linux_dsm_epyc7002/include/linux/netdevice.h
Joseph Gasparakis 35e4237973 vxlan: Fix sparse warnings
This patch fixes sparse warnings when incorrectly handling the port number
and using int instead of unsigned int iterating through &vn->sock_list[].
Keeping the port as __be16 also makes things clearer wrt endianess.
Also, it was pointed out that vxlan_get_rx_port() had unnecessary checks
which got removed.

Signed-off-by: Joseph Gasparakis <joseph.gasparakis@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-15 22:18:13 -04:00

3122 lines
95 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the Interfaces handler.
*
* Version: @(#)dev.h 1.0.10 08/12/93
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
* Alan Cox, <alan@lxorguk.ukuu.org.uk>
* Bjorn Ekwall. <bj0rn@blox.se>
* Pekka Riikonen <priikone@poseidon.pspt.fi>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Moved to /usr/include/linux for NET3
*/
#ifndef _LINUX_NETDEVICE_H
#define _LINUX_NETDEVICE_H
#include <linux/pm_qos.h>
#include <linux/timer.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <asm/cache.h>
#include <asm/byteorder.h>
#include <linux/percpu.h>
#include <linux/rculist.h>
#include <linux/dmaengine.h>
#include <linux/workqueue.h>
#include <linux/dynamic_queue_limits.h>
#include <linux/ethtool.h>
#include <net/net_namespace.h>
#include <net/dsa.h>
#ifdef CONFIG_DCB
#include <net/dcbnl.h>
#endif
#include <net/netprio_cgroup.h>
#include <linux/netdev_features.h>
#include <linux/neighbour.h>
#include <uapi/linux/netdevice.h>
struct netpoll_info;
struct device;
struct phy_device;
/* 802.11 specific */
struct wireless_dev;
/* source back-compat hooks */
#define SET_ETHTOOL_OPS(netdev,ops) \
( (netdev)->ethtool_ops = (ops) )
extern void netdev_set_default_ethtool_ops(struct net_device *dev,
const struct ethtool_ops *ops);
/* hardware address assignment types */
#define NET_ADDR_PERM 0 /* address is permanent (default) */
#define NET_ADDR_RANDOM 1 /* address is generated randomly */
#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
#define NET_ADDR_SET 3 /* address is set using
* dev_set_mac_address() */
/* Backlog congestion levels */
#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
#define NET_RX_DROP 1 /* packet dropped */
/*
* Transmit return codes: transmit return codes originate from three different
* namespaces:
*
* - qdisc return codes
* - driver transmit return codes
* - errno values
*
* Drivers are allowed to return any one of those in their hard_start_xmit()
* function. Real network devices commonly used with qdiscs should only return
* the driver transmit return codes though - when qdiscs are used, the actual
* transmission happens asynchronously, so the value is not propagated to
* higher layers. Virtual network devices transmit synchronously, in this case
* the driver transmit return codes are consumed by dev_queue_xmit(), all
* others are propagated to higher layers.
*/
/* qdisc ->enqueue() return codes. */
#define NET_XMIT_SUCCESS 0x00
#define NET_XMIT_DROP 0x01 /* skb dropped */
#define NET_XMIT_CN 0x02 /* congestion notification */
#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
* indicates that the device will soon be dropping packets, or already drops
* some packets of the same priority; prompting us to send less aggressively. */
#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
/* Driver transmit return codes */
#define NETDEV_TX_MASK 0xf0
enum netdev_tx {
__NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
NETDEV_TX_OK = 0x00, /* driver took care of packet */
NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
};
typedef enum netdev_tx netdev_tx_t;
/*
* Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
* hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
*/
static inline bool dev_xmit_complete(int rc)
{
/*
* Positive cases with an skb consumed by a driver:
* - successful transmission (rc == NETDEV_TX_OK)
* - error while transmitting (rc < 0)
* - error while queueing to a different device (rc & NET_XMIT_MASK)
*/
if (likely(rc < NET_XMIT_MASK))
return true;
return false;
}
/*
* Compute the worst case header length according to the protocols
* used.
*/
#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
# if defined(CONFIG_MAC80211_MESH)
# define LL_MAX_HEADER 128
# else
# define LL_MAX_HEADER 96
# endif
#else
# define LL_MAX_HEADER 32
#endif
#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
!IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
#define MAX_HEADER LL_MAX_HEADER
#else
#define MAX_HEADER (LL_MAX_HEADER + 48)
#endif
/*
* Old network device statistics. Fields are native words
* (unsigned long) so they can be read and written atomically.
*/
struct net_device_stats {
unsigned long rx_packets;
unsigned long tx_packets;
unsigned long rx_bytes;
unsigned long tx_bytes;
unsigned long rx_errors;
unsigned long tx_errors;
unsigned long rx_dropped;
unsigned long tx_dropped;
unsigned long multicast;
unsigned long collisions;
unsigned long rx_length_errors;
unsigned long rx_over_errors;
unsigned long rx_crc_errors;
unsigned long rx_frame_errors;
unsigned long rx_fifo_errors;
unsigned long rx_missed_errors;
unsigned long tx_aborted_errors;
unsigned long tx_carrier_errors;
unsigned long tx_fifo_errors;
unsigned long tx_heartbeat_errors;
unsigned long tx_window_errors;
unsigned long rx_compressed;
unsigned long tx_compressed;
};
#include <linux/cache.h>
#include <linux/skbuff.h>
#ifdef CONFIG_RPS
#include <linux/static_key.h>
extern struct static_key rps_needed;
#endif
struct neighbour;
struct neigh_parms;
struct sk_buff;
struct netdev_hw_addr {
struct list_head list;
unsigned char addr[MAX_ADDR_LEN];
unsigned char type;
#define NETDEV_HW_ADDR_T_LAN 1
#define NETDEV_HW_ADDR_T_SAN 2
#define NETDEV_HW_ADDR_T_SLAVE 3
#define NETDEV_HW_ADDR_T_UNICAST 4
#define NETDEV_HW_ADDR_T_MULTICAST 5
bool global_use;
int sync_cnt;
int refcount;
int synced;
struct rcu_head rcu_head;
};
struct netdev_hw_addr_list {
struct list_head list;
int count;
};
#define netdev_hw_addr_list_count(l) ((l)->count)
#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
#define netdev_hw_addr_list_for_each(ha, l) \
list_for_each_entry(ha, &(l)->list, list)
#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
#define netdev_for_each_uc_addr(ha, dev) \
netdev_hw_addr_list_for_each(ha, &(dev)->uc)
#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
#define netdev_for_each_mc_addr(ha, dev) \
netdev_hw_addr_list_for_each(ha, &(dev)->mc)
struct hh_cache {
u16 hh_len;
u16 __pad;
seqlock_t hh_lock;
/* cached hardware header; allow for machine alignment needs. */
#define HH_DATA_MOD 16
#define HH_DATA_OFF(__len) \
(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
#define HH_DATA_ALIGN(__len) \
(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
};
/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
* Alternative is:
* dev->hard_header_len ? (dev->hard_header_len +
* (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
*
* We could use other alignment values, but we must maintain the
* relationship HH alignment <= LL alignment.
*/
#define LL_RESERVED_SPACE(dev) \
((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
struct header_ops {
int (*create) (struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned int len);
int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
int (*rebuild)(struct sk_buff *skb);
int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
void (*cache_update)(struct hh_cache *hh,
const struct net_device *dev,
const unsigned char *haddr);
};
/* These flag bits are private to the generic network queueing
* layer, they may not be explicitly referenced by any other
* code.
*/
enum netdev_state_t {
__LINK_STATE_START,
__LINK_STATE_PRESENT,
__LINK_STATE_NOCARRIER,
__LINK_STATE_LINKWATCH_PENDING,
__LINK_STATE_DORMANT,
};
/*
* This structure holds at boot time configured netdevice settings. They
* are then used in the device probing.
*/
struct netdev_boot_setup {
char name[IFNAMSIZ];
struct ifmap map;
};
#define NETDEV_BOOT_SETUP_MAX 8
extern int __init netdev_boot_setup(char *str);
/*
* Structure for NAPI scheduling similar to tasklet but with weighting
*/
struct napi_struct {
/* The poll_list must only be managed by the entity which
* changes the state of the NAPI_STATE_SCHED bit. This means
* whoever atomically sets that bit can add this napi_struct
* to the per-cpu poll_list, and whoever clears that bit
* can remove from the list right before clearing the bit.
*/
struct list_head poll_list;
unsigned long state;
int weight;
unsigned int gro_count;
int (*poll)(struct napi_struct *, int);
#ifdef CONFIG_NETPOLL
spinlock_t poll_lock;
int poll_owner;
#endif
struct net_device *dev;
struct sk_buff *gro_list;
struct sk_buff *skb;
struct list_head dev_list;
struct hlist_node napi_hash_node;
unsigned int napi_id;
};
enum {
NAPI_STATE_SCHED, /* Poll is scheduled */
NAPI_STATE_DISABLE, /* Disable pending */
NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
NAPI_STATE_HASHED, /* In NAPI hash */
};
enum gro_result {
GRO_MERGED,
GRO_MERGED_FREE,
GRO_HELD,
GRO_NORMAL,
GRO_DROP,
};
typedef enum gro_result gro_result_t;
/*
* enum rx_handler_result - Possible return values for rx_handlers.
* @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
* further.
* @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
* case skb->dev was changed by rx_handler.
* @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
* @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
*
* rx_handlers are functions called from inside __netif_receive_skb(), to do
* special processing of the skb, prior to delivery to protocol handlers.
*
* Currently, a net_device can only have a single rx_handler registered. Trying
* to register a second rx_handler will return -EBUSY.
*
* To register a rx_handler on a net_device, use netdev_rx_handler_register().
* To unregister a rx_handler on a net_device, use
* netdev_rx_handler_unregister().
*
* Upon return, rx_handler is expected to tell __netif_receive_skb() what to
* do with the skb.
*
* If the rx_handler consumed to skb in some way, it should return
* RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
* the skb to be delivered in some other ways.
*
* If the rx_handler changed skb->dev, to divert the skb to another
* net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
* new device will be called if it exists.
*
* If the rx_handler consider the skb should be ignored, it should return
* RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
* are registered on exact device (ptype->dev == skb->dev).
