com>
Reviewed-by: Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
Signed-off-by: Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191106094400.445834-3-paul.kocialkowski@bootlin.com
2019-11-07 10:16:31 +01:00

809 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2006-2011 Intel Corporation
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <drm/drm_crtc.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_vblank.h>
#include "framebuffer.h"
#include "gma_display.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *l_entry;
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
struct gma_encoder *gma_encoder =
gma_attached_encoder(l_entry);
if (gma_encoder->type == type)
return true;
}
}
return false;
}
void gma_wait_for_vblank(struct drm_device *dev)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
mdelay(20);
}
int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct drm_framebuffer *fb = crtc->primary->fb;
struct gtt_range *gtt;
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
unsigned long start, offset;
u32 dspcntr;
int ret = 0;
if (!gma_power_begin(dev, true))
return 0;
/* no fb bound */
if (!fb) {
dev_err(dev->dev, "No FB bound\n");
goto gma_pipe_cleaner;
}
gtt = to_gtt_range(fb->obj[0]);
/* We are displaying this buffer, make sure it is actually loaded
into the GTT */
ret = psb_gtt_pin(gtt);
if (ret < 0)
goto gma_pipe_set_base_exit;
start = gtt->offset;
offset = y * fb->pitches[0] + x * fb->format->cpp[0];
REG_WRITE(map->stride, fb->pitches[0]);
dspcntr = REG_READ(map->cntr);
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->format->cpp[0] * 8) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->format->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
dev_err(dev->dev, "Unknown color depth\n");
ret = -EINVAL;
goto gma_pipe_set_base_exit;
}
REG_WRITE(map->cntr, dspcntr);
dev_dbg(dev->dev,
"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
/* FIXME: Investigate whether this really is the base for psb and why
the linear offset is named base for the other chips. map->surf
should be the base and map->linoff the offset for all chips */
if (IS_PSB(dev)) {
REG_WRITE(map->base, offset + start);
REG_READ(map->base);
} else {
REG_WRITE(map->base, offset);
REG_READ(map->base);
REG_WRITE(map->surf, start);
REG_READ(map->surf);
}
gma_pipe_cleaner:
/* If there was a previous display we can now unpin it */
if (old_fb)
psb_gtt_unpin(to_gtt_range(old_fb->obj[0]));
gma_pipe_set_base_exit:
gma_power_end(dev);
return ret;
}
/* Loads the palette/gamma unit for the CRTC with the prepared values */
void gma_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
int palreg = map->palette;
u16 *r, *g, *b;
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
r = crtc->gamma_store;
g = r + crtc->gamma_size;
b = g + crtc->gamma_size;
if (gma_power_begin(dev, false)) {
for (i = 0; i < 256; i++) {
REG_WRITE(palreg + 4 * i,
(((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
(((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
((*b++ >> 8) + gma_crtc->lut_adj[i]));
}
gma_power_end(dev);
} else {
for (i = 0; i < 256; i++) {
/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
dev_priv->regs.pipe[0].palette[i] =
(((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
(((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
((*b++ >> 8) + gma_crtc->lut_adj[i]);
}
}
}
int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
u32 size,
struct drm_modeset_acquire_ctx *ctx)
{
gma_crtc_load_lut(crtc);
return 0;
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
u32 temp;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
if (IS_CDV(dev))
dev_priv->ops->disable_sr(dev);
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
if (gma_crtc->active)
break;
gma_crtc->active = true;
/* Enable the DPLL */
temp = REG_READ(map->dpll);
if ((temp & DPLL_VCO_ENABLE) == 0) {
REG_WRITE(map->dpll, temp);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
REG_WRITE(map->cntr,
temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
}
udelay(150);
/* Enable the pipe */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) == 0)
REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
temp = REG_READ(map->status);
temp &= ~(0xFFFF);
temp |= PIPE_FIFO_UNDERRUN;
REG_WRITE(map->status, temp);
REG_READ(map->status);
gma_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable
* if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, true); TODO */
drm_crtc_vblank_on(crtc);
break;
case DRM_MODE_DPMS_OFF:
if (!gma_crtc->active)
break;
gma_crtc->active = false;
/* Give the overlay scaler a chance to disable
* if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
/* Disable the VGA plane that we never use */
REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Turn off vblank interrupts */
drm_crtc_vblank_off(crtc);
/* Wait for vblank for the disable to take effect */
gma_wait_for_vblank(dev);
/* Disable plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
REG_WRITE(map->cntr,
temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
REG_READ(map->base);
}
/* Disable pipe */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) != 0) {
REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
REG_READ(map->conf);
}
/* Wait for vblank for the disable to take effect. */
gma_wait_for_vblank(dev);
udelay(150);
/* Disable DPLL */
temp = REG_READ(map->dpll);
if ((temp & DPLL_VCO_ENABLE) != 0) {
REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
REG_READ(map->dpll);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
if (IS_CDV(dev))
dev_priv->ops->update_wm(dev, crtc);
/* Set FIFO watermarks */
REG_WRITE(DSPARB, 0x3F3E);
}
int gma_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
uint32_t temp;
size_t addr = 0;
struct gtt_range *gt;
struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
struct drm_gem_object *obj;
void *tmp_dst, *tmp_src;
int ret = 0, i, cursor_pages;
/* If we didn't get a handle then turn the cursor off */
if (!handle) {
temp = CURSOR_MODE_DISABLE;
if (gma_power_begin(dev, false)) {
REG_WRITE(control, temp);
REG_WRITE(base, 0);
gma_power_end(dev);
}
/* Unpin the old GEM object */
if (gma_crtc->cursor_obj) {
gt = container_of(gma_crtc->cursor_obj,
struct gtt_range, gem);
psb_gtt_unpin(gt);
drm_gem_object_put_unlocked(gma_crtc->cursor_obj);
gma_crtc->cursor_obj = NULL;
}
return 0;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
return -EINVAL;
}
obj = drm_gem_object_lookup(file_priv, handle);
if (!obj) {
ret = -ENOENT;
goto unlock;
}
if (obj->size < width * height * 4) {
dev_dbg(dev->dev, "Buffer is too small\n");
ret = -ENOMEM;
goto unref_cursor;
}
gt = container_of(obj, struct gtt_range, gem);
/* Pin the memory into the GTT */
ret = psb_gtt_pin(gt);
if (ret) {
dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
goto unref_cursor;
}
if (dev_priv->ops->cursor_needs_phys) {
if (cursor_gt == NULL) {
dev_err(dev->dev, "No hardware cursor mem available");
ret = -ENOMEM;
goto unref_cursor;
}
/* Prevent overflow */
if (gt->npage > 4)
cursor_pages = 4;
else
cursor_pages = gt->npage;
/* Copy the cursor to cursor mem */
tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
for (i = 0; i < cursor_pages; i++) {
tmp_src = kmap(gt->pages[i]);
memcpy(tmp_dst, tmp_src, PAGE_SIZE);
kunmap(gt->pages[i]);
tmp_dst += PAGE_SIZE;
}
addr = gma_crtc->cursor_addr;
} else {
addr = gt->offset;
gma_crtc->cursor_addr = addr;
}
temp = 0;
/* set the pipe for the cursor */
temp |= (pipe << 28);
temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
if (gma_power_begin(dev, false)) {
REG_WRITE(control, temp);
REG_WRITE(base, addr);
gma_power_end(dev);
}
/* unpin the old bo */
if (gma_crtc->cursor_obj) {
gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
psb_gtt_unpin(gt);
drm_gem_object_put_unlocked(gma_crtc->cursor_obj);
}
gma_crtc->cursor_obj = obj;
unlock:
return ret;
unref_cursor:
drm_gem_object_put_unlocked(obj);
return ret;
}
int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
