linux_dsm_epyc7002/sound/pci/als4000.c
Andreas Mohr cb780cdd85 ALSA: ALS4000 driver work, step 2
- more register naming work
- finally figured out that weird CR register stuff
  (and did I mention that I hate _really_ undecipherable open-coded values?)
- fix handling of IRQ sharing in interrupt handler
  (hopefully properly, otherwise I'd be grateful to hear your
  pedantic comments ;)
- add handy SPECS_PAGE references wherever useful
- comments, cleanup
- add me as module author

Signed-off-by: Andreas Mohr <andi@lisas.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2008-08-25 09:57:48 +02:00

1061 lines
31 KiB
C

/*
* card-als4000.c - driver for Avance Logic ALS4000 based soundcards.
* Copyright (C) 2000 by Bart Hartgers <bart@etpmod.phys.tue.nl>,
* Jaroslav Kysela <perex@perex.cz>
* Copyright (C) 2002, 2008 by Andreas Mohr <hw7oshyuv3001@sneakemail.com>
*
* Framework borrowed from Massimo Piccioni's card-als100.c.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* NOTES
*
* Since Avance does not provide any meaningful documentation, and I
* bought an ALS4000 based soundcard, I was forced to base this driver
* on reverse engineering.
*
* Note: this is no longer true (thank you!):
* pretty verbose chip docu (ALS4000a.PDF) can be found on the ALSA web site.
* Page numbers stated anywhere below with the "SPECS_PAGE:" tag
* refer to: ALS4000a.PDF specs Ver 1.0, May 28th, 1998.
*
* The ALS4000 seems to be the PCI-cousin of the ALS100. It contains an
* ALS100-like SB DSP/mixer, an OPL3 synth, a MPU401 and a gameport
* interface. These subsystems can be mapped into ISA io-port space,
* using the PCI-interface. In addition, the PCI-bit provides DMA and IRQ
* services to the subsystems.
*
* While ALS4000 is very similar to a SoundBlaster, the differences in
* DMA and capturing require more changes to the SoundBlaster than
* desirable, so I made this separate driver.
*
* The ALS4000 can do real full duplex playback/capture.
*
* FMDAC:
* - 0x4f -> port 0x14
* - port 0x15 |= 1
*
* Enable/disable 3D sound:
* - 0x50 -> port 0x14
* - change bit 6 (0x40) of port 0x15
*
* Set QSound:
* - 0xdb -> port 0x14
* - set port 0x15:
* 0x3e (mode 3), 0x3c (mode 2), 0x3a (mode 1), 0x38 (mode 0)
*
* Set KSound:
* - value -> some port 0x0c0d
*
* ToDo:
* - by default, don't enable legacy game and use PCI game I/O
* - power management? (card can do voice wakeup according to datasheet!!)
*/
#include <asm/io.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/initval.h>
MODULE_AUTHOR("Bart Hartgers <bart@etpmod.phys.tue.nl>, Andreas Mohr");
