linux_dsm_epyc7002/arch/powerpc/platforms/powernv/opal.c
Daniel Axtens f2dd80ecca powerpc/powernv: Panic on unhandled Machine Check
All unrecovered machine check errors on PowerNV should cause an
immediate panic. There are 2 reasons that this is the right policy:
it's not safe to continue, and we're already trying to reboot.

Firstly, if we go through the recovery process and do not successfully
recover, we can't be sure about the state of the machine, and it is
not safe to recover and proceed.

Linux knows about the following sources of Machine Check Errors:
- Uncorrectable Errors (UE)
- Effective - Real Address Translation (ERAT)
- Segment Lookaside Buffer (SLB)
- Translation Lookaside Buffer (TLB)
- Unknown/Unrecognised

In the SLB, TLB and ERAT cases, we can further categorise these as
parity errors, multihit errors or unknown/unrecognised.

We can handle SLB errors by flushing and reloading the SLB. We can
handle TLB and ERAT multihit errors by flushing the TLB. (It appears
we may not handle TLB and ERAT parity errors: I will investigate
further and send a followup patch if appropriate.)

This leaves us with uncorrectable errors. Uncorrectable errors are
usually the result of ECC memory detecting an error that it cannot
correct, but they also crop up in the context of PCI cards failing
during DMA writes, and during CAPI error events.

There are several types of UE, and there are 3 places a UE can occur:
Skiboot, the kernel, and userspace. For Skiboot errors, we have the
facility to make some recoverable. For userspace, we can simply kill
(SIGBUS) the affected process. We have no meaningful way to deal with
UEs in kernel space or in unrecoverable sections of Skiboot.

Currently, these unrecovered UEs fall through to
machine_check_expection() in traps.c, which calls die(), which OOPSes
and sends SIGBUS to the process. This sometimes allows us to stumble
onwards. For example we've seen UEs kill the kernel eehd and
khugepaged. However, the process killed could have held a lock, or it
could have been a more important process, etc: we can no longer make
any assertions about the state of the machine. Similarly if we see a
UE in skiboot (and again we've seen this happen), we're not in a
position where we can make any assertions about the state of the
machine.

Likewise, for unknown or unrecognised errors, we're not able to say
anything about the state of the machine.

Therefore, if we have an unrecovered MCE, the most appropriate thing
to do is to panic.

The second reason is that since e784b6499d ("powerpc/powernv: Invoke
opal_cec_reboot2() on unrecoverable machine check errors."), we
attempt a special OPAL reboot on an unhandled MCE. This is so the
hardware can record error data for later debugging.

The comments in that commit assert that we are heading down the panic
path anyway. At the moment this is not always true. With UEs in kernel
space, for instance, they are marked as recoverable by the hardware,
so if the attempt to reboot failed (e.g. old Skiboot), we wouldn't
panic() but would simply die() and OOPS. It doesn't make sense to be
staggering on if we've just tried to reboot: we should panic().

Explicitly panic() on unrecovered MCEs on PowerNV.
Update the comments appropriately.

This fixes some hangs following EEH events on cxlflash setups.

Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-10-09 08:07:19 +11:00

892 lines
22 KiB
C

/*
* PowerNV OPAL high level interfaces
*
* Copyright 2011 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) "opal: " fmt
#include <linux/printk.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/kobject.h>
#include <linux/delay.h>
#include <linux/memblock.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <asm/machdep.h>
#include <asm/opal.h>
#include <asm/firmware.h>
#include <asm/mce.h>
#include "powernv.h"
/* /sys/firmware/opal */
struct kobject *opal_kobj;
struct opal {
u64 base;
u64 entry;
u64 size;
} opal;
struct mcheck_recoverable_range {
u64 start_addr;
u64 end_addr;
u64 recover_addr;
};
static struct mcheck_recoverable_range *mc_recoverable_range;
static int mc_recoverable_range_len;
struct device_node *opal_node;
static DEFINE_SPINLOCK(opal_write_lock);
static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
static uint32_t opal_heartbeat;
static void opal_reinit_cores(void)
{
/* Do the actual re-init, This will clobber all FPRs, VRs, etc...
*
* It will preserve non volatile GPRs and HSPRG0/1. It will
* also restore HIDs and other SPRs to their original value
* but it might clobber a bunch.
*/
#ifdef __BIG_ENDIAN__
opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_BE);
#else
opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_LE);
#endif
}
int __init early_init_dt_scan_opal(unsigned long node,
const char *uname, int depth, void *data)
{
const void *basep, *entryp, *sizep;
int basesz, entrysz, runtimesz;
if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
return 0;
basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
if (!basep || !entryp || !sizep)
return 1;
opal.base = of_read_number(basep, basesz/4);
opal.entry = of_read_number(entryp, entrysz/4);
opal.size = of_read_number(sizep, runtimesz/4);
pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n",
opal.base, basep, basesz);
pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
opal.entry, entryp, entrysz);
pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
opal.size, sizep, runtimesz);
powerpc_firmware_features |= FW_FEATURE_OPAL;
if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
powerpc_firmware_features |= FW_FEATURE_OPALv2;
powerpc_firmware_features |= FW_FEATURE_OPALv3;
pr_info("OPAL V3 detected !\n");
} else if (of_flat_dt_is_compatible(node, "ibm,opal-v2")) {
powerpc_firmware_features |= FW_FEATURE_OPALv2;
pr_info("OPAL V2 detected !\n");
} else {
pr_info("OPAL V1 detected !\n");
}
/* Reinit all cores with the right endian */
opal_reinit_cores();
/* Restore some bits */
if (cur_cpu_spec->cpu_restore)
cur_cpu_spec->cpu_restore();
return 1;
}
int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
const char *uname, int depth, void *data)
{
int i, psize, size;
const __be32 *prop;
if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
return 0;
prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
if (!prop)
return 1;
pr_debug("Found machine check recoverable ranges.\n");
/*
* Calculate number of available entries.
*
* Each recoverable address range entry is (start address, len,
* recovery address), 2 cells each for start and recovery address,
* 1 cell for len, totalling 5 cells per entry.
*/
mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
/* Sanity check */
if (!mc_recoverable_range_len)
return 1;
/* Size required to hold all the entries. */
size = mc_recoverable_range_len *
sizeof(struct mcheck_recoverable_range);
/*
* Allocate a buffer to hold the MC recoverable ranges. We would be
* accessing them in real mode, hence it needs to be within
* RMO region.
*/
mc_recoverable_range =__va(memblock_alloc_base(size, __alignof__(u64),
ppc64_rma_size));
memset(mc_recoverable_range, 0, size);
for (i = 0; i < mc_recoverable_range_len; i++) {
mc_recoverable_range[i].start_addr =
of_read_number(prop + (i * 5) + 0, 2);
mc_recoverable_range[i].end_addr =
mc_recoverable_range[i].start_addr +
of_read_number(prop + (i * 5) + 2, 1);
mc_recoverable_range[i].recover_addr =
of_read_number(prop + (i * 5) + 3, 2);
pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
mc_recoverable_range[i].start_addr,
