mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
313 lines
7.4 KiB
C
313 lines
7.4 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* NUMA memory policies for Linux.
|
|
* Copyright 2003,2004 Andi Kleen SuSE Labs
|
|
*/
|
|
#ifndef _LINUX_MEMPOLICY_H
|
|
#define _LINUX_MEMPOLICY_H 1
|
|
|
|
|
|
#include <linux/mmzone.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/pagemap.h>
|
|
#include <uapi/linux/mempolicy.h>
|
|
|
|
struct mm_struct;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
* Describe a memory policy.
|
|
*
|
|
* A mempolicy can be either associated with a process or with a VMA.
|
|
* For VMA related allocations the VMA policy is preferred, otherwise
|
|
* the process policy is used. Interrupts ignore the memory policy
|
|
* of the current process.
|
|
*
|
|
* Locking policy for interlave:
|
|
* In process context there is no locking because only the process accesses
|
|
* its own state. All vma manipulation is somewhat protected by a down_read on
|
|
* mmap_sem.
|
|
*
|
|
* Freeing policy:
|
|
* Mempolicy objects are reference counted. A mempolicy will be freed when
|
|
* mpol_put() decrements the reference count to zero.
|
|
*
|
|
* Duplicating policy objects:
|
|
* mpol_dup() allocates a new mempolicy and copies the specified mempolicy
|
|
* to the new storage. The reference count of the new object is initialized
|
|
* to 1, representing the caller of mpol_dup().
|
|
*/
|
|
struct mempolicy {
|
|
atomic_t refcnt;
|
|
unsigned short mode; /* See MPOL_* above */
|
|
unsigned short flags; /* See set_mempolicy() MPOL_F_* above */
|
|
union {
|
|
short preferred_node; /* preferred */
|
|
nodemask_t nodes; /* interleave/bind */
|
|
/* undefined for default */
|
|
} v;
|
|
union {
|
|
nodemask_t cpuset_mems_allowed; /* relative to these nodes */
|
|
nodemask_t user_nodemask; /* nodemask passed by user */
|
|
} w;
|
|
};
|
|
|
|
/*
|
|
* Support for managing mempolicy data objects (clone, copy, destroy)
|
|
* The default fast path of a NULL MPOL_DEFAULT policy is always inlined.
|
|
*/
|
|
|
|
extern void __mpol_put(struct mempolicy *pol);
|
|
static inline void mpol_put(struct mempolicy *pol)
|
|
{
|
|
if (pol)
|
|
__mpol_put(pol);
|
|
}
|
|
|
|
/*
|
|
* Does mempolicy pol need explicit unref after use?
|
|
* Currently only needed for shared policies.
|
|
*/
|
|
static inline int mpol_needs_cond_ref(struct mempolicy *pol)
|
|
{
|
|
return (pol && (pol->flags & MPOL_F_SHARED));
|
|
}
|
|
|
|
static inline void mpol_cond_put(struct mempolicy *pol)
|
|
{
|
|
if (mpol_needs_cond_ref(pol))
|
|
__mpol_put(pol);
|
|
}
|
|
|
|
extern struct mempolicy *__mpol_dup(struct mempolicy *pol);
|
|
static inline struct mempolicy *mpol_dup(struct mempolicy *pol)
|
|
{
|
|
if (pol)
|
|
pol = __mpol_dup(pol);
|
|
return pol;
|
|
}
|
|
|
|
#define vma_policy(vma) ((vma)->vm_policy)
|
|
|
|
static inline void mpol_get(struct mempolicy *pol)
|
|
{
|
|
if (pol)
|
|
atomic_inc(&pol->refcnt);
|
|
}
|
|
|
|
extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b);
|
|
static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b)
|
|
{
|
|
if (a == b)
|
|
return true;
|
|
return __mpol_equal(a, b);
|
|
}
|
|
|
|
/*
|
|
* Tree of shared policies for a shared memory region.
|
|
* Maintain the policies in a pseudo mm that contains vmas. The vmas
|
|
* carry the policy. As a special twist the pseudo mm is indexed in pages, not
|
|
* bytes, so that we can work with shared memory segments bigger than
|
|
* unsigned long.
