linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_ringbuffer.h
Arun Siluvery 86d7f23842 drm/i915/bdw: Apply workarounds in render ring init function
For BDW workarounds are currently initialized in init_clock_gating() but
they are lost during reset, suspend/resume etc; this patch moves the WAs
that are part of register state context to render ring init fn otherwise
default context ends up with incorrect values as they don't get initialized
until init_clock_gating fn.

v2: Add workarounds to golden render state
This method has its own issues, first of all this is different for
each gen and it is generated using a tool so adding new workaround
and mainitaining them across gens is not a straightforward process.

v3: Use LRIs to emit these workarounds (Ville)
Instead of modifying the golden render state the same LRIs are
emitted from within the driver.

v4: Use abstract name when exporting gen specific routines (Chris)

For: VIZ-4092
Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-09-03 11:04:42 +02:00

448 lines
15 KiB
C

#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_
#include <linux/hashtable.h>
#define I915_CMD_HASH_ORDER 9
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
* to give some inclination as to some of the magic values used in the various
* workarounds!
*/
#define CACHELINE_BYTES 64
/*
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
* Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
* Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
*
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
* cacheline, the Head Pointer must not be greater than the Tail
* Pointer."
*/
#define I915_RING_FREE_SPACE 64
struct intel_hw_status_page {
u32 *page_addr;
unsigned int gfx_addr;
struct drm_i915_gem_object *obj;
};
#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
#define I915_READ_HEAD(ring) I915_READ(RING_HEAD((ring)->mmio_base))
#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
#define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
#define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
*/
#define i915_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SIGNAL_OFFSET(__ring, to) \
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
((__ring)->id * I915_NUM_RINGS * i915_semaphore_seqno_size) + \
(i915_semaphore_seqno_size * (to)))
#define GEN8_WAIT_OFFSET(__ring, from) \
(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
((from) * I915_NUM_RINGS * i915_semaphore_seqno_size) + \
(i915_semaphore_seqno_size * (__ring)->id))
#define GEN8_RING_SEMAPHORE_INIT do { \
if (!dev_priv->semaphore_obj) { \
break; \
} \
ring->semaphore.signal_ggtt[RCS] = GEN8_SIGNAL_OFFSET(ring, RCS); \
ring->semaphore.signal_ggtt[VCS] = GEN8_SIGNAL_OFFSET(ring, VCS); \
ring->semaphore.signal_ggtt[BCS] = GEN8_SIGNAL_OFFSET(ring, BCS); \
ring->semaphore.signal_ggtt[VECS] = GEN8_SIGNAL_OFFSET(ring, VECS); \
ring->semaphore.signal_ggtt[VCS2] = GEN8_SIGNAL_OFFSET(ring, VCS2); \
ring->semaphore.signal_ggtt[ring->id] = MI_SEMAPHORE_SYNC_INVALID; \
} while(0)
enum intel_ring_hangcheck_action {
HANGCHECK_IDLE = 0,
HANGCHECK_WAIT,
HANGCHECK_ACTIVE,
HANGCHECK_ACTIVE_LOOP,
HANGCHECK_KICK,
HANGCHECK_HUNG,
};
#define HANGCHECK_SCORE_RING_HUNG 31
struct intel_ring_hangcheck {
u64 acthd;
u64 max_acthd;
u32 seqno;
int score;
enum intel_ring_hangcheck_action action;
int deadlock;
};
struct intel_ringbuffer {
struct drm_i915_gem_object *obj;
void __iomem *virtual_start;
struct intel_engine_cs *ring;
/*
* FIXME: This backpointer is an artifact of the history of how the
* execlist patches came into being. It will get removed once the basic
* code has landed.
*/
struct intel_context *FIXME_lrc_ctx;
u32 head;
u32 tail;
int space;
int size;
int effective_size;
/** We track the position of the requests in the ring buffer, and
* when each is retired we increment last_retired_head as the GPU
* must have finished processing the request and so we know we
* can advance the ringbuffer up to that position.
*
* last_retired_head is set to -1 after the value is consumed so
* we can detect new retirements.
*/
u32 last_retired_head;
};
struct intel_engine_cs {
const char *name;
enum intel_ring_id {
RCS = 0x0,
VCS,
BCS,
VECS,
VCS2
} id;
#define I915_NUM_RINGS 5
#define LAST_USER_RING (VECS + 1)
u32 mmio_base;
struct drm_device *dev;
struct intel_ringbuffer *buffer;
struct intel_hw_status_page status_page;