mc_recoverable_range[i].end_addr,
mc_recoverable_range[i].recover_addr);
}
return 1;
}
static int __init opal_register_exception_handlers(void)
{
#ifdef __BIG_ENDIAN__
u64 glue;
if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
return -ENODEV;
/* Hookup some exception handlers except machine check. We use the
* fwnmi area at 0x7000 to provide the glue space to OPAL
*/
glue = 0x7000;
/*
* Check if we are running on newer firmware that exports
* OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch
* the HMI interrupt and we catch it directly in Linux.
*
* For older firmware (i.e currently released POWER8 System Firmware
* as of today <= SV810_087), we fallback to old behavior and let OPAL
* patch the HMI vector and handle it inside OPAL firmware.
*
* For newer firmware (in development/yet to be released) we will
* start catching/handling HMI directly in Linux.
*/
if (!opal_check_token(OPAL_HANDLE_HMI)) {
pr_info("Old firmware detected, OPAL handles HMIs.\n");
opal_register_exception_handler(
OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
0, glue);
glue += 128;
}
opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
#endif
return 0;
}
machine_early_initcall(powernv, opal_register_exception_handlers);
/*
* Opal message notifier based on message type. Allow subscribers to get
* notified for specific messgae type.
*/
int opal_message_notifier_register(enum opal_msg_type msg_type,
struct notifier_block *nb)
{
if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
pr_warning("%s: Invalid arguments, msg_type:%d\n",
__func__, msg_type);
return -EINVAL;
}
return atomic_notifier_chain_register(
&opal_msg_notifier_head[msg_type], nb);
}
EXPORT_SYMBOL_GPL(opal_message_notifier_register);
int opal_message_notifier_unregister(enum opal_msg_type msg_type,
struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(
&opal_msg_notifier_head[msg_type], nb);
}
EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
static void opal_message_do_notify(uint32_t msg_type, void *msg)
{
/* notify subscribers */
atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
msg_type, msg);
}
static void opal_handle_message(void)
{
s64 ret;
/*
* TODO: pre-allocate a message buffer depending on opal-msg-size
* value in /proc/device-tree.
*/
static struct opal_msg msg;
u32 type;
ret = opal_get_msg(__pa(&msg), sizeof(msg));
/* No opal message pending. */
if (ret == OPAL_RESOURCE)
return;
/* check for errors. */
if (ret) {
pr_warning("%s: Failed to retrieve opal message, err=%lld\n",
__func__, ret);
return;
}
type = be32_to_cpu(msg.msg_type);
/* Sanity check */
if (type >= OPAL_MSG_TYPE_MAX) {
pr_warning("%s: Unknown message type: %u\n", __func__, type);
return;
}
opal_message_do_notify(type, (void *)&msg);
}
static irqreturn_t opal_message_notify(int irq, void *data)
{
opal_handle_message();
return IRQ_HANDLED;
}
static int __init opal_message_init(void)
{
int ret, i, irq;
for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
if (!irq) {
pr_err("%s: Can't register OPAL event irq (%d)\n",
__func__, irq);
return irq;
}
ret = request_irq(irq, opal_message_notify,
IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
if (ret) {
pr_err("%s: Can't request OPAL event irq (%d)\n",
__func__, ret);
return ret;
}
return 0;
}
int opal_get_chars(uint32_t vtermno, char *buf, int count)
{
s64 rc;
__be64 evt, len;
if (!opal.entry)
return -ENODEV;
opal_poll_events(&evt);
if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
return 0;
len = cpu_to_be64(count);
rc = opal_console_read(vtermno, &len, buf);
if (rc == OPAL_SUCCESS)
return be64_to_cpu(len);
return 0;
}
int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
{
int written = 0;
__be64 olen;
s64 len, rc;
unsigned long flags;
__be64 evt;
if (!opal.entry)
return -ENODEV;
/* We want put_chars to be atomic to avoid mangling of hvsi
* packets. To do that, we first test for room and return
* -EAGAIN if there isn't enough.
*
* Unfortunately, opal_console_write_buffer_space() doesn't
* appear to work on opal v1, so we just assume there is
* enough room and be done with it
*/
spin_lock_irqsave(&opal_write_lock, flags);
if (firmware_has_feature(FW_FEATURE_OPALv2)) {