*
* If the rx_handler didn't changed skb->dev, but want the skb to be normally
* delivered, it should return RX_HANDLER_PASS.
*
* A device without a registered rx_handler will behave as if rx_handler
* returned RX_HANDLER_PASS.
*/
enum rx_handler_result {
RX_HANDLER_CONSUMED,
RX_HANDLER_ANOTHER,
RX_HANDLER_EXACT,
RX_HANDLER_PASS,
};
typedef enum rx_handler_result rx_handler_result_t;
typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
extern void __napi_schedule(struct napi_struct *n);
static inline bool napi_disable_pending(struct napi_struct *n)
{
return test_bit(NAPI_STATE_DISABLE, &n->state);
}
/**
* napi_schedule_prep - check if napi can be scheduled
* @n: napi context
*
* Test if NAPI routine is already running, and if not mark
* it as running. This is used as a condition variable
* insure only one NAPI poll instance runs. We also make
* sure there is no pending NAPI disable.
*/
static inline bool napi_schedule_prep(struct napi_struct *n)
{
return !napi_disable_pending(n) &&
!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
}
/**
* napi_schedule - schedule NAPI poll
* @n: napi context
*
* Schedule NAPI poll routine to be called if it is not already
* running.
*/
static inline void napi_schedule(struct napi_struct *n)
{
if (napi_schedule_prep(n))
__napi_schedule(n);
}
/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
static inline bool napi_reschedule(struct napi_struct *napi)
{
if (napi_schedule_prep(napi)) {
__napi_schedule(napi);
return true;
}
return false;
}
/**
* napi_complete - NAPI processing complete
* @n: napi context
*
* Mark NAPI processing as complete.
*/
extern void __napi_complete(struct napi_struct *n);
extern void napi_complete(struct napi_struct *n);
/**
* napi_by_id - lookup a NAPI by napi_id
* @napi_id: hashed napi_id
*
* lookup @napi_id in napi_hash table
* must be called under rcu_read_lock()
*/
extern struct napi_struct *napi_by_id(unsigned int napi_id);
/**
* napi_hash_add - add a NAPI to global hashtable
* @napi: napi context
*
* generate a new napi_id and store a @napi under it in napi_hash
*/
extern void napi_hash_add(struct napi_struct *napi);
/**
* napi_hash_del - remove a NAPI from global table
* @napi: napi context
*
* Warning: caller must observe rcu grace period
* before freeing memory containing @napi
*/
extern void napi_hash_del(struct napi_struct *napi);
/**
* napi_disable - prevent NAPI from scheduling
* @n: napi context
*
* Stop NAPI from being scheduled on this context.
* Waits till any outstanding processing completes.
*/
static inline void napi_disable(struct napi_struct *n)
{
set_bit(NAPI_STATE_DISABLE, &n->state);
while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
msleep(1);
clear_bit(NAPI_STATE_DISABLE, &n->state);
}
/**
* napi_enable - enable NAPI scheduling
* @n: napi context
*
* Resume NAPI from being scheduled on this context.
* Must be paired with napi_disable.
*/
static inline void napi_enable(struct napi_struct *n)
{
BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
smp_mb__before_clear_bit();
clear_bit(NAPI_STATE_SCHED, &n->state);
}
#ifdef CONFIG_SMP
/**
* napi_synchronize - wait until NAPI is not running
* @n: napi context
*
* Wait until NAPI is done being scheduled on this context.
* Waits till any outstanding processing completes but
* does not disable future activations.
*/
static inline void napi_synchronize(const struct napi_struct *n)
{
while (test_bit(NAPI_STATE_SCHED, &n->state))
msleep(1);
}
#else
# define napi_synchronize(n) barrier()
#endif
enum netdev_queue_state_t {
__QUEUE_STATE_DRV_XOFF,
__QUEUE_STATE_STACK_XOFF,
__QUEUE_STATE_FROZEN,
#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
(1 << __QUEUE_STATE_STACK_XOFF))
#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
(1 << __QUEUE_STATE_FROZEN))
};
/*
* __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
* netif_tx_* functions below are used to manipulate this flag. The
* __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
* queue independently. The netif_xmit_*stopped functions below are called
* to check if the queue has been stopped by the driver or stack (either
* of the XOFF bits are set in the state). Drivers should not need to call
* netif_xmit*stopped functions, they should only be using netif_tx_*.
*/
struct netdev_queue {
/*
* read mostly part
*/
struct net_device *dev;
struct Qdisc *qdisc;
struct Qdisc *qdisc_sleeping;
#ifdef CONFIG_SYSFS
struct kobject kobj;
#endif
#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
int numa_node;
#endif
/*
* write mostly part
*/
spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
int xmit_lock_owner;
/*
* please use this field instead of dev->trans_start
*/
unsigned long trans_start;
/*
* Number of TX timeouts for this queue
* (/sys/class/net/DEV/Q/trans_timeout)
*/
unsigned long trans_timeout;
unsigned long state;
#ifdef CONFIG_BQL
struct dql dql;
#endif
} ____cacheline_aligned_in_smp;
static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
{
#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
return q->numa_node;
#else
return NUMA_NO_NODE;
#endif
}
static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
{
#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
q->numa_node = node;
#endif
}
#ifdef CONFIG_RPS
/*
* This structure holds an RPS map which can be of variable length. The
* map is an array of CPUs.
*/
struct rps_map {
unsigned int len;
struct rcu_head rcu;
u16 cpus[0];
};
#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
/*
* The rps_dev_flow structure contains the mapping of a flow to a CPU, the
* tail pointer for that CPU's input queue at the time of last enqueue, and
* a hardware filter index.
*/
struct rps_dev_flow {
u16 cpu;
u16 filter;
unsigned int last_qtail;
};
#define RPS_NO_FILTER 0xffff
/*
* The rps_dev_flow_table structure contains a table of flow mappings.
*/
struct rps_dev_flow_table {
unsigned int mask;
struct rcu_head rcu;
struct rps_dev_flow flows[0];
};
#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
((_num) * sizeof(struct rps_dev_flow)))
/*
* The rps_sock_flow_table contains mappings of flows to the last CPU
* on which they were processed by the application (set in recvmsg).
*/
struct rps_sock_flow_table {
unsigned int mask;
u16 ents[0];
};
#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
((_num) * sizeof(u16)))
#define RPS_NO_CPU 0xffff
static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
u32 hash)
{
if (table && hash) {
unsigned int cpu, index = hash & table->mask;
/* We only give a hint, preemption can change cpu under us */
cpu = raw_smp_processor_id();
if (table->ents[index] != cpu)
table->ents[index] = cpu;
}
}
static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
u32 hash)
{
if (table && hash)
table->ents[hash & table->mask] = RPS_NO_CPU;
}
extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
#ifdef CONFIG_RFS_ACCEL
extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
u32 flow_id, u16 filter_id);
#endif
/* This structure contains an instance of an RX queue. */
struct netdev_rx_queue {
struct rps_map __rcu *rps_map;
struct rps_dev_flow_table __rcu *rps_flow_table;
struct kobject kobj;
struct net_device *dev;
} ____cacheline_aligned_in_smp;
#endif /* CONFIG_RPS */
#ifdef CONFIG_XPS
/*
* This structure holds an XPS map which can be of variable length. The
* map is an array of queues.
*/
struct xps_map {
unsigned int len;
unsigned int alloc_len;
struct rcu_head rcu;
u16 queues[0];
};
#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
/ sizeof(u16))
/*
* This structure holds all XPS maps for device. Maps are indexed by CPU.
*/
struct xps_dev_maps {
struct rcu_head rcu;
struct xps_map __rcu *cpu_map[0];
};
#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
(nr_cpu_ids * sizeof(struct xps_map *)))
#endif /* CONFIG_XPS */
#define TC_MAX_QUEUE 16
#define TC_BITMASK 15
/* HW offloaded queuing disciplines txq count and offset maps */
struct netdev_tc_txq {
u16 count;
u16 offset;
};
#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
/*
* This structure is to hold information about the device
* configured to run FCoE protocol stack.
*/
struct netdev_fcoe_hbainfo {
char manufacturer[64];
char serial_number[64];
char hardware_version[64];
char driver_version[64];
char optionrom_version[64];
char firmware_version[64];
char model[256];
char model_description[256];
};
#endif
#define MAX_PHYS_PORT_ID_LEN 32
/* This structure holds a unique identifier to identify the
* physical port used by a netdevice.
*/
struct netdev_phys_port_id {
unsigned char id[MAX_PHYS_PORT_ID_LEN];
unsigned char id_len;
};
/*
* This structure defines the management hooks for network devices.
* The following hooks can be defined; unless noted otherwise, they are
* optional and can be filled with a null pointer.
*
* int (*ndo_init)(struct net_device *dev);
* This function is called once when network device is registered.
* The network device can use this to any late stage initializaton
* or semantic validattion. It can fail with an error code which will
* be propogated back to register_netdev
*
* void (*ndo_uninit)(struct net_device *dev);
* This function is called when device is unregistered or when registration
* fails. It is not called if init fails.
*
* int (*ndo_open)(struct net_device *dev);
* This function is called when network device transistions to the up
* state.
*
* int (*ndo_stop)(struct net_device *dev);
* This function is called when network device transistions to the down
* state.
*
* netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
* struct net_device *dev);
* Called when a packet needs to be transmitted.
* Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
* (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
* Required can not be NULL.
*
* u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
* Called to decide which queue to when device supports multiple
* transmit queues.
*
* void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
* This function is called to allow device receiver to make
* changes to configuration when multicast or promiscious is enabled.
*
* void (*ndo_set_rx_mode)(struct net_device *dev);
* This function is called device changes address list filtering.
* If driver handles unicast address filtering, it should set
* IFF_UNICAST_FLT to its priv_flags.
*
* int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
* This function is called when the Media Access Control address
* needs to be changed. If this interface is not defined, the
* mac address can not be changed.
*
* int (*ndo_validate_addr)(struct net_device *dev);
* Test if Media Access Control address is valid for the device.
*
* int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
* Called when a user request an ioctl which can't be handled by
* the generic interface code. If not defined ioctl's return
* not supported error code.
*
* int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
* Used to set network devices bus interface parameters. This interface
* is retained for legacy reason, new devices should use the bus
* interface (PCI) for low level management.
*
* int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
* Called when a user wants to change the Maximum Transfer Unit
* of a device. If not defined, any request to change MTU will
* will return an error.
