linux_dsm_epyc7002/security/selinux/ss/hashtab.c
Stephen Smalley aa8e712cee selinux: wrap global selinux state
Define a selinux state structure (struct selinux_state) for
global SELinux state and pass it explicitly to all security server
functions.  The public portion of the structure contains state
that is used throughout the SELinux code, such as the enforcing mode.
The structure also contains a pointer to a selinux_ss structure whose
definition is private to the security server and contains security
server specific state such as the policy database and SID table.

This change should have no effect on SELinux behavior or APIs
(userspace or LSM).  It merely wraps SELinux state and passes it
explicitly as needed.

Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
[PM: minor fixups needed due to collisions with the SCTP patches]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2018-03-01 18:48:02 -05:00

179 lines
3.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of the hash table type.
*
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include "hashtab.h"
static struct kmem_cache *hashtab_node_cachep;
struct hashtab *hashtab_create(u32 (*hash_value)(struct hashtab *h, const void *key),
int (*keycmp)(struct hashtab *h, const void *key1, const void *key2),
u32 size)
{
struct hashtab *p;
u32 i;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return p;
p->size = size;
p->nel = 0;
p->hash_value = hash_value;
p->keycmp = keycmp;
p->htable = kmalloc_array(size, sizeof(*p->htable), GFP_KERNEL);
if (!p->htable) {
kfree(p);
return NULL;
}
for (i = 0; i < size; i++)
p->htable[i] = NULL;
return p;
}
int hashtab_insert(struct hashtab *h, void *key, void *datum)
{
u32 hvalue;
struct hashtab_node *prev, *cur, *newnode;
cond_resched();
if (!h || h->nel == HASHTAB_MAX_NODES)
return -EINVAL;
hvalue = h->hash_value(h, key);
prev = NULL;
cur = h->htable[hvalue];
while (cur && h->keycmp(h, key, cur->key) > 0) {
prev = cur;
cur = cur->next;
}
if (cur && (h->keycmp(h, key, cur->key) == 0))
return -EEXIST;
newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
if (!newnode)
return -ENOMEM;
newnode->key = key;
newnode->datum = datum;
if (prev) {
newnode->next = prev->next;
prev->next = newnode;
} else {
newnode->next = h->htable[hvalue];
h->htable[hvalue] = newnode;
}
h->nel++;
return 0;
}
void *hashtab_search(struct hashtab *h, const void *key)
{
u32 hvalue;
struct hashtab_node *cur;
if (!h)
return NULL;
hvalue = h->hash_value(h, key);
cur = h->htable[hvalue];
while (cur && h->keycmp(h, key, cur->key) > 0)
cur = cur->next;
if (!cur || (h->keycmp(h, key, cur->key) != 0))
return NULL;
return cur->datum;
}
void hashtab_destroy(struct hashtab *h)
{
u32 i;
struct hashtab_node *cur, *temp;
if (!h)
return;
for (i = 0; i < h->size; i++) {
cur = h->htable[i];
while (cur) {
temp = cur;
cur = cur->next;
kmem_cache_free(hashtab_node_cachep, temp);
}
h->htable[i] = NULL;
}
kfree(h->htable);
h->htable = NULL;
kfree(h);
}
int hashtab_map(struct hashtab *h,
int (*apply)(void *k, void *d, void *args),
void *args)
{
u32 i;
int ret;
struct hashtab_node *cur;
if (!h)
return 0;
for (i = 0; i < h->size; i++) {
cur = h->htable[i];
while (cur) {
ret = apply(cur->key, cur->datum, args);
if (ret)
return ret;
cur = cur->next;
}
}
return 0;
}
void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
{
u32 i, chain_len, slots_used, max_chain_len;
struct hashtab_node *cur;
slots_used = 0;
max_chain_len = 0;
for (i = 0; i < h->size; i++) {
cur = h->htable[i];
if (cur) {
slots_used++;
chain_len = 0;
while (cur) {
chain_len++;
cur = cur->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
}
}
info->slots_used = slots_used;
info->max_chain_len = max_chain_len;
}
void __init hashtab_cache_init(void)
{
hashtab_node_cachep = kmem_cache_create("hashtab_node",
sizeof(struct hashtab_node),
0, SLAB_PANIC, NULL);
}