rc = opal_console_write_buffer_space(vtermno, &olen);
len = be64_to_cpu(olen);
if (rc || len < total_len) {
spin_unlock_irqrestore(&opal_write_lock, flags);
/* Closed -> drop characters */
if (rc)
return total_len;
opal_poll_events(NULL);
return -EAGAIN;
}
}
/* We still try to handle partial completions, though they
* should no longer happen.
*/
rc = OPAL_BUSY;
while(total_len > 0 && (rc == OPAL_BUSY ||
rc == OPAL_BUSY_EVENT || rc == OPAL_SUCCESS)) {
olen = cpu_to_be64(total_len);
rc = opal_console_write(vtermno, &olen, data);
len = be64_to_cpu(olen);
/* Closed or other error drop */
if (rc != OPAL_SUCCESS && rc != OPAL_BUSY &&
rc != OPAL_BUSY_EVENT) {
written = total_len;
break;
}
if (rc == OPAL_SUCCESS) {
total_len -= len;
data += len;
written += len;
}
/* This is a bit nasty but we need that for the console to
* flush when there aren't any interrupts. We will clean
* things a bit later to limit that to synchronous path
* such as the kernel console and xmon/udbg
*/
do
opal_poll_events(&evt);
while(rc == OPAL_SUCCESS &&
(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT));
}
spin_unlock_irqrestore(&opal_write_lock, flags);
return written;
}
static int opal_recover_mce(struct pt_regs *regs,
struct machine_check_event *evt)
{
int recovered = 0;
uint64_t ea = get_mce_fault_addr(evt);
if (!(regs->msr & MSR_RI)) {
/* If MSR_RI isn't set, we cannot recover */
recovered = 0;
} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
/* Platform corrected itself */
recovered = 1;
} else if (ea && !is_kernel_addr(ea)) {
/*
* Faulting address is not in kernel text. We should be fine.
* We need to find which process uses this address.
* For now, kill the task if we have received exception when
* in userspace.
*
* TODO: Queue up this address for hwpoisioning later.
*/
if (user_mode(regs) && !is_global_init(current)) {
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
recovered = 1;
} else
recovered = 0;
} else if (user_mode(regs) && !is_global_init(current) &&
evt->severity == MCE_SEV_ERROR_SYNC) {
/*
* If we have received a synchronous error when in userspace
* kill the task.
*/
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
recovered = 1;
}
return recovered;
}
int opal_machine_check(struct pt_regs *regs)
{
struct machine_check_event evt;
int ret;
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
return 0;
/* Print things out */
if (evt.version != MCE_V1) {
pr_err("Machine Check Exception, Unknown event version %d !\n",
evt.version);
return 0;
}
machine_check_print_event_info(&evt);
if (opal_recover_mce(regs, &evt))
return 1;
/*
* Unrecovered machine check, we are heading to panic path.
*
* We may have hit this MCE in very early stage of kernel
* initialization even before opal-prd has started running. If
* this is the case then this MCE error may go un-noticed or
* un-analyzed if we go down panic path. We need to inform
* BMC/OCC about this error so that they can collect relevant
* data for error analysis before rebooting.
* Use opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR) to do so.
* This function may not return on BMC based system.
*/
ret = opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR,
"Unrecoverable Machine Check exception");
if (ret == OPAL_UNSUPPORTED) {
pr_emerg("Reboot type %d not supported\n",
OPAL_REBOOT_PLATFORM_ERROR);
}
/*
* We reached here. There can be three possibilities:
* 1. We are running on a firmware level that do not support
* opal_cec_reboot2()
* 2. We are running on a firmware level that do not support
* OPAL_REBOOT_PLATFORM_ERROR reboot type.
* 3. We are running on FSP based system that does not need opal
* to trigger checkstop explicitly for error analysis. The FSP
* PRD component would have already got notified about this
* error through other channels.
*
* If hardware marked this as an unrecoverable MCE, we are
* going to panic anyway. Even if it didn't, it's not safe to
* continue at this point, so we should explicitly panic.
*/
panic("PowerNV Unrecovered Machine Check");
return 0;
}
/* Early hmi handler called in real mode. */
int opal_hmi_exception_early(struct pt_regs *regs)
{
s64 rc;
/*
* call opal hmi handler. Pass paca address as token.