*
* void (*ndo_tx_timeout)(struct net_device *dev);
* Callback uses when the transmitter has not made any progress
* for dev->watchdog ticks.
*
* struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
* struct rtnl_link_stats64 *storage);
* struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
* Called when a user wants to get the network device usage
* statistics. Drivers must do one of the following:
* 1. Define @ndo_get_stats64 to fill in a zero-initialised
* rtnl_link_stats64 structure passed by the caller.
* 2. Define @ndo_get_stats to update a net_device_stats structure
* (which should normally be dev->stats) and return a pointer to
* it. The structure may be changed asynchronously only if each
* field is written atomically.
* 3. Update dev->stats asynchronously and atomically, and define
* neither operation.
*
* int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
* If device support VLAN filtering this function is called when a
* VLAN id is registered.
*
* int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
* If device support VLAN filtering this function is called when a
* VLAN id is unregistered.
*
* void (*ndo_poll_controller)(struct net_device *dev);
*
* SR-IOV management functions.
* int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
* int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
* int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
* int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
* int (*ndo_get_vf_config)(struct net_device *dev,
* int vf, struct ifla_vf_info *ivf);
* int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
* int (*ndo_set_vf_port)(struct net_device *dev, int vf,
* struct nlattr *port[]);
* int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
* int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
* Called to setup 'tc' number of traffic classes in the net device. This
* is always called from the stack with the rtnl lock held and netif tx
* queues stopped. This allows the netdevice to perform queue management
* safely.
*
* Fiber Channel over Ethernet (FCoE) offload functions.
* int (*ndo_fcoe_enable)(struct net_device *dev);
* Called when the FCoE protocol stack wants to start using LLD for FCoE
* so the underlying device can perform whatever needed configuration or
* initialization to support acceleration of FCoE traffic.
*
* int (*ndo_fcoe_disable)(struct net_device *dev);
* Called when the FCoE protocol stack wants to stop using LLD for FCoE
* so the underlying device can perform whatever needed clean-ups to
* stop supporting acceleration of FCoE traffic.
*
* int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
* struct scatterlist *sgl, unsigned int sgc);
* Called when the FCoE Initiator wants to initialize an I/O that
* is a possible candidate for Direct Data Placement (DDP). The LLD can
* perform necessary setup and returns 1 to indicate the device is set up
* successfully to perform DDP on this I/O, otherwise this returns 0.
*
* int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
* Called when the FCoE Initiator/Target is done with the DDPed I/O as
* indicated by the FC exchange id 'xid', so the underlying device can
* clean up and reuse resources for later DDP requests.
*
* int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
* struct scatterlist *sgl, unsigned int sgc);
* Called when the FCoE Target wants to initialize an I/O that
* is a possible candidate for Direct Data Placement (DDP). The LLD can
* perform necessary setup and returns 1 to indicate the device is set up
* successfully to perform DDP on this I/O, otherwise this returns 0.
*
* int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
* struct netdev_fcoe_hbainfo *hbainfo);
* Called when the FCoE Protocol stack wants information on the underlying
* device. This information is utilized by the FCoE protocol stack to
* register attributes with Fiber Channel management service as per the
* FC-GS Fabric Device Management Information(FDMI) specification.
*
* int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
* Called when the underlying device wants to override default World Wide
* Name (WWN) generation mechanism in FCoE protocol stack to pass its own
* World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
* protocol stack to use.
*
* RFS acceleration.
* int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
* u16 rxq_index, u32 flow_id);
* Set hardware filter for RFS. rxq_index is the target queue index;
* flow_id is a flow ID to be passed to rps_may_expire_flow() later.
* Return the filter ID on success, or a negative error code.
*
* Slave management functions (for bridge, bonding, etc).
* int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
* Called to make another netdev an underling.
*
* int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
* Called to release previously enslaved netdev.
*
* Feature/offload setting functions.
* netdev_features_t (*ndo_fix_features)(struct net_device *dev,
* netdev_features_t features);
* Adjusts the requested feature flags according to device-specific
* constraints, and returns the resulting flags. Must not modify
* the device state.
*
* int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
* Called to update device configuration to new features. Passed
* feature set might be less than what was returned by ndo_fix_features()).
* Must return >0 or -errno if it changed dev->features itself.
*
* int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
* struct net_device *dev,
* const unsigned char *addr, u16 flags)
* Adds an FDB entry to dev for addr.
* int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
* struct net_device *dev,
* const unsigned char *addr)
* Deletes the FDB entry from dev coresponding to addr.
* int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
* struct net_device *dev, int idx)
* Used to add FDB entries to dump requests. Implementers should add
* entries to skb and update idx with the number of entries.
*
* int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
* int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
* struct net_device *dev, u32 filter_mask)
*
* int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
* Called to change device carrier. Soft-devices (like dummy, team, etc)
* which do not represent real hardware may define this to allow their
* userspace components to manage their virtual carrier state. Devices
* that determine carrier state from physical hardware properties (eg
* network cables) or protocol-dependent mechanisms (eg
* USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
*
* int (*ndo_get_phys_port_id)(struct net_device *dev,
* struct netdev_phys_port_id *ppid);
* Called to get ID of physical port of this device. If driver does
* not implement this, it is assumed that the hw is not able to have
* multiple net devices on single physical port.
*
* void (*ndo_add_vxlan_port)(struct net_device *dev,
* sa_family_t sa_family, __be16 port);
* Called by vxlan to notiy a driver about the UDP port and socket
* address family that vxlan is listnening to. It is called only when
* a new port starts listening. The operation is protected by the
* vxlan_net->sock_lock.
*
* void (*ndo_del_vxlan_port)(struct net_device *dev,
* sa_family_t sa_family, __be16 port);
* Called by vxlan to notify the driver about a UDP port and socket
* address family that vxlan is not listening to anymore. The operation
* is protected by the vxlan_net->sock_lock.
*/
struct net_device_ops {
int (*ndo_init)(struct net_device *dev);
void (*ndo_uninit)(struct net_device *dev);
int (*ndo_open)(struct net_device *dev);
int (*ndo_stop)(struct net_device *dev);
netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
struct net_device *dev);
u16 (*ndo_select_queue)(struct net_device *dev,
struct sk_buff *skb);
void (*ndo_change_rx_flags)(struct net_device *dev,
int flags);
void (*ndo_set_rx_mode)(struct net_device *dev);
int (*ndo_set_mac_address)(struct net_device *dev,
void *addr);
int (*ndo_validate_addr)(struct net_device *dev);
int (*ndo_do_ioctl)(struct net_device *dev,
struct ifreq *ifr, int cmd);
int (*ndo_set_config)(struct net_device *dev,
struct ifmap *map);
int (*ndo_change_mtu)(struct net_device *dev,
int new_mtu);
int (*ndo_neigh_setup)(struct net_device *dev,
struct neigh_parms *);
void (*ndo_tx_timeout) (struct net_device *dev);
struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
struct rtnl_link_stats64 *storage);
struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
__be16 proto, u16 vid);
int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
__be16 proto, u16 vid);
#ifdef CONFIG_NET_POLL_CONTROLLER
void (*ndo_poll_controller)(struct net_device *dev);
int (*ndo_netpoll_setup)(struct net_device *dev,
struct netpoll_info *info,
gfp_t gfp);
void (*ndo_netpoll_cleanup)(struct net_device *dev);
#endif
#ifdef CONFIG_NET_RX_BUSY_POLL
int (*ndo_busy_poll)(struct napi_struct *dev);
#endif
int (*ndo_set_vf_mac)(struct net_device *dev,
int queue, u8 *mac);
int (*ndo_set_vf_vlan)(struct net_device *dev,
int queue, u16 vlan, u8 qos);
int (*ndo_set_vf_tx_rate)(struct net_device *dev,
int vf, int rate);
int (*ndo_set_vf_spoofchk)(struct net_device *dev,
int vf, bool setting);
int (*ndo_get_vf_config)(struct net_device *dev,
int vf,
struct ifla_vf_info *ivf);
int (*ndo_set_vf_link_state)(struct net_device *dev,
int vf, int link_state);
int (*ndo_set_vf_port)(struct net_device *dev,
int vf,
struct nlattr *port[]);
int (*ndo_get_vf_port)(struct net_device *dev,
int vf, struct sk_buff *skb);
int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
#if IS_ENABLED(CONFIG_FCOE)
int (*ndo_fcoe_enable)(struct net_device *dev);
int (*ndo_fcoe_disable)(struct net_device *dev);
int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
u16 xid,
struct scatterlist *sgl,
unsigned int sgc);
int (*ndo_fcoe_ddp_done)(struct net_device *dev,
u16 xid);
int (*ndo_fcoe_ddp_target)(struct net_device *dev,
u16 xid,
struct scatterlist *sgl,
unsigned int sgc);
int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
struct netdev_fcoe_hbainfo *hbainfo);
#endif
#if IS_ENABLED(CONFIG_LIBFCOE)
#define NETDEV_FCOE_WWNN 0
#define NETDEV_FCOE_WWPN 1
int (*ndo_fcoe_get_wwn)(struct net_device *dev,
u64 *wwn, int type);
#endif
#ifdef CONFIG_RFS_ACCEL
int (*ndo_rx_flow_steer)(struct net_device *dev,
const struct sk_buff *skb,
u16 rxq_index,
u32 flow_id);
#endif
int (*ndo_add_slave)(struct net_device *dev,
struct net_device *slave_dev);
int (*ndo_del_slave)(struct net_device *dev,
struct net_device *slave_dev);
netdev_features_t (*ndo_fix_features)(struct net_device *dev,
netdev_features_t features);
int (*ndo_set_features)(struct net_device *dev,
netdev_features_t features);
int (*ndo_neigh_construct)(struct neighbour *n);
void (*ndo_neigh_destroy)(struct neighbour *n);
int (*ndo_fdb_add)(struct ndmsg *ndm,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr,
u16 flags);
int (*ndo_fdb_del)(struct ndmsg *ndm,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr);
int (*ndo_fdb_dump)(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
int idx);
int (*ndo_bridge_setlink)(struct net_device *dev,
struct nlmsghdr *nlh);
int (*ndo_bridge_getlink)(struct sk_buff *skb,
u32 pid, u32 seq,
struct net_device *dev,
u32 filter_mask);
int (*ndo_bridge_dellink)(struct net_device *dev,
struct nlmsghdr *nlh);
int (*ndo_change_carrier)(struct net_device *dev,
bool new_carrier);
int (*ndo_get_phys_port_id)(struct net_device *dev,
struct netdev_phys_port_id *ppid);
void (*ndo_add_vxlan_port)(struct net_device *dev,
sa_family_t sa_family,
__be16 port);
void (*ndo_del_vxlan_port)(struct net_device *dev,
sa_family_t sa_family,
__be16 port);
};
/*
* The DEVICE structure.