unsigned irq_refcount; /* protected by dev_priv->irq_lock */
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
u32 trace_irq_seqno;
bool __must_check (*irq_get)(struct intel_engine_cs *ring);
void (*irq_put)(struct intel_engine_cs *ring);
int (*init)(struct intel_engine_cs *ring);
int (*init_context)(struct intel_engine_cs *ring);
void (*write_tail)(struct intel_engine_cs *ring,
u32 value);
int __must_check (*flush)(struct intel_engine_cs *ring,
u32 invalidate_domains,
u32 flush_domains);
int (*add_request)(struct intel_engine_cs *ring);
/* Some chipsets are not quite as coherent as advertised and need
* an expensive kick to force a true read of the up-to-date seqno.
* However, the up-to-date seqno is not always required and the last
* seen value is good enough. Note that the seqno will always be
* monotonic, even if not coherent.
*/
u32 (*get_seqno)(struct intel_engine_cs *ring,
bool lazy_coherency);
void (*set_seqno)(struct intel_engine_cs *ring,
u32 seqno);
int (*dispatch_execbuffer)(struct intel_engine_cs *ring,
u64 offset, u32 length,
unsigned flags);
#define I915_DISPATCH_SECURE 0x1
#define I915_DISPATCH_PINNED 0x2
void (*cleanup)(struct intel_engine_cs *ring);
/* GEN8 signal/wait table - never trust comments!
* signal to signal to signal to signal to signal to
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
* |-------------------------------------------------------------------
* VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
* |-------------------------------------------------------------------
* BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
* |-------------------------------------------------------------------
* VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
* ie. transpose of g(x, y)
*
* sync from sync from sync from sync from sync from
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
* |-------------------------------------------------------------------
* VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
* |-------------------------------------------------------------------
* BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
* |-------------------------------------------------------------------
* VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
* ie. transpose of f(x, y)
*/
struct {
u32 sync_seqno[I915_NUM_RINGS-1];
union {
struct {
/* our mbox written by others */
u32 wait[I915_NUM_RINGS];
/* mboxes this ring signals to */
u32 signal[I915_NUM_RINGS];
} mbox;
u64 signal_ggtt[I915_NUM_RINGS];
};
/* AKA wait() */
int (*sync_to)(struct intel_engine_cs *ring,
struct intel_engine_cs *to,
u32 seqno);
int (*signal)(struct intel_engine_cs *signaller,
/* num_dwords needed by caller */
unsigned int num_dwords);
} semaphore;
/* Execlists */
spinlock_t execlist_lock;
struct list_head execlist_queue;
u8 next_context_status_buffer;
u32 irq_keep_mask; /* bitmask for interrupts that should not be masked */
int (*emit_request)(struct intel_ringbuffer *ringbuf);
int (*emit_flush)(struct intel_ringbuffer *ringbuf,
u32 invalidate_domains,
u32 flush_domains);
int (*emit_bb_start)(struct intel_ringbuffer *ringbuf,
u64 offset, unsigned flags);
/**
* List of objects currently involved in rendering from the
* ringbuffer.
*
* Includes buffers having the contents of their GPU caches
* flushed, not necessarily primitives. last_rendering_seqno
* represents when the rendering involved will be completed.
*
* A reference is held on the buffer while on this list.
*/
struct list_head active_list;
/**
* List of breadcrumbs associated with GPU requests currently
* outstanding.
*/
struct list_head request_list;
/**
* Do we have some not yet emitted requests outstanding?
*/
struct drm_i915_gem_request *preallocated_lazy_request;
u32 outstanding_lazy_seqno;
bool gpu_caches_dirty;
bool fbc_dirty;
wait_queue_head_t irq_queue;
struct intel_context *default_context;
struct intel_context *last_context;
struct intel_ring_hangcheck hangcheck;
struct {
struct drm_i915_gem_object *obj;
u32 gtt_offset;
volatile u32 *cpu_page;
} scratch;
bool needs_cmd_parser;
/*
* Table of commands the command parser needs to know about
* for this ring.
*/
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
/*
* Table of registers allowed in commands that read/write registers.
*/
const u32 *reg_table;
int reg_count;
/*
* Table of registers allowed in commands that read/write registers, but