MODULE_DESCRIPTION("Avance Logic ALS4000");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Avance Logic,ALS4000}}");
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for ALS4000 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for ALS4000 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable ALS4000 soundcard.");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address for ALS4000 soundcard. (0 = disabled)");
#endif
struct snd_card_als4000 {
/* most frequent access first */
unsigned long iobase;
struct pci_dev *pci;
struct snd_sb *chip;
#ifdef SUPPORT_JOYSTICK
struct gameport *gameport;
#endif
};
static struct pci_device_id snd_als4000_ids[] = {
{ 0x4005, 0x4000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ALS4000 */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_als4000_ids);
enum als4k_iobase_t {
/* IOx: B == Byte, W = Word, D = DWord; SPECS_PAGE: 37 */
ALS4K_IOD_00_AC97_ACCESS = 0x00,
ALS4K_IOW_04_AC97_READ = 0x04,
ALS4K_IOB_06_AC97_STATUS = 0x06,
ALS4K_IOB_07_IRQSTATUS = 0x07,
ALS4K_IOD_08_GCR_DATA = 0x08,
ALS4K_IOB_0C_GCR_INDEX = 0x0c,
ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU = 0x0e,
ALS4K_IOB_10_ADLIB_ADDR0 = 0x10,
ALS4K_IOB_11_ADLIB_ADDR1 = 0x11,
ALS4K_IOB_12_ADLIB_ADDR2 = 0x12,
ALS4K_IOB_13_ADLIB_ADDR3 = 0x13,
ALS4K_IOB_14_MIXER_INDEX = 0x14,
ALS4K_IOB_15_MIXER_DATA = 0x15,
ALS4K_IOB_16_ESP_RESET = 0x16,
ALS4K_IOB_16_ACK_FOR_CR1E = 0x16, /* 2nd function */
ALS4K_IOB_18_OPL_ADDR0 = 0x18,
ALS4K_IOB_19_OPL_ADDR1 = 0x19,
ALS4K_IOB_1A_ESP_RD_DATA = 0x1a,
ALS4K_IOB_1C_ESP_CMD_DATA = 0x1c,
ALS4K_IOB_1C_ESP_WR_STATUS = 0x1c, /* 2nd function */
ALS4K_IOB_1E_ESP_RD_STATUS8 = 0x1e,
ALS4K_IOB_1F_ESP_RD_STATUS16 = 0x1f,
ALS4K_IOB_20_ESP_GAMEPORT_200 = 0x20,
ALS4K_IOB_21_ESP_GAMEPORT_201 = 0x21,
ALS4K_IOB_30_MIDI_DATA = 0x30,
ALS4K_IOB_31_MIDI_STATUS = 0x31,
ALS4K_IOB_31_MIDI_COMMAND = 0x31, /* 2nd function */
};
enum als4k_iobase_0e_t {
ALS4K_IOB_0E_MPU_IRQ = 0x10,
ALS4K_IOB_0E_CR1E_IRQ = 0x40,
ALS4K_IOB_0E_SB_DMA_IRQ = 0x80,
};
enum als4k_gcr_t { /* all registers 32bit wide; SPECS_PAGE: 38 to 42 */
ALS4K_GCR8C_MISC_CTRL = 0x8c,
ALS4K_GCR90_TEST_MODE_REG = 0x90,
ALS4K_GCR91_DMA0_ADDR = 0x91,
ALS4K_GCR92_DMA0_MODE_COUNT = 0x92,
ALS4K_GCR93_DMA1_ADDR = 0x93,
ALS4K_GCR94_DMA1_MODE_COUNT = 0x94,
ALS4K_GCR95_DMA3_ADDR = 0x95,
ALS4K_GCR96_DMA3_MODE_COUNT = 0x96,
ALS4K_GCR99_DMA_EMULATION_CTRL = 0x99,
ALS4K_GCRA0_FIFO1_CURRENT_ADDR = 0xa0,
ALS4K_GCRA1_FIFO1_STATUS_BYTECOUNT = 0xa1,
ALS4K_GCRA2_FIFO2_PCIADDR = 0xa2,
ALS4K_GCRA3_FIFO2_COUNT = 0xa3,
ALS4K_GCRA4_FIFO2_CURRENT_ADDR = 0xa4,
ALS4K_GCRA5_FIFO1_STATUS_BYTECOUNT = 0xa5,
ALS4K_GCRA6_PM_CTRL = 0xa6,