* Actually, this whole structure is a big mistake. It mixes I/O
* data with strictly "high-level" data, and it has to know about
* almost every data structure used in the INET module.
*
* FIXME: cleanup struct net_device such that network protocol info
* moves out.
*/
struct net_device {
/*
* This is the first field of the "visible" part of this structure
* (i.e. as seen by users in the "Space.c" file). It is the name
* of the interface.
*/
char name[IFNAMSIZ];
/* device name hash chain, please keep it close to name[] */
struct hlist_node name_hlist;
/* snmp alias */
char *ifalias;
/*
* I/O specific fields
* FIXME: Merge these and struct ifmap into one
*/
unsigned long mem_end; /* shared mem end */
unsigned long mem_start; /* shared mem start */
unsigned long base_addr; /* device I/O address */
unsigned int irq; /* device IRQ number */
/*
* Some hardware also needs these fields, but they are not
* part of the usual set specified in Space.c.
*/
unsigned long state;
struct list_head dev_list;
struct list_head napi_list;
struct list_head unreg_list;
struct list_head upper_dev_list; /* List of upper devices */
struct list_head lower_dev_list;
/* currently active device features */
netdev_features_t features;
/* user-changeable features */
netdev_features_t hw_features;
/* user-requested features */
netdev_features_t wanted_features;
/* mask of features inheritable by VLAN devices */
netdev_features_t vlan_features;
/* mask of features inherited by encapsulating devices
* This field indicates what encapsulation offloads
* the hardware is capable of doing, and drivers will
* need to set them appropriately.
*/
netdev_features_t hw_enc_features;
/* mask of fetures inheritable by MPLS */
netdev_features_t mpls_features;
/* Interface index. Unique device identifier */
int ifindex;
int iflink;
struct net_device_stats stats;
atomic_long_t rx_dropped; /* dropped packets by core network
* Do not use this in drivers.
*/
#ifdef CONFIG_WIRELESS_EXT
/* List of functions to handle Wireless Extensions (instead of ioctl).
* See <net/iw_handler.h> for details. Jean II */
const struct iw_handler_def * wireless_handlers;
/* Instance data managed by the core of Wireless Extensions. */
struct iw_public_data * wireless_data;
#endif
/* Management operations */
const struct net_device_ops *netdev_ops;
const struct ethtool_ops *ethtool_ops;
/* Hardware header description */
const struct header_ops *header_ops;
unsigned int flags; /* interface flags (a la BSD) */
unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
* See if.h for definitions. */
unsigned short gflags;
unsigned short padded; /* How much padding added by alloc_netdev() */
unsigned char operstate; /* RFC2863 operstate */
unsigned char link_mode; /* mapping policy to operstate */
unsigned char if_port; /* Selectable AUI, TP,..*/
unsigned char dma; /* DMA channel */
unsigned int mtu; /* interface MTU value */
unsigned short type; /* interface hardware type */
unsigned short hard_header_len; /* hardware hdr length */
/* extra head- and tailroom the hardware may need, but not in all cases
* can this be guaranteed, especially tailroom. Some cases also use
* LL_MAX_HEADER instead to allocate the skb.
*/
unsigned short needed_headroom;
unsigned short needed_tailroom;
/* Interface address info. */
unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
unsigned char addr_assign_type; /* hw address assignment type */
unsigned char addr_len; /* hardware address length */
unsigned char neigh_priv_len;
unsigned short dev_id; /* Used to differentiate devices
* that share the same link
* layer address
*/
spinlock_t addr_list_lock;
struct netdev_hw_addr_list uc; /* Unicast mac addresses */
struct netdev_hw_addr_list mc; /* Multicast mac addresses */
struct netdev_hw_addr_list dev_addrs; /* list of device
* hw addresses
*/
#ifdef CONFIG_SYSFS
struct kset *queues_kset;
#endif
bool uc_promisc;
unsigned int promiscuity;
unsigned int allmulti;
/* Protocol specific pointers */
#if IS_ENABLED(CONFIG_VLAN_8021Q)
struct vlan_info __rcu *vlan_info; /* VLAN info */
#endif
#if IS_ENABLED(CONFIG_NET_DSA)
struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
#endif
void *atalk_ptr; /* AppleTalk link */
struct in_device __rcu *ip_ptr; /* IPv4 specific data */
struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
void *ax25_ptr; /* AX.25 specific data */
struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
assign before registering */
/*
* Cache lines mostly used on receive path (including eth_type_trans())
*/
unsigned long last_rx; /* Time of last Rx
* This should not be set in
* drivers, unless really needed,
* because network stack (bonding)
* use it if/when necessary, to
* avoid dirtying this cache line.
*/
/* Interface address info used in eth_type_trans() */
unsigned char *dev_addr; /* hw address, (before bcast
because most packets are
unicast) */
#ifdef CONFIG_RPS
struct netdev_rx_queue *_rx;
/* Number of RX queues allocated at register_netdev() time */
unsigned int num_rx_queues;
/* Number of RX queues currently active in device */
unsigned int real_num_rx_queues;
#endif
rx_handler_func_t __rcu *rx_handler;
void __rcu *rx_handler_data;
struct netdev_queue __rcu *ingress_queue;
unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
/*
* Cache lines mostly used on transmit path
*/
struct netdev_queue *_tx ____cacheline_aligned_in_smp;
/* Number of TX queues allocated at alloc_netdev_mq() time */
unsigned int num_tx_queues;
/* Number of TX queues currently active in device */
unsigned int real_num_tx_queues;
/* root qdisc from userspace point of view */
struct Qdisc *qdisc;
unsigned long tx_queue_len; /* Max frames per queue allowed */
spinlock_t tx_global_lock;
#ifdef CONFIG_XPS
struct xps_dev_maps __rcu *xps_maps;
#endif
#ifdef CONFIG_RFS_ACCEL
/* CPU reverse-mapping for RX completion interrupts, indexed
* by RX queue number. Assigned by driver. This must only be
* set if the ndo_rx_flow_steer operation is defined. */
struct cpu_rmap *rx_cpu_rmap;
#endif
/* These may be needed for future network-power-down code. */
/*
* trans_start here is expensive for high speed devices on SMP,
* please use netdev_queue->trans_start instead.
*/
unsigned long trans_start; /* Time (in jiffies) of last Tx */
int watchdog_timeo; /* used by dev_watchdog() */
struct timer_list watchdog_timer;
/* Number of references to this device */
int __percpu *pcpu_refcnt;
/* delayed register/unregister */
struct list_head todo_list;
/* device index hash chain */
struct hlist_node index_hlist;
struct list_head link_watch_list;
/* register/unregister state machine */
enum { NETREG_UNINITIALIZED=0,
NETREG_REGISTERED, /* completed register_netdevice */
NETREG_UNREGISTERING, /* called unregister_netdevice */
NETREG_UNREGISTERED, /* completed unregister todo */
NETREG_RELEASED, /* called free_netdev */
NETREG_DUMMY, /* dummy device for NAPI poll */
} reg_state:8;
bool dismantle; /* device is going do be freed */
enum {
RTNL_LINK_INITIALIZED,
RTNL_LINK_INITIALIZING,
} rtnl_link_state:16;
/* Called from unregister, can be used to call free_netdev */
void (*destructor)(struct net_device *dev);
#ifdef CONFIG_NETPOLL
struct netpoll_info __rcu *npinfo;
#endif
#ifdef CONFIG_NET_NS
/* Network namespace this network device is inside */
struct net *nd_net;
#endif
/* mid-layer private */
union {
void *ml_priv;
struct pcpu_lstats __percpu *lstats; /* loopback stats */
struct pcpu_tstats __percpu *tstats; /* tunnel stats */
struct pcpu_dstats __percpu *dstats; /* dummy stats */
struct pcpu_vstats __percpu *vstats; /* veth stats */
};
/* GARP */
struct garp_port __rcu *garp_port;
/* MRP */
struct mrp_port __rcu *mrp_port;
/* class/net/name entry */
struct device dev;
/* space for optional device, statistics, and wireless sysfs groups */
const struct attribute_group *sysfs_groups[4];
/* rtnetlink link ops */
const struct rtnl_link_ops *rtnl_link_ops;
/* for setting kernel sock attribute on TCP connection setup */
#define GSO_MAX_SIZE 65536
unsigned int gso_max_size;
#define GSO_MAX_SEGS 65535
u16 gso_max_segs;
#ifdef CONFIG_DCB
/* Data Center Bridging netlink ops */
const struct dcbnl_rtnl_ops *dcbnl_ops;
#endif
u8 num_tc;
struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
u8 prio_tc_map[TC_BITMASK + 1];
#if IS_ENABLED(CONFIG_FCOE)
/* max exchange id for FCoE LRO by ddp */
unsigned int fcoe_ddp_xid;
#endif
#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
struct netprio_map __rcu *priomap;
#endif
/* phy device may attach itself for hardware timestamping */
struct phy_device *phydev;
struct lock_class_key *qdisc_tx_busylock;
/* group the device belongs to */
int group;
struct pm_qos_request pm_qos_req;
};
#define to_net_dev(d) container_of(d, struct net_device, dev)
#define NETDEV_ALIGN 32
static inline
int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
{
return dev->prio_tc_map[prio & TC_BITMASK];
}
static inline
int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
{
if (tc >= dev->num_tc)
return -EINVAL;
dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
return 0;
}
static inline
void netdev_reset_tc(struct net_device *dev)
{
dev->num_tc = 0;
memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
}
static inline
int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
{
if (tc >= dev->num_tc)
return -EINVAL;
dev->tc_to_txq[tc].count = count;
dev->tc_to_txq[tc].offset = offset;
return 0;
}
static inline
int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
{
if (num_tc > TC_MAX_QUEUE)
return -EINVAL;
dev->num_tc = num_tc;
return 0;
}
static inline
int netdev_get_num_tc(struct net_device *dev)
{
return dev->num_tc;
}
static inline
struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
unsigned int index)
{
return &dev->_tx[index];
}
static inline void netdev_for_each_tx_queue(struct net_device *dev,
void (*f)(struct net_device *,
struct netdev_queue *,
void *),
void *arg)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++)
f(dev, &dev->_tx[i], arg);
}
extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
struct sk_buff *skb);
extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
/*
* Net namespace inlines
*/
static inline
struct net *dev_net(const struct net_device *dev)
{
return read_pnet(&dev->nd_net);
}
static inline
void dev_net_set(struct net_device *dev, struct net *net)
{
#ifdef CONFIG_NET_NS
release_net(dev->nd_net);
dev->nd_net = hold_net(net);
#endif
}
static inline bool netdev_uses_dsa_tags(struct net_device *dev)
{
#ifdef CONFIG_NET_DSA_TAG_DSA
if (dev->dsa_ptr != NULL)
return dsa_uses_dsa_tags(dev->dsa_ptr);
#endif
return 0;
}
static inline bool netdev_uses_trailer_tags(struct net_device *dev)
{
#ifdef CONFIG_NET_DSA_TAG_TRAILER
if (dev->dsa_ptr != NULL)
return dsa_uses_trailer_tags(dev->dsa_ptr);
#endif
return 0;
}
/**
* netdev_priv - access network device private data
* @dev: network device
*
* Get network device private data
*/
static inline void *netdev_priv(const struct net_device *dev)
{
return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
}
/* Set the sysfs physical device reference for the network logical device
* if set prior to registration will cause a symlink during initialization.