* The return value OPAL_SUCCESS is an indication that there is
* an HMI event generated waiting to pull by Linux.
*/
rc = opal_handle_hmi();
if (rc == OPAL_SUCCESS) {
local_paca->hmi_event_available = 1;
return 1;
}
return 0;
}
/* HMI exception handler called in virtual mode during check_irq_replay. */
int opal_handle_hmi_exception(struct pt_regs *regs)
{
s64 rc;
__be64 evt = 0;
/*
* Check if HMI event is available.
* if Yes, then call opal_poll_events to pull opal messages and
* process them.
*/
if (!local_paca->hmi_event_available)
return 0;
local_paca->hmi_event_available = 0;
rc = opal_poll_events(&evt);
if (rc == OPAL_SUCCESS && evt)
opal_handle_events(be64_to_cpu(evt));
return 1;
}
static uint64_t find_recovery_address(uint64_t nip)
{
int i;
for (i = 0; i < mc_recoverable_range_len; i++)
if ((nip >= mc_recoverable_range[i].start_addr) &&
(nip < mc_recoverable_range[i].end_addr))
return mc_recoverable_range[i].recover_addr;
return 0;
}
bool opal_mce_check_early_recovery(struct pt_regs *regs)
{
uint64_t recover_addr = 0;
if (!opal.base || !opal.size)
goto out;
if ((regs->nip >= opal.base) &&
(regs->nip <= (opal.base + opal.size)))
recover_addr = find_recovery_address(regs->nip);
/*
* Setup regs->nip to rfi into fixup address.
*/
if (recover_addr)
regs->nip = recover_addr;
out:
return !!recover_addr;
}
static int opal_sysfs_init(void)
{
opal_kobj = kobject_create_and_add("opal", firmware_kobj);
if (!opal_kobj) {
pr_warn("kobject_create_and_add opal failed\n");
return -ENOMEM;
}
return 0;
}
static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
return memory_read_from_buffer(buf, count, &off, bin_attr->private,
bin_attr->size);
}
static BIN_ATTR_RO(symbol_map, 0);
static void opal_export_symmap(void)
{
const __be64 *syms;
unsigned int size;
struct device_node *fw;
int rc;
fw = of_find_node_by_path("/ibm,opal/firmware");
if (!fw)
return;
syms = of_get_property(fw, "symbol-map", &size);
if (!syms || size != 2 * sizeof(__be64))
return;
/* Setup attributes */
bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0]));
bin_attr_symbol_map.size = be64_to_cpu(syms[1]);
rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map);
if (rc)
pr_warn("Error %d creating OPAL symbols file\n", rc);
}
static void __init opal_dump_region_init(void)
{
void *addr;
uint64_t size;
int rc;
if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
return;
/* Register kernel log buffer */
addr = log_buf_addr_get();
if (addr == NULL)
return;
size = log_buf_len_get();
if (size == 0)
return;
rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
__pa(addr), size);
/* Don't warn if this is just an older OPAL that doesn't
* know about that call
*/
if (rc && rc != OPAL_UNSUPPORTED)
pr_warn("DUMP: Failed to register kernel log buffer. "
"rc = %d\n", rc);
}
static void opal_pdev_init(struct device_node *opal_node,
const char *compatible)
{
struct device_node *np;
for_each_child_of_node(opal_node, np)
if (of_device_is_compatible(np, compatible))
of_platform_device_create(np, NULL, NULL);
}
static void opal_i2c_create_devs(void)
{
struct device_node *np;
for_each_compatible_node(np, NULL, "ibm,opal-i2c")
of_platform_device_create(np, NULL, NULL);
}
static int kopald(void *unused)
{
__be64 events;
set_freezable();
do {
try_to_freeze();
opal_poll_events(&events);
opal_handle_events(be64_to_cpu(events));
msleep_interruptible(opal_heartbeat);
} while (!kthread_should_stop());
return 0;
}
static void opal_init_heartbeat(void)
{
/* Old firwmware, we assume the HVC heartbeat is sufficient */
if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
&opal_heartbeat) != 0)
opal_heartbeat = 0;
if (opal_heartbeat)
kthread_run(kopald, NULL, "kopald");
}
static int __init opal_init(void)
{
struct device_node *np, *consoles, *leds;
int rc;
opal_node = of_find_node_by_path("/ibm,opal");
if (!opal_node) {
pr_warn("Device node not found\n");
return -ENODEV;
}
/* Register OPAL consoles if any ports */
if (firmware_has_feature(FW_FEATURE_OPALv2))
consoles = of_find_node_by_path("/ibm,opal/consoles");
else
consoles = of_node_get(opal_node);
if (consoles) {
for_each_child_of_node(consoles, np) {
if (strcmp(np->name, "serial"))
continue;
of_platform_device_create(np, NULL, NULL);