ALS4K_GCRA7_PCI_ACCESS_STORAGE = 0xa7,
ALS4K_GCRA8_LEGACY_CFG1 = 0xa8,
ALS4K_GCRA9_LEGACY_CFG2 = 0xa9,
ALS4K_GCRFF_DUMMY_SCRATCH = 0xff,
};
enum als4k_gcr8c_t {
ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE = 0x8000,
ALS4K_GCR8C_CHIP_REV_MASK = 0xf0000
};
static inline void snd_als4k_iobase_writeb(unsigned long iobase,
enum als4k_iobase_t reg,
u8 val)
{
outb(val, iobase + reg);
}
static inline void snd_als4k_iobase_writel(unsigned long iobase,
enum als4k_iobase_t reg,
u32 val)
{
outl(val, iobase + reg);
}
static inline u8 snd_als4k_iobase_readb(unsigned long iobase,
enum als4k_iobase_t reg)
{
return inb(iobase + reg);
}
static inline u32 snd_als4k_iobase_readl(unsigned long iobase,
enum als4k_iobase_t reg)
{
return inl(iobase + reg);
}
static inline void snd_als4k_gcr_write_addr(unsigned long iobase,
enum als4k_gcr_t reg,
u32 val)
{
snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg);
snd_als4k_iobase_writel(iobase, ALS4K_IOD_08_GCR_DATA, val);
}
static inline void snd_als4k_gcr_write(struct snd_sb *sb,
enum als4k_gcr_t reg,
u32 val)
{
snd_als4k_gcr_write_addr(sb->alt_port, reg, val);
}
static inline u32 snd_als4k_gcr_read_addr(unsigned long iobase,
enum als4k_gcr_t reg)
{
/* SPECS_PAGE: 37/38 */
snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg);
return snd_als4k_iobase_readl(iobase, ALS4K_IOD_08_GCR_DATA);
}
static inline u32 snd_als4k_gcr_read(struct snd_sb *sb, enum als4k_gcr_t reg)
{
return snd_als4k_gcr_read_addr(sb->alt_port, reg);
}
enum als4k_cr_t { /* all registers 8bit wide; SPECS_PAGE: 20 to 23 */
ALS4K_CR0_SB_CONFIG = 0x00,
ALS4K_CR2_MISC_CONTROL = 0x02,
ALS4K_CR3_CONFIGURATION = 0x03,
ALS4K_CR17_FIFO_STATUS = 0x17,
ALS4K_CR18_ESP_MAJOR_VERSION = 0x18,
ALS4K_CR19_ESP_MINOR_VERSION = 0x19,
ALS4K_CR1A_MPU401_UART_MODE_CONTROL = 0x1a,
ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO = 0x1c,
ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI = 0x1d,
ALS4K_CR1E_FIFO2_CONTROL = 0x1e, /* secondary PCM FIFO (recording) */
ALS4K_CR3A_MISC_CONTROL = 0x3a,
ALS4K_CR3B_CRC32_BYTE0 = 0x3b, /* for testing, activate via CR3A */
ALS4K_CR3C_CRC32_BYTE1 = 0x3c,
ALS4K_CR3D_CRC32_BYTE2 = 0x3d,
ALS4K_CR3E_CRC32_BYTE3 = 0x3e,
};
enum als4k_cr0_t {
ALS4K_CR0_DMA_CONTIN_MODE_CTRL = 0x02, /* IRQ/FIFO controlled for 0/1 */
ALS4K_CR0_DMA_90H_MODE_CTRL = 0x04, /* IRQ/FIFO controlled for 0/1 */
ALS4K_CR0_MX80_81_REG_WRITE_ENABLE = 0x80,
};
static inline void snd_als4_cr_write(struct snd_sb *chip,
enum als4k_cr_t reg,
u8 data)
{
/* Control Register is reg | 0xc0 (bit 7, 6 set) on sbmixer_index
* NOTE: assumes chip->mixer_lock to be locked externally already!