*/
#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
/* Set the sysfs device type for the network logical device to allow
* fin grained indentification of different network device types. For
* example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
*/
#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
/* Default NAPI poll() weight
* Device drivers are strongly advised to not use bigger value
*/
#define NAPI_POLL_WEIGHT 64
/**
* netif_napi_add - initialize a napi context
* @dev: network device
* @napi: napi context
* @poll: polling function
* @weight: default weight
*
* netif_napi_add() must be used to initialize a napi context prior to calling
* *any* of the other napi related functions.
*/
void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
int (*poll)(struct napi_struct *, int), int weight);
/**
* netif_napi_del - remove a napi context
* @napi: napi context
*
* netif_napi_del() removes a napi context from the network device napi list
*/
void netif_napi_del(struct napi_struct *napi);
struct napi_gro_cb {
/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
void *frag0;
/* Length of frag0. */
unsigned int frag0_len;
/* This indicates where we are processing relative to skb->data. */
int data_offset;
/* This is non-zero if the packet cannot be merged with the new skb. */
int flush;
/* Number of segments aggregated. */
u16 count;
/* This is non-zero if the packet may be of the same flow. */
u8 same_flow;
/* Free the skb? */
u8 free;
#define NAPI_GRO_FREE 1
#define NAPI_GRO_FREE_STOLEN_HEAD 2
/* jiffies when first packet was created/queued */
unsigned long age;
/* Used in ipv6_gro_receive() */
int proto;
/* used in skb_gro_receive() slow path */
struct sk_buff *last;
};
#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
struct packet_type {
__be16 type; /* This is really htons(ether_type). */
struct net_device *dev; /* NULL is wildcarded here */
int (*func) (struct sk_buff *,
struct net_device *,
struct packet_type *,
struct net_device *);
bool (*id_match)(struct packet_type *ptype,
struct sock *sk);
void *af_packet_priv;
struct list_head list;
};
struct offload_callbacks {
struct sk_buff *(*gso_segment)(struct sk_buff *skb,
netdev_features_t features);
int (*gso_send_check)(struct sk_buff *skb);
struct sk_buff **(*gro_receive)(struct sk_buff **head,
struct sk_buff *skb);
int (*gro_complete)(struct sk_buff *skb);
};
struct packet_offload {
__be16 type; /* This is really htons(ether_type). */
struct offload_callbacks callbacks;
struct list_head list;
};
#include <linux/notifier.h>
/* netdevice notifier chain. Please remember to update the rtnetlink
* notification exclusion list in rtnetlink_event() when adding new
* types.
*/
#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
#define NETDEV_DOWN 0x0002
#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
detected a hardware crash and restarted
- we can use this eg to kick tcp sessions
once done */
#define NETDEV_CHANGE 0x0004 /* Notify device state change */
#define NETDEV_REGISTER 0x0005
#define NETDEV_UNREGISTER 0x0006
#define NETDEV_CHANGEMTU 0x0007
#define NETDEV_CHANGEADDR 0x0008
#define NETDEV_GOING_DOWN 0x0009
#define NETDEV_CHANGENAME 0x000A
#define NETDEV_FEAT_CHANGE 0x000B
#define NETDEV_BONDING_FAILOVER 0x000C
#define NETDEV_PRE_UP 0x000D
#define NETDEV_PRE_TYPE_CHANGE 0x000E
#define NETDEV_POST_TYPE_CHANGE 0x000F
#define NETDEV_POST_INIT 0x0010
#define NETDEV_UNREGISTER_FINAL 0x0011
#define NETDEV_RELEASE 0x0012
#define NETDEV_NOTIFY_PEERS 0x0013
#define NETDEV_JOIN 0x0014
#define NETDEV_CHANGEUPPER 0x0015
#define NETDEV_RESEND_IGMP 0x0016
extern int register_netdevice_notifier(struct notifier_block *nb);
extern int unregister_netdevice_notifier(struct notifier_block *nb);
struct netdev_notifier_info {
struct net_device *dev;
};
struct netdev_notifier_change_info {
struct netdev_notifier_info info; /* must be first */
unsigned int flags_changed;
};
static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
struct net_device *dev)
{
info->dev = dev;
}
static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
{
return info->dev;
}
extern int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
struct netdev_notifier_info *info);
extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
extern rwlock_t dev_base_lock; /* Device list lock */
#define for_each_netdev(net, d) \
list_for_each_entry(d, &(net)->dev_base_head, dev_list)
#define for_each_netdev_reverse(net, d) \
list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
#define for_each_netdev_rcu(net, d) \
list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
#define for_each_netdev_safe(net, d, n) \
list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
#define for_each_netdev_continue(net, d) \
list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
#define for_each_netdev_continue_rcu(net, d) \
list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
#define for_each_netdev_in_bond_rcu(bond, slave) \
for_each_netdev_rcu(&init_net, slave) \
if (netdev_master_upper_dev_get_rcu(slave) == bond)
#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
static inline struct net_device *next_net_device(struct net_device *dev)
{
struct list_head *lh;
struct net *net;
net = dev_net(dev);
lh = dev->dev_list.next;
return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
}
static inline struct net_device *next_net_device_rcu(struct net_device *dev)
{
struct list_head *lh;
struct net *net;
net = dev_net(dev);
lh = rcu_dereference(list_next_rcu(&dev->dev_list));
return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
}
static inline struct net_device *first_net_device(struct net *net)
{
return list_empty(&net->dev_base_head) ? NULL :
net_device_entry(net->dev_base_head.next);
}
static inline struct net_device *first_net_device_rcu(struct net *net)
{
struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
}
extern int netdev_boot_setup_check(struct net_device *dev);
extern unsigned long netdev_boot_base(const char *prefix, int unit);
extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
const char *hwaddr);
extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
extern void dev_add_pack(struct packet_type *pt);
extern void dev_remove_pack(struct packet_type *pt);
extern void __dev_remove_pack(struct packet_type *pt);
extern void dev_add_offload(struct packet_offload *po);
extern void dev_remove_offload(struct packet_offload *po);
extern void __dev_remove_offload(struct packet_offload *po);
extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
unsigned short mask);
extern struct net_device *dev_get_by_name(struct net *net, const char *name);
extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
extern int dev_alloc_name(struct net_device *dev, const char *name);
extern int dev_open(struct net_device *dev);
extern int dev_close(struct net_device *dev);
extern void dev_disable_lro(struct net_device *dev);
extern int dev_loopback_xmit(struct sk_buff *newskb);
extern int dev_queue_xmit(struct sk_buff *skb);
extern int register_netdevice(struct net_device *dev);
extern void unregister_netdevice_queue(struct net_device *dev,
struct list_head *head);
extern void unregister_netdevice_many(struct list_head *head);
static inline void unregister_netdevice(struct net_device *dev)
{
unregister_netdevice_queue(dev, NULL);
}
extern int netdev_refcnt_read(const struct net_device *dev);
extern void free_netdev(struct net_device *dev);
extern void synchronize_net(void);
extern int init_dummy_netdev(struct net_device *dev);
extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
extern int netdev_get_name(struct net *net, char *name, int ifindex);
extern int dev_restart(struct net_device *dev);
#ifdef CONFIG_NETPOLL_TRAP
extern int netpoll_trap(void);
#endif
extern int skb_gro_receive(struct sk_buff **head,
struct sk_buff *skb);
static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
{
return NAPI_GRO_CB(skb)->data_offset;
}
static inline unsigned int skb_gro_len(const struct sk_buff *skb)
{
return skb->len - NAPI_GRO_CB(skb)->data_offset;
}
static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
{
NAPI_GRO_CB(skb)->data_offset += len;
}
static inline void *skb_gro_header_fast(struct sk_buff *skb,
unsigned int offset)
{
return NAPI_GRO_CB(skb)->frag0 + offset;
}
static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
{
return NAPI_GRO_CB(skb)->frag0_len < hlen;
}
static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
unsigned int offset)
{
if (!pskb_may_pull(skb, hlen))
return NULL;
NAPI_GRO_CB(skb)->frag0 = NULL;
NAPI_GRO_CB(skb)->frag0_len = 0;
return skb->data + offset;
}
static inline void *skb_gro_mac_header(struct sk_buff *skb)
{
return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
}
static inline void *skb_gro_network_header(struct sk_buff *skb)
{
return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
skb_network_offset(skb);
}
static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type,
const void *daddr, const void *saddr,
unsigned int len)
{
if (!dev->header_ops || !dev->header_ops->create)
return 0;
return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
}
static inline int dev_parse_header(const struct sk_buff *skb,
unsigned char *haddr)
{
const struct net_device *dev = skb->dev;
if (!dev->header_ops || !dev->header_ops->parse)
return 0;
return dev->header_ops->parse(skb, haddr);
}
typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
static inline int unregister_gifconf(unsigned int family)
{
return register_gifconf(family, NULL);
}
#ifdef CONFIG_NET_FLOW_LIMIT
#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
struct sd_flow_limit {
u64 count;
unsigned int num_buckets;
unsigned int history_head;
u16 history[FLOW_LIMIT_HISTORY];
u8 buckets[];
};
extern int netdev_flow_limit_table_len;
#endif /* CONFIG_NET_FLOW_LIMIT */
/*
* Incoming packets are placed on per-cpu queues
*/
struct softnet_data {
struct Qdisc *output_queue;
struct Qdisc **output_queue_tailp;
struct list_head poll_list;
struct sk_buff *completion_queue;
struct sk_buff_head process_queue;
/* stats */
unsigned int processed;
unsigned int time_squeeze;
unsigned int cpu_collision;
unsigned int received_rps;
#ifdef CONFIG_RPS
struct softnet_data *rps_ipi_list;
/* Elements below can be accessed between CPUs for RPS */
struct call_single_data csd ____cacheline_aligned_in_smp;
struct softnet_data *rps_ipi_next;
unsigned int cpu;
unsigned int input_queue_head;
unsigned int input_queue_tail;
#endif
unsigned int dropped;
struct sk_buff_head input_pkt_queue;
struct napi_struct backlog;
#ifdef CONFIG_NET_FLOW_LIMIT
struct sd_flow_limit __rcu *flow_limit;
#endif
};
static inline void input_queue_head_incr(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
sd->input_queue_head++;
#endif
}
static inline void input_queue_tail_incr_save(struct softnet_data *sd,
unsigned int *qtail)
{
#ifdef CONFIG_RPS
*qtail = ++sd->input_queue_tail;
#endif
}
DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
extern void __netif_schedule(struct Qdisc *q);
static inline void netif_schedule_queue(struct netdev_queue *txq)
{
if (!(txq->state & QUEUE_STATE_ANY_XOFF))
__netif_schedule(txq->qdisc);
}
static inline void netif_tx_schedule_all(struct net_device *dev)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++)
netif_schedule_queue(netdev_get_tx_queue(dev, i));
}
static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
{
clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
}
/**
* netif_start_queue - allow transmit
* @dev: network device
*
* Allow upper layers to call the device hard_start_xmit routine.