* only from the DRM master.
*/
const u32 *master_reg_table;
int master_reg_count;
/*
* Returns the bitmask for the length field of the specified command.
* Return 0 for an unrecognized/invalid command.
*
* If the command parser finds an entry for a command in the ring's
* cmd_tables, it gets the command's length based on the table entry.
* If not, it calls this function to determine the per-ring length field
* encoding for the command (i.e. certain opcode ranges use certain bits
* to encode the command length in the header).
*/
u32 (*get_cmd_length_mask)(u32 cmd_header);
};
bool intel_ring_initialized(struct intel_engine_cs *ring);
static inline unsigned
intel_ring_flag(struct intel_engine_cs *ring)
{
return 1 << ring->id;
}
static inline u32
intel_ring_sync_index(struct intel_engine_cs *ring,
struct intel_engine_cs *other)
{
int idx;
/*
* rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
* vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
* bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
* vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
* vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
*/
idx = (other - ring) - 1;
if (idx < 0)
idx += I915_NUM_RINGS;
return idx;
}
static inline u32
intel_read_status_page(struct intel_engine_cs *ring,
int reg)
{
/* Ensure that the compiler doesn't optimize away the load. */
barrier();
return ring->status_page.page_addr[reg];
}
static inline void
intel_write_status_page(struct intel_engine_cs *ring,
int reg, u32 value)
{
ring->status_page.page_addr[reg] = value;
}
/**
* Reads a dword out of the status page, which is written to from the command
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
* MI_STORE_DATA_IMM.
*
* The following dwords have a reserved meaning:
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
* 0x04: ring 0 head pointer
* 0x05: ring 1 head pointer (915-class)
* 0x06: ring 2 head pointer (915-class)
* 0x10-0x1b: Context status DWords (GM45)
* 0x1f: Last written status offset. (GM45)
*
* The area from dword 0x20 to 0x3ff is available for driver usage.
*/
#define I915_GEM_HWS_INDEX 0x20
#define I915_GEM_HWS_SCRATCH_INDEX 0x30
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
int intel_alloc_ringbuffer_obj(struct drm_device *dev,
struct intel_ringbuffer *ringbuf);
void intel_stop_ring_buffer(struct intel_engine_cs *ring);
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring);
int __must_check intel_ring_begin(struct intel_engine_cs *ring, int n);
int __must_check intel_ring_cacheline_align(struct intel_engine_cs *ring);
static inline void intel_ring_emit(struct intel_engine_cs *ring,
u32 data)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
ringbuf->tail += 4;
}
static inline void intel_ring_advance(struct intel_engine_cs *ring)
{
struct intel_ringbuffer *ringbuf = ring->buffer;
ringbuf->tail &= ringbuf->size - 1;
}
int __intel_ring_space(int head, int tail, int size);
int intel_ring_space(struct intel_ringbuffer *ringbuf);
bool intel_ring_stopped(struct intel_engine_cs *ring);
void __intel_ring_advance(struct intel_engine_cs *ring);
int __must_check intel_ring_idle(struct intel_engine_cs *ring);
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno);
int intel_ring_flush_all_caches(struct intel_engine_cs *ring);
int intel_ring_invalidate_all_caches(struct intel_engine_cs *ring);
void intel_fini_pipe_control(struct intel_engine_cs *ring);
int intel_init_pipe_control(struct intel_engine_cs *ring);
int intel_init_render_ring_buffer(struct drm_device *dev);
int intel_init_bsd_ring_buffer(struct drm_device *dev);
int intel_init_bsd2_ring_buffer(struct drm_device *dev);
int intel_init_blt_ring_buffer(struct drm_device *dev);
int intel_init_vebox_ring_buffer(struct drm_device *dev);
u64 intel_ring_get_active_head(struct intel_engine_cs *ring);
void intel_ring_setup_status_page(struct intel_engine_cs *ring);
static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
{
return ringbuf->tail;
}
static inline u32 intel_ring_get_seqno(struct intel_engine_cs *ring)
{
BUG_ON(ring->outstanding_lazy_seqno == 0);
return ring->outstanding_lazy_seqno;
}
static inline void i915_trace_irq_get(struct intel_engine_cs *ring, u32 seqno)
{
if (ring->trace_irq_seqno == 0 && ring->irq_get(ring))
ring->trace_irq_seqno = seqno;
}
/* DRI warts */
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size);
#endif /* _INTEL_RINGBUFFER_H_ */