* SPECS_PAGE: 6 */
snd_sbmixer_write(chip, reg | 0xc0, data);
}
static inline u8 snd_als4_cr_read(struct snd_sb *chip,
enum als4k_cr_t reg)
{
/* NOTE: assumes chip->mixer_lock to be locked externally already! */
return snd_sbmixer_read(chip, reg | 0xc0);
}
static void snd_als4000_set_rate(struct snd_sb *chip, unsigned int rate)
{
if (!(chip->mode & SB_RATE_LOCK)) {
snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT);
snd_sbdsp_command(chip, rate>>8);
snd_sbdsp_command(chip, rate);
}
}
static inline void snd_als4000_set_capture_dma(struct snd_sb *chip,
dma_addr_t addr, unsigned size)
{
/* SPECS_PAGE: 40 */
snd_als4k_gcr_write(chip, ALS4K_GCRA2_FIFO2_PCIADDR, addr);
snd_als4k_gcr_write(chip, ALS4K_GCRA3_FIFO2_COUNT, (size-1));
}
static inline void snd_als4000_set_playback_dma(struct snd_sb *chip,
dma_addr_t addr,
unsigned size)
{
/* SPECS_PAGE: 38 */
snd_als4k_gcr_write(chip, ALS4K_GCR91_DMA0_ADDR, addr);
snd_als4k_gcr_write(chip, ALS4K_GCR92_DMA0_MODE_COUNT,
(size-1)|0x180000);
}
#define ALS4000_FORMAT_SIGNED (1<<0)
#define ALS4000_FORMAT_16BIT (1<<1)
#define ALS4000_FORMAT_STEREO (1<<2)
static int snd_als4000_get_format(struct snd_pcm_runtime *runtime)
{
int result;
result = 0;
if (snd_pcm_format_signed(runtime->format))
result |= ALS4000_FORMAT_SIGNED;
if (snd_pcm_format_physical_width(runtime->format) == 16)
result |= ALS4000_FORMAT_16BIT;
if (runtime->channels > 1)
result |= ALS4000_FORMAT_STEREO;
return result;
}
/* structure for setting up playback */
static const struct {
unsigned char dsp_cmd, dma_on, dma_off, format;
} playback_cmd_vals[]={
/* ALS4000_FORMAT_U8_MONO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_MONO },
/* ALS4000_FORMAT_S8_MONO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_MONO },
/* ALS4000_FORMAT_U16L_MONO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_MONO },
/* ALS4000_FORMAT_S16L_MONO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_MONO },
/* ALS4000_FORMAT_U8_STEREO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_STEREO },
/* ALS4000_FORMAT_S8_STEREO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_STEREO },
/* ALS4000_FORMAT_U16L_STEREO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_STEREO },
/* ALS4000_FORMAT_S16L_STEREO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_STEREO },
};
#define playback_cmd(chip) (playback_cmd_vals[(chip)->playback_format])
/* structure for setting up capture */
enum { CMD_WIDTH8=0x04, CMD_SIGNED=0x10, CMD_MONO=0x80, CMD_STEREO=0xA0 };
static const unsigned char capture_cmd_vals[]=
{
CMD_WIDTH8|CMD_MONO, /* ALS4000_FORMAT_U8_MONO */
CMD_WIDTH8|CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S8_MONO */
CMD_MONO, /* ALS4000_FORMAT_U16L_MONO */
CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S16L_MONO */
CMD_WIDTH8|CMD_STEREO, /* ALS4000_FORMAT_U8_STEREO */
CMD_WIDTH8|CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S8_STEREO */
CMD_STEREO, /* ALS4000_FORMAT_U16L_STEREO */
CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S16L_STEREO */
};
#define capture_cmd(chip) (capture_cmd_vals[(chip)->capture_format])
static int snd_als4000_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_als4000_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_als4000_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long size;
unsigned count;
chip->capture_format = snd_als4000_get_format(runtime);
size = snd_pcm_lib_buffer_bytes(substream);
count = snd_pcm_lib_period_bytes(substream);
if (chip->capture_format & ALS4000_FORMAT_16BIT)
count >>= 1;
count--;
spin_lock_irq(&chip->reg_lock);
snd_als4000_set_rate(chip, runtime->rate);
snd_als4000_set_capture_dma(chip, runtime->dma_addr, size);
spin_unlock_irq(&chip->reg_lock);
spin_lock_irq(&chip->mixer_lock);
snd_als4_cr_write(chip, ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO, count & 0xff);
snd_als4_cr_write(chip, ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI, count >> 8);
spin_unlock_irq(&chip->mixer_lock);
return 0;
}
static int snd_als4000_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long size;
unsigned count;
chip->playback_format = snd_als4000_get_format(runtime);
size = snd_pcm_lib_buffer_bytes(substream);
count = snd_pcm_lib_period_bytes(substream);
if (chip->playback_format & ALS4000_FORMAT_16BIT)
count >>= 1;
count--;
/* FIXME: from second playback on, there's a lot more clicks and pops
* involved here than on first playback. Fiddling with
* tons of different settings didn't help (DMA, speaker on/off,
* reordering, ...). Something seems to get enabled on playback
* that I haven't found out how to disable again, which then causes
* the switching pops to reach the speakers the next time here. */
spin_lock_irq(&chip->reg_lock);
snd_als4000_set_rate(chip, runtime->rate);
snd_als4000_set_playback_dma(chip, runtime->dma_addr, size);
/* SPEAKER_ON not needed, since dma_on seems to also enable speaker */
/* snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON); */
snd_sbdsp_command(chip, playback_cmd(chip).dsp_cmd);
snd_sbdsp_command(chip, playback_cmd(chip).format);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
snd_sbdsp_command(chip, playback_cmd(chip).dma_off);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_als4000_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
int result = 0;
/* FIXME race condition in here!!!