}
of_node_put(consoles);
}
/* Initialise OPAL messaging system */
opal_message_init();
/* Initialise OPAL asynchronous completion interface */
opal_async_comp_init();
/* Initialise OPAL sensor interface */
opal_sensor_init();
/* Initialise OPAL hypervisor maintainence interrupt handling */
opal_hmi_handler_init();
/* Create i2c platform devices */
opal_i2c_create_devs();
/* Setup a heatbeat thread if requested by OPAL */
opal_init_heartbeat();
/* Create leds platform devices */
leds = of_find_node_by_path("/ibm,opal/leds");
if (leds) {
of_platform_device_create(leds, "opal_leds", NULL);
of_node_put(leds);
}
/* Create "opal" kobject under /sys/firmware */
rc = opal_sysfs_init();
if (rc == 0) {
/* Export symbol map to userspace */
opal_export_symmap();
/* Setup dump region interface */
opal_dump_region_init();
/* Setup error log interface */
rc = opal_elog_init();
/* Setup code update interface */
opal_flash_update_init();
/* Setup platform dump extract interface */
opal_platform_dump_init();
/* Setup system parameters interface */
opal_sys_param_init();
/* Setup message log interface. */
opal_msglog_init();
}
/* Initialize platform devices: IPMI backend, PRD & flash interface */
opal_pdev_init(opal_node, "ibm,opal-ipmi");
opal_pdev_init(opal_node, "ibm,opal-flash");
opal_pdev_init(opal_node, "ibm,opal-prd");
return 0;
}
machine_subsys_initcall(powernv, opal_init);
void opal_shutdown(void)
{
long rc = OPAL_BUSY;
opal_event_shutdown();
/*
* Then sync with OPAL which ensure anything that can
* potentially write to our memory has completed such
* as an ongoing dump retrieval
*/
while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
rc = opal_sync_host_reboot();
if (rc == OPAL_BUSY)
opal_poll_events(NULL);
else
mdelay(10);
}
/* Unregister memory dump region */
if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
}
/* Export this so that test modules can use it */
EXPORT_SYMBOL_GPL(opal_invalid_call);
EXPORT_SYMBOL_GPL(opal_xscom_read);
EXPORT_SYMBOL_GPL(opal_xscom_write);
EXPORT_SYMBOL_GPL(opal_ipmi_send);
EXPORT_SYMBOL_GPL(opal_ipmi_recv);
EXPORT_SYMBOL_GPL(opal_flash_read);
EXPORT_SYMBOL_GPL(opal_flash_write);
EXPORT_SYMBOL_GPL(opal_flash_erase);
EXPORT_SYMBOL_GPL(opal_prd_msg);
/* Convert a region of vmalloc memory to an opal sg list */
struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
unsigned long vmalloc_size)
{
struct opal_sg_list *sg, *first = NULL;
unsigned long i = 0;
sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!sg)
goto nomem;
first = sg;
while (vmalloc_size > 0) {
uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
uint64_t length = min(vmalloc_size, PAGE_SIZE);
sg->entry[i].data = cpu_to_be64(data);
sg->entry[i].length = cpu_to_be64(length);
i++;
if (i >= SG_ENTRIES_PER_NODE) {
struct opal_sg_list *next;
next = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!next)
goto nomem;
sg->length = cpu_to_be64(
i * sizeof(struct opal_sg_entry) + 16);
i = 0;
sg->next = cpu_to_be64(__pa(next));
sg = next;
}
vmalloc_addr += length;
vmalloc_size -= length;
}
sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
return first;
nomem:
pr_err("%s : Failed to allocate memory\n", __func__);
opal_free_sg_list(first);
return NULL;
}
void opal_free_sg_list(struct opal_sg_list *sg)
{
while (sg) {
uint64_t next = be64_to_cpu(sg->next);
kfree(sg);
if (next)
sg = __va(next);
else
sg = NULL;
}
}
int opal_error_code(int rc)
{
switch (rc) {
case OPAL_SUCCESS: return 0;
case OPAL_PARAMETER: return -EINVAL;
case OPAL_ASYNC_COMPLETION: return -EINPROGRESS;
case OPAL_BUSY_EVENT: return -EBUSY;
case OPAL_NO_MEM: return -ENOMEM;
case OPAL_PERMISSION: return -EPERM;
case OPAL_UNSUPPORTED: return -EIO;
case OPAL_HARDWARE: return -EIO;
case OPAL_INTERNAL_ERROR: return -EIO;
default:
pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
return -EIO;
}
}
EXPORT_SYMBOL_GPL(opal_poll_events);
EXPORT_SYMBOL_GPL(opal_rtc_read);
EXPORT_SYMBOL_GPL(opal_rtc_write);
EXPORT_SYMBOL_GPL(opal_tpo_read);
EXPORT_SYMBOL_GPL(opal_tpo_write);
EXPORT_SYMBOL_GPL(opal_i2c_request);
/* Export these symbols for PowerNV LED class driver */
EXPORT_SYMBOL_GPL(opal_leds_get_ind);
EXPORT_SYMBOL_GPL(opal_leds_set_ind);