uint32_t temp = 0;
uint32_t addr;
if (x < 0) {
temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
x = -x;
}
if (y < 0) {
temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
y = -y;
}
temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
addr = gma_crtc->cursor_addr;
if (gma_power_begin(dev, false)) {
REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
gma_power_end(dev);
}
return 0;
}
void gma_crtc_prepare(struct drm_crtc *crtc)
{
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
void gma_crtc_commit(struct drm_crtc *crtc)
{
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
void gma_crtc_disable(struct drm_crtc *crtc)
{
struct gtt_range *gt;
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
if (crtc->primary->fb) {
gt = to_gtt_range(crtc->primary->fb->obj[0]);
psb_gtt_unpin(gt);
}
}
void gma_crtc_destroy(struct drm_crtc *crtc)
{
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
kfree(gma_crtc->crtc_state);
drm_crtc_cleanup(crtc);
kfree(gma_crtc);
}
int gma_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t page_flip_flags,
struct drm_modeset_acquire_ctx *ctx)
{
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct drm_framebuffer *current_fb = crtc->primary->fb;
struct drm_framebuffer *old_fb = crtc->primary->old_fb;
const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
struct drm_device *dev = crtc->dev;
unsigned long flags;
int ret;
if (!crtc_funcs->mode_set_base)
return -EINVAL;
/* Using mode_set_base requires the new fb to be set already. */
crtc->primary->fb = fb;
if (event) {
spin_lock_irqsave(&dev->event_lock, flags);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
gma_crtc->page_flip_event = event;
/* Call this locked if we want an event at vblank interrupt. */
ret = crtc_funcs->mode_set_base(crtc, crtc->x, crtc->y, old_fb);
if (ret) {
gma_crtc->page_flip_event = NULL;
drm_crtc_vblank_put(crtc);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
} else {
ret = crtc_funcs->mode_set_base(crtc, crtc->x, crtc->y, old_fb);
}
/* Restore previous fb in case of failure. */
if (ret)
crtc->primary->fb = current_fb;
return ret;
}
int gma_crtc_set_config(struct drm_mode_set *set,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *dev = set->crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
int ret;
if (!dev_priv->rpm_enabled)
return drm_crtc_helper_set_config(set, ctx);
pm_runtime_forbid(&dev->pdev->dev);
ret = drm_crtc_helper_set_config(set, ctx);
pm_runtime_allow(&dev->pdev->dev);
return ret;
}
/**
* Save HW states of given crtc
*/
void gma_crtc_save(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
uint32_t palette_reg;
int i;
if (!crtc_state) {
dev_err(dev->dev, "No CRTC state found\n");
return;
}
crtc_state->saveDSPCNTR = REG_READ(map->cntr);
crtc_state->savePIPECONF = REG_READ(map->conf);
crtc_state->savePIPESRC = REG_READ(map->src);
crtc_state->saveFP0 = REG_READ(map->fp0);
crtc_state->saveFP1 = REG_READ(map->fp1);
crtc_state->saveDPLL = REG_READ(map->dpll);
crtc_state->saveHTOTAL = REG_READ(map->htotal);
crtc_state->saveHBLANK = REG_READ(map->hblank);
crtc_state->saveHSYNC = REG_READ(map->hsync);
crtc_state->saveVTOTAL = REG_READ(map->vtotal);
crtc_state->saveVBLANK = REG_READ(map->vblank);
crtc_state->saveVSYNC = REG_READ(map->vsync);
crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
/* NOTE: DSPSIZE DSPPOS only for psb */
crtc_state->saveDSPSIZE = REG_READ(map->size);
crtc_state->saveDSPPOS = REG_READ(map->pos);
crtc_state->saveDSPBASE = REG_READ(map->base);
palette_reg = map->palette;
for (i = 0; i < 256; ++i)
crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
}
/**
* Restore HW states of given crtc
*/
void gma_crtc_restore(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
uint32_t palette_reg;
int i;
if (!crtc_state) {
dev_err(dev->dev, "No crtc state\n");
return;
}
if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
REG_WRITE(map->dpll,
crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
REG_READ(map->dpll);