*/
static inline void netif_start_queue(struct net_device *dev)
{
netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
}
static inline void netif_tx_start_all_queues(struct net_device *dev)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
netif_tx_start_queue(txq);
}
}
static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
{
#ifdef CONFIG_NETPOLL_TRAP
if (netpoll_trap()) {
netif_tx_start_queue(dev_queue);
return;
}
#endif
if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
__netif_schedule(dev_queue->qdisc);
}
/**
* netif_wake_queue - restart transmit
* @dev: network device
*
* Allow upper layers to call the device hard_start_xmit routine.
* Used for flow control when transmit resources are available.
*/
static inline void netif_wake_queue(struct net_device *dev)
{
netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
}
static inline void netif_tx_wake_all_queues(struct net_device *dev)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
netif_tx_wake_queue(txq);
}
}
static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
{
if (WARN_ON(!dev_queue)) {
pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
return;
}
set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
}
/**
* netif_stop_queue - stop transmitted packets
* @dev: network device
*
* Stop upper layers calling the device hard_start_xmit routine.
* Used for flow control when transmit resources are unavailable.
*/
static inline void netif_stop_queue(struct net_device *dev)
{
netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
}
static inline void netif_tx_stop_all_queues(struct net_device *dev)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
netif_tx_stop_queue(txq);
}
}
static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
{
return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
}
/**
* netif_queue_stopped - test if transmit queue is flowblocked
* @dev: network device
*
* Test if transmit queue on device is currently unable to send.
*/
static inline bool netif_queue_stopped(const struct net_device *dev)
{
return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
}
static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
{
return dev_queue->state & QUEUE_STATE_ANY_XOFF;
}
static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
{
return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
}
static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
unsigned int bytes)
{
#ifdef CONFIG_BQL
dql_queued(&dev_queue->dql, bytes);
if (likely(dql_avail(&dev_queue->dql) >= 0))
return;
set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
/*
* The XOFF flag must be set before checking the dql_avail below,
* because in netdev_tx_completed_queue we update the dql_completed
* before checking the XOFF flag.
*/
smp_mb();
/* check again in case another CPU has just made room avail */
if (unlikely(dql_avail(&dev_queue->dql) >= 0))
clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
#endif
}
/**
* netdev_sent_queue - report the number of bytes queued to hardware
* @dev: network device
* @bytes: number of bytes queued to the hardware device queue
*
* Report the number of bytes queued for sending/completion to the network
* device hardware queue. @bytes should be a good approximation and should
* exactly match netdev_completed_queue() @bytes
*/
static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
{
netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
}
static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
unsigned int pkts, unsigned int bytes)
{
#ifdef CONFIG_BQL
if (unlikely(!bytes))
return;
dql_completed(&dev_queue->dql, bytes);
/*
* Without the memory barrier there is a small possiblity that
* netdev_tx_sent_queue will miss the update and cause the queue to
* be stopped forever
*/
smp_mb();
if (dql_avail(&dev_queue->dql) < 0)
return;
if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
netif_schedule_queue(dev_queue);
#endif
}
/**
* netdev_completed_queue - report bytes and packets completed by device
* @dev: network device
* @pkts: actual number of packets sent over the medium
* @bytes: actual number of bytes sent over the medium
*
* Report the number of bytes and packets transmitted by the network device
* hardware queue over the physical medium, @bytes must exactly match the
* @bytes amount passed to netdev_sent_queue()
*/
static inline void netdev_completed_queue(struct net_device *dev,
unsigned int pkts, unsigned int bytes)
{
netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
}
static inline void netdev_tx_reset_queue(struct netdev_queue *q)
{
#ifdef CONFIG_BQL
clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
dql_reset(&q->dql);
#endif
}
/**
* netdev_reset_queue - reset the packets and bytes count of a network device
* @dev_queue: network device
*
* Reset the bytes and packet count of a network device and clear the
* software flow control OFF bit for this network device
*/
static inline void netdev_reset_queue(struct net_device *dev_queue)
{
netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
}
/**
* netif_running - test if up
* @dev: network device
*
* Test if the device has been brought up.
*/
static inline bool netif_running(const struct net_device *dev)
{
return test_bit(__LINK_STATE_START, &dev->state);
}
/*
* Routines to manage the subqueues on a device. We only need start
* stop, and a check if it's stopped. All other device management is
* done at the overall netdevice level.
* Also test the device if we're multiqueue.
*/
/**
* netif_start_subqueue - allow sending packets on subqueue
* @dev: network device
* @queue_index: sub queue index
*
* Start individual transmit queue of a device with multiple transmit queues.
*/
static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
{
struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
netif_tx_start_queue(txq);
}
/**
* netif_stop_subqueue - stop sending packets on subqueue
* @dev: network device
* @queue_index: sub queue index
*
* Stop individual transmit queue of a device with multiple transmit queues.
*/
static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
{
struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
#ifdef CONFIG_NETPOLL_TRAP
if (netpoll_trap())
return;
#endif
netif_tx_stop_queue(txq);
}
/**
* netif_subqueue_stopped - test status of subqueue
* @dev: network device
* @queue_index: sub queue index
*
* Check individual transmit queue of a device with multiple transmit queues.
*/
static inline bool __netif_subqueue_stopped(const struct net_device *dev,
u16 queue_index)
{
struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
return netif_tx_queue_stopped(txq);
}
static inline bool netif_subqueue_stopped(const struct net_device *dev,
struct sk_buff *skb)
{
return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
}
/**
* netif_wake_subqueue - allow sending packets on subqueue
* @dev: network device
* @queue_index: sub queue index
*
* Resume individual transmit queue of a device with multiple transmit queues.
*/
static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
{
struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
#ifdef CONFIG_NETPOLL_TRAP
if (netpoll_trap())
return;
#endif
if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
__netif_schedule(txq->qdisc);
}
#ifdef CONFIG_XPS
extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
u16 index);
#else
static inline int netif_set_xps_queue(struct net_device *dev,
struct cpumask *mask,
u16 index)
{
return 0;
}
#endif
/*
* Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
* as a distribution range limit for the returned value.
*/
static inline u16 skb_tx_hash(const struct net_device *dev,
const struct sk_buff *skb)
{
return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
}
/**
* netif_is_multiqueue - test if device has multiple transmit queues
* @dev: network device
*
* Check if device has multiple transmit queues
*/
static inline bool netif_is_multiqueue(const struct net_device *dev)
{
return dev->num_tx_queues > 1;
}
extern int netif_set_real_num_tx_queues(struct net_device *dev,
unsigned int txq);
#ifdef CONFIG_RPS
extern int netif_set_real_num_rx_queues(struct net_device *dev,
unsigned int rxq);
#else
static inline int netif_set_real_num_rx_queues(struct net_device *dev,
unsigned int rxq)
{
return 0;
}
#endif
static inline int netif_copy_real_num_queues(struct net_device *to_dev,
const struct net_device *from_dev)
{
int err;
err = netif_set_real_num_tx_queues(to_dev,
from_dev->real_num_tx_queues);
if (err)
return err;
#ifdef CONFIG_RPS
return netif_set_real_num_rx_queues(to_dev,
from_dev->real_num_rx_queues);
#else
return 0;
#endif
}
#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
extern int netif_get_num_default_rss_queues(void);
/* Use this variant when it is known for sure that it
* is executing from hardware interrupt context or with hardware interrupts
* disabled.
*/
extern void dev_kfree_skb_irq(struct sk_buff *skb);
/* Use this variant in places where it could be invoked
* from either hardware interrupt or other context, with hardware interrupts
* either disabled or enabled.