chip->mode non-atomic update gets consistently protected
by reg_lock always, _except_ for this place!!
Probably need to take reg_lock as outer (or inner??) lock, too.
(or serialize both lock operations? probably not, though... - racy?)
*/
spin_lock(&chip->mixer_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
chip->mode |= SB_RATE_LOCK_CAPTURE;
snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL,
capture_cmd(chip));
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->mode &= ~SB_RATE_LOCK_CAPTURE;
snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL,
capture_cmd(chip));
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&chip->mixer_lock);
return result;
}
static int snd_als4000_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
int result = 0;
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
chip->mode |= SB_RATE_LOCK_PLAYBACK;
snd_sbdsp_command(chip, playback_cmd(chip).dma_on);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
snd_sbdsp_command(chip, playback_cmd(chip).dma_off);
chip->mode &= ~SB_RATE_LOCK_PLAYBACK;
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&chip->reg_lock);
return result;
}
static snd_pcm_uframes_t snd_als4000_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned int result;
spin_lock(&chip->reg_lock);
result = snd_als4k_gcr_read(chip, ALS4K_GCRA4_FIFO2_CURRENT_ADDR);
spin_unlock(&chip->reg_lock);
result &= 0xffff;
return bytes_to_frames( substream->runtime, result );
}
static snd_pcm_uframes_t snd_als4000_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned result;
spin_lock(&chip->reg_lock);
result = snd_als4k_gcr_read(chip, ALS4K_GCRA0_FIFO1_CURRENT_ADDR);
spin_unlock(&chip->reg_lock);
result &= 0xffff;
return bytes_to_frames( substream->runtime, result );
}
/* FIXME: this IRQ routine doesn't really support IRQ sharing (we always
* return IRQ_HANDLED no matter whether we actually had an IRQ flag or not).
* ALS4000a.PDF writes that while ACKing IRQ in PCI block will *not* ACK
* the IRQ in the SB core, ACKing IRQ in SB block *will* ACK the PCI IRQ
* register (alt_port + ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU). Probably something
* could be optimized here to query/write one register only...
* And even if both registers need to be queried, then there's still the
* question of whether it's actually correct to ACK PCI IRQ before reading
* SB IRQ like we do now, since ALS4000a.PDF mentions that PCI IRQ will *clear*
* SB IRQ status.
* (hmm, SPECS_PAGE: 38 mentions it the other way around!)
* And do we *really* need the lock here for *reading* SB_DSP4_IRQSTATUS??