udelay(150);
}
REG_WRITE(map->fp0, crtc_state->saveFP0);
REG_READ(map->fp0);
REG_WRITE(map->fp1, crtc_state->saveFP1);
REG_READ(map->fp1);
REG_WRITE(map->dpll, crtc_state->saveDPLL);
REG_READ(map->dpll);
udelay(150);
REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
REG_WRITE(map->hblank, crtc_state->saveHBLANK);
REG_WRITE(map->hsync, crtc_state->saveHSYNC);
REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
REG_WRITE(map->vblank, crtc_state->saveVBLANK);
REG_WRITE(map->vsync, crtc_state->saveVSYNC);
REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
REG_WRITE(map->size, crtc_state->saveDSPSIZE);
REG_WRITE(map->pos, crtc_state->saveDSPPOS);
REG_WRITE(map->src, crtc_state->savePIPESRC);
REG_WRITE(map->base, crtc_state->saveDSPBASE);
REG_WRITE(map->conf, crtc_state->savePIPECONF);
gma_wait_for_vblank(dev);
REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
REG_WRITE(map->base, crtc_state->saveDSPBASE);
gma_wait_for_vblank(dev);
palette_reg = map->palette;
for (i = 0; i < 256; ++i)
REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
}
void gma_encoder_prepare(struct drm_encoder *encoder)
{
const struct drm_encoder_helper_funcs *encoder_funcs =
encoder->helper_private;
/* lvds has its own version of prepare see psb_intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void gma_encoder_commit(struct drm_encoder *encoder)
{
const struct drm_encoder_helper_funcs *encoder_funcs =
encoder->helper_private;
/* lvds has its own version of commit see psb_intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
void gma_encoder_destroy(struct drm_encoder *encoder)
{
struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
/* Currently there is only a 1:1 mapping of encoders and connectors */
struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
{
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
return &gma_encoder->base;
}
void gma_connector_attach_encoder(struct gma_connector *connector,
struct gma_encoder *encoder)
{
connector->encoder = encoder;
drm_connector_attach_encoder(&connector->base,
&encoder->base);
}
#define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
bool gma_pll_is_valid(struct drm_crtc *crtc,
const struct gma_limit_t *limit,
struct gma_clock_t *clock)
{
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
GMA_PLL_INVALID("p1 out of range");
if (clock->p < limit->p.min || limit->p.max < clock->p)
GMA_PLL_INVALID("p out of range");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
GMA_PLL_INVALID("m2 out of range");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
GMA_PLL_INVALID("m1 out of range");
/* On CDV m1 is always 0 */
if (clock->m1 <= clock->m2 && clock->m1 != 0)
GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
if (clock->m < limit->m.min || limit->m.max < clock->m)
GMA_PLL_INVALID("m out of range");
if (clock->n < limit->n.min || limit->n.max < clock->n)
GMA_PLL_INVALID("n out of range");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
GMA_PLL_INVALID("vco out of range");
/* XXX: We may need to be checking "Dot clock"
* depending on the multiplier, connector, etc.,
* rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
GMA_PLL_INVALID("dot out of range");
return true;
}
bool gma_find_best_pll(const struct gma_limit_t *limit,
struct drm_crtc *crtc, int target, int refclk,
struct gma_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
const struct gma_clock_funcs *clock_funcs =
to_gma_crtc(crtc)->clock_funcs;
struct gma_clock_t clock;
int err = target;
if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
/* m1 is always 0 on CDV so the outmost loop will run just once */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
for (clock.m2 = limit->m2.min;
(clock.m2 < clock.m1 || clock.m1 == 0) &&
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max;
clock.p1++) {
int this_err;
clock_funcs->clock(refclk, &clock);
if (!clock_funcs->pll_is_valid(crtc,
limit, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return err != target;
}