*/
extern void dev_kfree_skb_any(struct sk_buff *skb);
extern int netif_rx(struct sk_buff *skb);
extern int netif_rx_ni(struct sk_buff *skb);
extern int netif_receive_skb(struct sk_buff *skb);
extern gro_result_t napi_gro_receive(struct napi_struct *napi,
struct sk_buff *skb);
extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
extern gro_result_t napi_gro_frags(struct napi_struct *napi);
static inline void napi_free_frags(struct napi_struct *napi)
{
kfree_skb(napi->skb);
napi->skb = NULL;
}
extern int netdev_rx_handler_register(struct net_device *dev,
rx_handler_func_t *rx_handler,
void *rx_handler_data);
extern void netdev_rx_handler_unregister(struct net_device *dev);
extern bool dev_valid_name(const char *name);
extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
extern int dev_ethtool(struct net *net, struct ifreq *);
extern unsigned int dev_get_flags(const struct net_device *);
extern int __dev_change_flags(struct net_device *, unsigned int flags);
extern int dev_change_flags(struct net_device *, unsigned int);
extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
extern int dev_change_name(struct net_device *, const char *);
extern int dev_set_alias(struct net_device *, const char *, size_t);
extern int dev_change_net_namespace(struct net_device *,
struct net *, const char *);
extern int dev_set_mtu(struct net_device *, int);
extern void dev_set_group(struct net_device *, int);
extern int dev_set_mac_address(struct net_device *,
struct sockaddr *);
extern int dev_change_carrier(struct net_device *,
bool new_carrier);
extern int dev_get_phys_port_id(struct net_device *dev,
struct netdev_phys_port_id *ppid);
extern int dev_hard_start_xmit(struct sk_buff *skb,
struct net_device *dev,
struct netdev_queue *txq);
extern int dev_forward_skb(struct net_device *dev,
struct sk_buff *skb);
extern int netdev_budget;
/* Called by rtnetlink.c:rtnl_unlock() */
extern void netdev_run_todo(void);
/**
* dev_put - release reference to device
* @dev: network device
*
* Release reference to device to allow it to be freed.
*/
static inline void dev_put(struct net_device *dev)
{
this_cpu_dec(*dev->pcpu_refcnt);
}
/**
* dev_hold - get reference to device
* @dev: network device
*
* Hold reference to device to keep it from being freed.
*/
static inline void dev_hold(struct net_device *dev)
{
this_cpu_inc(*dev->pcpu_refcnt);
}
/* Carrier loss detection, dial on demand. The functions netif_carrier_on
* and _off may be called from IRQ context, but it is caller
* who is responsible for serialization of these calls.
*
* The name carrier is inappropriate, these functions should really be
* called netif_lowerlayer_*() because they represent the state of any
* kind of lower layer not just hardware media.
*/
extern void linkwatch_init_dev(struct net_device *dev);
extern void linkwatch_fire_event(struct net_device *dev);
extern void linkwatch_forget_dev(struct net_device *dev);
/**
* netif_carrier_ok - test if carrier present
* @dev: network device
*
* Check if carrier is present on device
*/
static inline bool netif_carrier_ok(const struct net_device *dev)
{
return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
}
extern unsigned long dev_trans_start(struct net_device *dev);
extern void __netdev_watchdog_up(struct net_device *dev);
extern void netif_carrier_on(struct net_device *dev);
extern void netif_carrier_off(struct net_device *dev);
/**
* netif_dormant_on - mark device as dormant.
* @dev: network device
*
* Mark device as dormant (as per RFC2863).
*
* The dormant state indicates that the relevant interface is not
* actually in a condition to pass packets (i.e., it is not 'up') but is
* in a "pending" state, waiting for some external event. For "on-
* demand" interfaces, this new state identifies the situation where the
* interface is waiting for events to place it in the up state.
*
*/
static inline void netif_dormant_on(struct net_device *dev)
{
if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
linkwatch_fire_event(dev);
}
/**
* netif_dormant_off - set device as not dormant.
* @dev: network device
*
* Device is not in dormant state.
*/
static inline void netif_dormant_off(struct net_device *dev)
{
if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
linkwatch_fire_event(dev);
}
/**
* netif_dormant - test if carrier present
* @dev: network device
*
* Check if carrier is present on device
*/
static inline bool netif_dormant(const struct net_device *dev)
{
return test_bit(__LINK_STATE_DORMANT, &dev->state);
}
/**
* netif_oper_up - test if device is operational
* @dev: network device
*
* Check if carrier is operational
*/
static inline bool netif_oper_up(const struct net_device *dev)
{
return (dev->operstate == IF_OPER_UP ||
dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
}
/**
* netif_device_present - is device available or removed
* @dev: network device
*
* Check if device has not been removed from system.
*/
static inline bool netif_device_present(struct net_device *dev)
{
return test_bit(__LINK_STATE_PRESENT, &dev->state);
}
extern void netif_device_detach(struct net_device *dev);
extern void netif_device_attach(struct net_device *dev);
/*
* Network interface message level settings
*/
enum {
NETIF_MSG_DRV = 0x0001,
NETIF_MSG_PROBE = 0x0002,
NETIF_MSG_LINK = 0x0004,
NETIF_MSG_TIMER = 0x0008,
NETIF_MSG_IFDOWN = 0x0010,
NETIF_MSG_IFUP = 0x0020,
NETIF_MSG_RX_ERR = 0x0040,
NETIF_MSG_TX_ERR = 0x0080,
NETIF_MSG_TX_QUEUED = 0x0100,
NETIF_MSG_INTR = 0x0200,
NETIF_MSG_TX_DONE = 0x0400,
NETIF_MSG_RX_STATUS = 0x0800,
NETIF_MSG_PKTDATA = 0x1000,
NETIF_MSG_HW = 0x2000,
NETIF_MSG_WOL = 0x4000,
};
#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
{
/* use default */
if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
return default_msg_enable_bits;
if (debug_value == 0) /* no output */
return 0;
/* set low N bits */
return (1 << debug_value) - 1;
}
static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
{
spin_lock(&txq->_xmit_lock);
txq->xmit_lock_owner = cpu;
}
static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
{
spin_lock_bh(&txq->_xmit_lock);
txq->xmit_lock_owner = smp_processor_id();
}
static inline bool __netif_tx_trylock(struct netdev_queue *txq)
{
bool ok = spin_trylock(&txq->_xmit_lock);
if (likely(ok))
txq->xmit_lock_owner = smp_processor_id();
return ok;
}
static inline void __netif_tx_unlock(struct netdev_queue *txq)
{
txq->xmit_lock_owner = -1;
spin_unlock(&txq->_xmit_lock);
}
static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
{
txq->xmit_lock_owner = -1;
spin_unlock_bh(&txq->_xmit_lock);
}
static inline void txq_trans_update(struct netdev_queue *txq)
{
if (txq->xmit_lock_owner != -1)
txq->trans_start = jiffies;
}
/**
* netif_tx_lock - grab network device transmit lock
* @dev: network device
*
* Get network device transmit lock
*/
static inline void netif_tx_lock(struct net_device *dev)
{
unsigned int i;
int cpu;
spin_lock(&dev->tx_global_lock);
cpu = smp_processor_id();
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
/* We are the only thread of execution doing a
* freeze, but we have to grab the _xmit_lock in
* order to synchronize with threads which are in
* the ->hard_start_xmit() handler and already
* checked the frozen bit.
*/
__netif_tx_lock(txq, cpu);
set_bit(__QUEUE_STATE_FROZEN, &txq->state);
__netif_tx_unlock(txq);
}
}
static inline void netif_tx_lock_bh(struct net_device *dev)
{
local_bh_disable();
netif_tx_lock(dev);
}
static inline void netif_tx_unlock(struct net_device *dev)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
/* No need to grab the _xmit_lock here. If the
* queue is not stopped for another reason, we
* force a schedule.
*/
clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
netif_schedule_queue(txq);
}
spin_unlock(&dev->tx_global_lock);
}
static inline void netif_tx_unlock_bh(struct net_device *dev)
{
netif_tx_unlock(dev);
local_bh_enable();
}
#define HARD_TX_LOCK(dev, txq, cpu) { \
if ((dev->features & NETIF_F_LLTX) == 0) { \
__netif_tx_lock(txq, cpu); \
} \
}
#define HARD_TX_UNLOCK(dev, txq) { \
if ((dev->features & NETIF_F_LLTX) == 0) { \
__netif_tx_unlock(txq); \
} \
}
static inline void netif_tx_disable(struct net_device *dev)
{
unsigned int i;
int cpu;
local_bh_disable();
cpu = smp_processor_id();
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
__netif_tx_lock(txq, cpu);
netif_tx_stop_queue(txq);
__netif_tx_unlock(txq);
}
local_bh_enable();
}
static inline void netif_addr_lock(struct net_device *dev)
{
spin_lock(&dev->addr_list_lock);
}
static inline void netif_addr_lock_nested(struct net_device *dev)
{
spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
}
static inline void netif_addr_lock_bh(struct net_device *dev)
{
spin_lock_bh(&dev->addr_list_lock);
}
static inline void netif_addr_unlock(struct net_device *dev)
{
spin_unlock(&dev->addr_list_lock);
}
static inline void netif_addr_unlock_bh(struct net_device *dev)
{
spin_unlock_bh(&dev->addr_list_lock);
}
/*
* dev_addrs walker. Should be used only for read access. Call with
* rcu_read_lock held.