* */
static irqreturn_t snd_als4000_interrupt(int irq, void *dev_id)
{
struct snd_sb *chip = dev_id;
unsigned pci_irqstatus;
unsigned sb_irqstatus;
/* find out which bit of the ALS4000 PCI block produced the interrupt,
SPECS_PAGE: 38, 5 */
pci_irqstatus = snd_als4k_iobase_readb(chip->alt_port,
ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU);
if ((pci_irqstatus & ALS4K_IOB_0E_SB_DMA_IRQ)
&& (chip->playback_substream)) /* playback */
snd_pcm_period_elapsed(chip->playback_substream);
if ((pci_irqstatus & ALS4K_IOB_0E_CR1E_IRQ)
&& (chip->capture_substream)) /* capturing */
snd_pcm_period_elapsed(chip->capture_substream);
if ((pci_irqstatus & ALS4K_IOB_0E_MPU_IRQ)
&& (chip->rmidi)) /* MPU401 interrupt */
snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
/* ACK the PCI block IRQ */
snd_als4k_iobase_writeb(chip->alt_port,
ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU, pci_irqstatus);
spin_lock(&chip->mixer_lock);
/* SPECS_PAGE: 20 */
sb_irqstatus = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS);
spin_unlock(&chip->mixer_lock);
if (sb_irqstatus & SB_IRQTYPE_8BIT)
snd_sb_ack_8bit(chip);
if (sb_irqstatus & SB_IRQTYPE_16BIT)
snd_sb_ack_16bit(chip);
if (sb_irqstatus & SB_IRQTYPE_MPUIN)
inb(chip->mpu_port);
if (sb_irqstatus & ALS4K_IRQTYPE_CR1E_DMA)
snd_als4k_iobase_readb(chip->alt_port,
ALS4K_IOB_16_ACK_FOR_CR1E);
/* printk(KERN_INFO "als4000: irq 0x%04x 0x%04x\n",
pci_irqstatus, sb_irqstatus); */
/* only ack the things we actually handled above */
return IRQ_RETVAL(
(pci_irqstatus & (ALS4K_IOB_0E_SB_DMA_IRQ|ALS4K_IOB_0E_CR1E_IRQ|
ALS4K_IOB_0E_MPU_IRQ))
|| (sb_irqstatus & (SB_IRQTYPE_8BIT|SB_IRQTYPE_16BIT|
SB_IRQTYPE_MPUIN|ALS4K_IRQTYPE_CR1E_DMA))
);
}
/*****************************************************************/
static struct snd_pcm_hardware snd_als4000_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0
};
static struct snd_pcm_hardware snd_als4000_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0
};
/*****************************************************************/
static int snd_als4000_playback_open(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->playback_substream = substream;
runtime->hw = snd_als4000_playback;
return 0;
}
static int snd_als4000_playback_close(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
chip->playback_substream = NULL;
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_als4000_capture_open(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->capture_substream = substream;
runtime->hw = snd_als4000_capture;
return 0;
}
static int snd_als4000_capture_close(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
chip->capture_substream = NULL;
snd_pcm_lib_free_pages(substream);
return 0;
}
/******************************************************************/
static struct snd_pcm_ops snd_als4000_playback_ops = {
.open = snd_als4000_playback_open,
.close = snd_als4000_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_als4000_hw_params,
.hw_free = snd_als4000_hw_free,
.prepare = snd_als4000_playback_prepare,
.trigger = snd_als4000_playback_trigger,
.pointer = snd_als4000_playback_pointer
};
static struct snd_pcm_ops snd_als4000_capture_ops = {
.open = snd_als4000_capture_open,
.close = snd_als4000_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_als4000_hw_params,
.hw_free = snd_als4000_hw_free,
.prepare = snd_als4000_capture_prepare,
.trigger = snd_als4000_capture_trigger,
.pointer = snd_als4000_capture_pointer
};
static int __devinit snd_als4000_pcm(struct snd_sb *chip, int device)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(chip->card, "ALS4000 DSP", device, 1, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = chip;
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_als4000_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_als4000_capture_ops);
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
64*1024, 64*1024);
chip->pcm = pcm;
return 0;
}
/******************************************************************/