*/
#define for_each_dev_addr(dev, ha) \
list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
/* These functions live elsewhere (drivers/net/net_init.c, but related) */
extern void ether_setup(struct net_device *dev);
/* Support for loadable net-drivers */
extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
void (*setup)(struct net_device *),
unsigned int txqs, unsigned int rxqs);
#define alloc_netdev(sizeof_priv, name, setup) \
alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
extern int register_netdev(struct net_device *dev);
extern void unregister_netdev(struct net_device *dev);
/* General hardware address lists handling functions */
extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
struct netdev_hw_addr_list *from_list,
int addr_len, unsigned char addr_type);
extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
struct netdev_hw_addr_list *from_list,
int addr_len, unsigned char addr_type);
extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
struct netdev_hw_addr_list *from_list,
int addr_len);
extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
struct netdev_hw_addr_list *from_list,
int addr_len);
extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
extern void __hw_addr_init(struct netdev_hw_addr_list *list);
/* Functions used for device addresses handling */
extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
unsigned char addr_type);
extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
unsigned char addr_type);
extern int dev_addr_add_multiple(struct net_device *to_dev,
struct net_device *from_dev,
unsigned char addr_type);
extern int dev_addr_del_multiple(struct net_device *to_dev,
struct net_device *from_dev,
unsigned char addr_type);
extern void dev_addr_flush(struct net_device *dev);
extern int dev_addr_init(struct net_device *dev);
/* Functions used for unicast addresses handling */
extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
extern int dev_uc_sync(struct net_device *to, struct net_device *from);
extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
extern void dev_uc_flush(struct net_device *dev);
extern void dev_uc_init(struct net_device *dev);
/* Functions used for multicast addresses handling */
extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
extern int dev_mc_sync(struct net_device *to, struct net_device *from);
extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
extern void dev_mc_flush(struct net_device *dev);
extern void dev_mc_init(struct net_device *dev);
/* Functions used for secondary unicast and multicast support */
extern void dev_set_rx_mode(struct net_device *dev);
extern void __dev_set_rx_mode(struct net_device *dev);
extern int dev_set_promiscuity(struct net_device *dev, int inc);
extern int dev_set_allmulti(struct net_device *dev, int inc);
extern void netdev_state_change(struct net_device *dev);
extern void netdev_notify_peers(struct net_device *dev);
extern void netdev_features_change(struct net_device *dev);
/* Load a device via the kmod */
extern void dev_load(struct net *net, const char *name);
extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *storage);
extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
const struct net_device_stats *netdev_stats);
extern int netdev_max_backlog;
extern int netdev_tstamp_prequeue;
extern int weight_p;
extern int bpf_jit_enable;
extern bool netdev_has_upper_dev(struct net_device *dev,
struct net_device *upper_dev);
extern bool netdev_has_any_upper_dev(struct net_device *dev);
extern struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
struct list_head **iter);
/* iterate through upper list, must be called under RCU read lock */
#define netdev_for_each_upper_dev_rcu(dev, upper, iter) \
for (iter = &(dev)->upper_dev_list, \
upper = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
upper; \
upper = netdev_upper_get_next_dev_rcu(dev, &(iter)))
extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
extern int netdev_upper_dev_link(struct net_device *dev,
struct net_device *upper_dev);
extern int netdev_master_upper_dev_link(struct net_device *dev,
struct net_device *upper_dev);
extern void netdev_upper_dev_unlink(struct net_device *dev,
struct net_device *upper_dev);
extern int skb_checksum_help(struct sk_buff *skb);
extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
netdev_features_t features, bool tx_path);
extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
netdev_features_t features);
static inline
struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
{
return __skb_gso_segment(skb, features, true);
}
__be16 skb_network_protocol(struct sk_buff *skb);
static inline bool can_checksum_protocol(netdev_features_t features,
__be16 protocol)
{
return ((features & NETIF_F_GEN_CSUM) ||
((features & NETIF_F_V4_CSUM) &&
protocol == htons(ETH_P_IP)) ||
((features & NETIF_F_V6_CSUM) &&
protocol == htons(ETH_P_IPV6)) ||
((features & NETIF_F_FCOE_CRC) &&
protocol == htons(ETH_P_FCOE)));
}
#ifdef CONFIG_BUG
extern void netdev_rx_csum_fault(struct net_device *dev);
#else
static inline void netdev_rx_csum_fault(struct net_device *dev)
{
}
#endif
/* rx skb timestamps */
extern void net_enable_timestamp(void);
extern void net_disable_timestamp(void);
#ifdef CONFIG_PROC_FS
extern int __init dev_proc_init(void);
#else
#define dev_proc_init() 0
#endif
extern int netdev_class_create_file(struct class_attribute *class_attr);
extern void netdev_class_remove_file(struct class_attribute *class_attr);
extern struct kobj_ns_type_operations net_ns_type_operations;
extern const char *netdev_drivername(const struct net_device *dev);
extern void linkwatch_run_queue(void);
static inline netdev_features_t netdev_get_wanted_features(
struct net_device *dev)
{
return (dev->features & ~dev->hw_features) | dev->wanted_features;
}
netdev_features_t netdev_increment_features(netdev_features_t all,
netdev_features_t one, netdev_features_t mask);
/* Allow TSO being used on stacked device :
* Performing the GSO segmentation before last device
* is a performance improvement.
*/
static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
netdev_features_t mask)
{
return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
}
int __netdev_update_features(struct net_device *dev);
void netdev_update_features(struct net_device *dev);
void netdev_change_features(struct net_device *dev);
void netif_stacked_transfer_operstate(const struct net_device *rootdev,
struct net_device *dev);
netdev_features_t netif_skb_features(struct sk_buff *skb);
static inline bool net_gso_ok(netdev_features_t features, int gso_type)
{
netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
/* check flags correspondence */
BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
return (features & feature) == feature;
}
static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
{
return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
(!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
}
static inline bool netif_needs_gso(struct sk_buff *skb,
netdev_features_t features)
{
return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
(skb->ip_summed != CHECKSUM_UNNECESSARY)));
}
static inline void netif_set_gso_max_size(struct net_device *dev,
unsigned int size)
{
dev->gso_max_size = size;
}
static inline bool netif_is_bond_master(struct net_device *dev)
{
return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
}
static inline bool netif_is_bond_slave(struct net_device *dev)
{
return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
}
static inline bool netif_supports_nofcs(struct net_device *dev)
{
return dev->priv_flags & IFF_SUPP_NOFCS;
}
extern struct pernet_operations __net_initdata loopback_net_ops;
/* Logging, debugging and troubleshooting/diagnostic helpers. */
/* netdev_printk helpers, similar to dev_printk */
static inline const char *netdev_name(const struct net_device *dev)
{
if (dev->reg_state != NETREG_REGISTERED)
return "(unregistered net_device)";
return dev->name;
}
extern __printf(3, 4)
int netdev_printk(const char *level, const struct net_device *dev,
const char *format, ...);
extern __printf(2, 3)
int netdev_emerg(const struct net_device *dev, const char *format, ...);
extern __printf(2, 3)
int netdev_alert(const struct net_device *dev, const char *format, ...);
extern __printf(2, 3)
int netdev_crit(const struct net_device *dev, const char *format, ...);
extern __printf(2, 3)
int netdev_err(const struct net_device *dev, const char *format, ...);
extern __printf(2, 3)
int netdev_warn(const struct net_device *dev, const char *format, ...);
extern __printf(2, 3)
int netdev_notice(const struct net_device *dev, const char *format, ...);
extern __printf(2, 3)
int netdev_info(const struct net_device *dev, const char *format, ...);
#define MODULE_ALIAS_NETDEV(device) \
MODULE_ALIAS("netdev-" device)
#if defined(CONFIG_DYNAMIC_DEBUG)
#define netdev_dbg(__dev, format, args...) \
do { \
dynamic_netdev_dbg(__dev, format, ##args); \
} while (0)
#elif defined(DEBUG)
#define netdev_dbg(__dev, format, args...) \
netdev_printk(KERN_DEBUG, __dev, format, ##args)
#else
#define netdev_dbg(__dev, format, args...) \
({ \
if (0) \
netdev_printk(KERN_DEBUG, __dev, format, ##args); \
0; \
})
#endif
#if defined(VERBOSE_DEBUG)
#define netdev_vdbg netdev_dbg
#else
#define netdev_vdbg(dev, format, args...) \
({ \
if (0) \
netdev_printk(KERN_DEBUG, dev, format, ##args); \
0; \
})
#endif
/*
* netdev_WARN() acts like dev_printk(), but with the key difference
* of using a WARN/WARN_ON to get the message out, including the
* file/line information and a backtrace.
*/
#define netdev_WARN(dev, format, args...) \
WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
/* netif printk helpers, similar to netdev_printk */
#define netif_printk(priv, type, level, dev, fmt, args...) \
do { \
if (netif_msg_##type(priv)) \
netdev_printk(level, (dev), fmt, ##args); \
} while (0)
#define netif_level(level, priv, type, dev, fmt, args...) \
do { \
if (netif_msg_##type(priv)) \
netdev_##level(dev, fmt, ##args); \
} while (0)
#define netif_emerg(priv, type, dev, fmt, args...) \
netif_level(emerg, priv, type, dev, fmt, ##args)
#define netif_alert(priv, type, dev, fmt, args...) \
netif_level(alert, priv, type, dev, fmt, ##args)
#define netif_crit(priv, type, dev, fmt, args...) \
netif_level(crit, priv, type, dev, fmt, ##args)
#define netif_err(priv, type, dev, fmt, args...) \
netif_level(err, priv, type, dev, fmt, ##args)
#define netif_warn(priv, type, dev, fmt, args...) \
netif_level(warn, priv, type, dev, fmt, ##args)
#define netif_notice(priv, type, dev, fmt, args...) \
netif_level(notice, priv, type, dev, fmt, ##args)
#define netif_info(priv, type, dev, fmt, args...) \
netif_level(info, priv, type, dev, fmt, ##args)
#if defined(CONFIG_DYNAMIC_DEBUG)
#define netif_dbg(priv, type, netdev, format, args...) \
do { \
if (netif_msg_##type(priv)) \
dynamic_netdev_dbg(netdev, format, ##args); \
} while (0)
#elif defined(DEBUG)
#define netif_dbg(priv, type, dev, format, args...) \
netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
#else
#define netif_dbg(priv, type, dev, format, args...) \
({ \
if (0) \
netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
0; \
})
#endif
#if defined(VERBOSE_DEBUG)
#define netif_vdbg netif_dbg
#else
#define netif_vdbg(priv, type, dev, format, args...) \
({ \
if (0) \
netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
0; \
})
#endif
/*
* The list of packet types we will receive (as opposed to discard)
* and the routines to invoke.
*
* Why 16. Because with 16 the only overlap we get on a hash of the
* low nibble of the protocol value is RARP/SNAP/X.25.
*
* NOTE: That is no longer true with the addition of VLAN tags. Not
* sure which should go first, but I bet it won't make much
* difference if we are running VLANs. The good news is that
* this protocol won't be in the list unless compiled in, so
* the average user (w/out VLANs) will not be adversely affected.
* --BLG
*
* 0800 IP
* 8100 802.1Q VLAN
* 0001 802.3
* 0002 AX.25
* 0004 802.2
* 8035 RARP
* 0005 SNAP
* 0805 X.25
* 0806 ARP
* 8137 IPX
* 0009 Localtalk
* 86DD IPv6
*/
#define PTYPE_HASH_SIZE (16)
#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
#endif /* _LINUX_NETDEVICE_H */