static void snd_als4000_set_addr(unsigned long iobase,
unsigned int sb_io,
unsigned int mpu_io,
unsigned int opl_io,
unsigned int game_io)
{
u32 cfg1 = 0;
u32 cfg2 = 0;
if (mpu_io > 0)
cfg2 |= (mpu_io | 1) << 16;
if (sb_io > 0)
cfg2 |= (sb_io | 1);
if (game_io > 0)
cfg1 |= (game_io | 1) << 16;
if (opl_io > 0)
cfg1 |= (opl_io | 1);
snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA8_LEGACY_CFG1, cfg1);
snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA9_LEGACY_CFG2, cfg2);
}
static void snd_als4000_configure(struct snd_sb *chip)
{
u8 tmp;
int i;
/* do some more configuration */
spin_lock_irq(&chip->mixer_lock);
tmp = snd_als4_cr_read(chip, ALS4K_CR0_SB_CONFIG);
snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG,
tmp|ALS4K_CR0_MX80_81_REG_WRITE_ENABLE);
/* always select DMA channel 0, since we do not actually use DMA
* SPECS_PAGE: 19/20 */
snd_sbmixer_write(chip, SB_DSP4_DMASETUP, SB_DMASETUP_DMA0);
snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG,
tmp & ~ALS4K_CR0_MX80_81_REG_WRITE_ENABLE);
spin_unlock_irq(&chip->mixer_lock);
spin_lock_irq(&chip->reg_lock);
/* enable interrupts */
snd_als4k_gcr_write(chip, ALS4K_GCR8C_MISC_CTRL,
ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE);
/* SPECS_PAGE: 39 */
for (i = ALS4K_GCR91_DMA0_ADDR; i <= ALS4K_GCR96_DMA3_MODE_COUNT; ++i)
snd_als4k_gcr_write(chip, i, 0);
snd_als4k_gcr_write(chip, ALS4K_GCR99_DMA_EMULATION_CTRL,
snd_als4k_gcr_read(chip, ALS4K_GCR99_DMA_EMULATION_CTRL));
spin_unlock_irq(&chip->reg_lock);
}
#ifdef SUPPORT_JOYSTICK
static int __devinit snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev)
{
struct gameport *gp;
struct resource *r;
int io_port;
if (joystick_port[dev] == 0)
return -ENODEV;
if (joystick_port[dev] == 1) { /* auto-detect */
for (io_port = 0x200; io_port <= 0x218; io_port += 8) {
r = request_region(io_port, 8, "ALS4000 gameport");
if (r)
break;
}
} else {
io_port = joystick_port[dev];
r = request_region(io_port, 8, "ALS4000 gameport");
}
if (!r) {
printk(KERN_WARNING "als4000: cannot reserve joystick ports\n");
return -EBUSY;
}
acard->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "als4000: cannot allocate memory for gameport\n");
release_and_free_resource(r);
return -ENOMEM;
}
gameport_set_name(gp, "ALS4000 Gameport");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(acard->pci));
gameport_set_dev_parent(gp, &acard->pci->dev);
gp->io = io_port;
gameport_set_port_data(gp, r);
/* Enable legacy joystick port */
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1);
gameport_register_port(acard->gameport);
return 0;
}
static void snd_als4000_free_gameport(struct snd_card_als4000 *acard)
{
if (acard->gameport) {
struct resource *r = gameport_get_port_data(acard->gameport);
gameport_unregister_port(acard->gameport);
acard->gameport = NULL;
/* disable joystick */
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0);
release_and_free_resource(r);
}
}
#else
static inline int snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev) { return -ENOSYS; }
static inline void snd_als4000_free_gameport(struct snd_card_als4000 *acard) { }
#endif
static void snd_card_als4000_free( struct snd_card *card )
{
struct snd_card_als4000 *acard = card->private_data;
/* make sure that interrupts are disabled */
snd_als4k_gcr_write_addr(acard->iobase, ALS4K_GCR8C_MISC_CTRL, 0);
/* free resources */
snd_als4000_free_gameport(acard);
pci_release_regions(acard->pci);
pci_disable_device(acard->pci);
}
static int __devinit snd_card_als4000_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct snd_card_als4000 *acard;
unsigned long iobase;
struct snd_sb *chip;
struct snd_opl3 *opl3;
unsigned short word;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
/* enable PCI device */
if ((err = pci_enable_device(pci)) < 0) {
return err;
}
/* check, if we can restrict PCI DMA transfers to 24 bits */
if (pci_set_dma_mask(pci, DMA_24BIT_MASK) < 0 ||
pci_set_consistent_dma_mask(pci, DMA_24BIT_MASK) < 0) {
snd_printk(KERN_ERR "architecture does not support 24bit PCI busmaster DMA\n");
pci_disable_device(pci);
return -ENXIO;
}
if ((err = pci_request_regions(pci, "ALS4000")) < 0) {
pci_disable_device(pci);
return err;
}
iobase = pci_resource_start(pci, 0);
pci_read_config_word(pci, PCI_COMMAND, &word);
pci_write_config_word(pci, PCI_COMMAND, word | PCI_COMMAND_IO);
pci_set_master(pci);
card = snd_card_new(index[dev], id[dev], THIS_MODULE,
sizeof(*acard) /* private_data: acard */);
if (card == NULL) {
pci_release_regions(pci);
pci_disable_device(pci);
return -ENOMEM;
}
acard = card->private_data;
acard->pci = pci;
acard->iobase = iobase;
card->private_free = snd_card_als4000_free;
/* disable all legacy ISA stuff */
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0);
if ((err = snd_sbdsp_create(card,
iobase + ALS4K_IOB_10_ADLIB_ADDR0,
pci->irq,
/* internally registered as IRQF_SHARED in case of ALS4000 SB */
snd_als4000_interrupt,
-1,
-1,
SB_HW_ALS4000,
&chip)) < 0) {
goto out_err;
}
acard->chip = chip;
chip->pci = pci;
chip->alt_port = iobase;
snd_card_set_dev(card, &pci->dev);
snd_als4000_configure(chip);
strcpy(card->driver, "ALS4000");
strcpy(card->shortname, "Avance Logic ALS4000");
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, chip->alt_port, chip->irq);
if ((err = snd_mpu401_uart_new( card, 0, MPU401_HW_ALS4000,
iobase + ALS4K_IOB_30_MIDI_DATA,
MPU401_INFO_INTEGRATED,
pci->irq, 0, &chip->rmidi)) < 0) {
printk(KERN_ERR "als4000: no MPU-401 device at 0x%lx?\n",
iobase + ALS4K_IOB_30_MIDI_DATA);
goto out_err;
}
/* FIXME: ALS4000 has interesting MPU401 configuration features
* at ALS4K_CR1A_MPU401_UART_MODE_CONTROL
* (pass-thru / UART switching, fast MIDI clock, etc.),
* however there doesn't seem to be an ALSA API for this...
* SPECS_PAGE: 21 */
if ((err = snd_als4000_pcm(chip, 0)) < 0) {
goto out_err;
}
if ((err = snd_sbmixer_new(chip)) < 0) {
goto out_err;
}
if (snd_opl3_create(card,
iobase + ALS4K_IOB_10_ADLIB_ADDR0,
iobase + ALS4K_IOB_12_ADLIB_ADDR2,
OPL3_HW_AUTO, 1, &opl3) < 0) {
printk(KERN_ERR "als4000: no OPL device at 0x%lx-0x%lx?\n",
iobase + ALS4K_IOB_10_ADLIB_ADDR0,
iobase + ALS4K_IOB_12_ADLIB_ADDR2);
} else {
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
goto out_err;
}
}
snd_als4000_create_gameport(acard, dev);
if ((err = snd_card_register(card)) < 0) {
goto out_err;
}
pci_set_drvdata(pci, card);
dev++;
err = 0;
goto out;
out_err:
snd_card_free(card);
out:
return err;
}
static void __devexit snd_card_als4000_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
#ifdef CONFIG_PM
static int snd_als4000_suspend(struct pci_dev *pci, pm_message_t state)
{
struct snd_card *card = pci_get_drvdata(pci);
struct snd_card_als4000 *acard = card->private_data;
struct snd_sb *chip = acard->chip;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_sbmixer_suspend(chip);
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, pci_choose_state(pci, state));
return 0;
}
static int snd_als4000_resume(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct snd_card_als4000 *acard = card->private_data;
struct snd_sb *chip = acard->chip;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
printk(KERN_ERR "als4000: pci_enable_device failed, "
"disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
snd_als4000_configure(chip);
snd_sbdsp_reset(chip);
snd_sbmixer_resume(chip);
#ifdef SUPPORT_JOYSTICK
if (acard->gameport)
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1);
#endif
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver driver = {
.name = "ALS4000",
.id_table = snd_als4000_ids,
.probe = snd_card_als4000_probe,
.remove = __devexit_p(snd_card_als4000_remove),
#ifdef CONFIG_PM
.suspend = snd_als4000_suspend,
.resume = snd_als4000_resume,
#endif
};
static int __init alsa_card_als4000_init(void)
{
return pci_register_driver(&driver);
}
static void __exit alsa_card_als4000_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_als4000_init)
module_exit(alsa_card_als4000_exit)