|
|
*/
|
|
|
|
struct sp_node {
|
|
struct rb_node nd;
|
|
unsigned long start, end;
|
|
struct mempolicy *policy;
|
|
};
|
|
|
|
struct shared_policy {
|
|
struct rb_root root;
|
|
rwlock_t lock;
|
|
};
|
|
|
|
int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst);
|
|
void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol);
|
|
int mpol_set_shared_policy(struct shared_policy *info,
|
|
struct vm_area_struct *vma,
|
|
struct mempolicy *new);
|
|
void mpol_free_shared_policy(struct shared_policy *p);
|
|
struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
|
|
unsigned long idx);
|
|
|
|
struct mempolicy *get_task_policy(struct task_struct *p);
|
|
struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
bool vma_policy_mof(struct vm_area_struct *vma);
|
|
|
|
extern void numa_default_policy(void);
|
|
extern void numa_policy_init(void);
|
|
extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new);
|
|
extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new);
|
|
|
|
extern int huge_node(struct vm_area_struct *vma,
|
|
unsigned long addr, gfp_t gfp_flags,
|
|
struct mempolicy **mpol, nodemask_t **nodemask);
|
|
extern bool init_nodemask_of_mempolicy(nodemask_t *mask);
|
|
extern bool mempolicy_nodemask_intersects(struct task_struct *tsk,
|
|
const nodemask_t *mask);
|
|
extern unsigned int mempolicy_slab_node(void);
|
|
|
|
extern enum zone_type policy_zone;
|
|
|
|
static inline void check_highest_zone(enum zone_type k)
|
|
{
|
|
if (k > policy_zone && k != ZONE_MOVABLE)
|
|
policy_zone = k;
|
|
}
|
|
|
|
int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
|
|
const nodemask_t *to, int flags);
|
|
|
|
|
|
#ifdef CONFIG_TMPFS
|
|
extern int mpol_parse_str(char *str, struct mempolicy **mpol);
|
|
#endif
|
|
|
|
extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol);
|
|
|
|
/* Check if a vma is migratable */
|
|
static inline bool vma_migratable(struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
|
|
return false;
|
|
|
|
/*
|
|
* DAX device mappings require predictable access latency, so avoid
|
|
* incurring periodic faults.
|
|
*/
|
|
if (vma_is_dax(vma))
|
|
return false;
|
|
|
|
#ifndef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
|
|
if (vma->vm_flags & VM_HUGETLB)
|
|
return false;
|
|
#endif
|
|
|
|
/*
|
|
* Migration allocates pages in the highest zone. If we cannot
|
|
* do so then migration (at least from node to node) is not
|
|
* possible.
|
|
*/
|
|
if (vma->vm_file &&
|
|
gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
|
|
< policy_zone)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long);
|
|
extern void mpol_put_task_policy(struct task_struct *);
|
|
|
|
#else
|
|
|
|
struct mempolicy {};
|
|
|
|
static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void mpol_put(struct mempolicy *p)
|
|
{
|
|
}
|
|
|
|
static inline void mpol_cond_put(struct mempolicy *pol)
|
|
{
|
|
}
|
|
|
|
static inline void mpol_get(struct mempolicy *pol)
|
|
{
|
|
}
|
|
|
|
struct shared_policy {};
|
|
|
|
static inline void mpol_shared_policy_init(struct shared_policy *sp,
|
|
struct mempolicy *mpol)
|
|
{
|
|
}
|
|
|
|
static inline void mpol_free_shared_policy(struct shared_policy *p)
|
|
{
|
|
}
|
|
|
|
static inline struct mempolicy *
|
|
mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#define vma_policy(vma) NULL
|
|
|
|
static inline int
|
|
vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void numa_policy_init(void)
|
|
{
|
|
}
|
|
|
|
static inline void numa_default_policy(void)
|
|
{
|
|
}
|
|
|
|
static inline void mpol_rebind_task(struct task_struct *tsk,
|
|
const nodemask_t *new)
|
|
{
|
|
}
|
|
|
|
static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
|
|
{
|
|
}
|
|
|
|
static inline int huge_node(struct vm_area_struct *vma,
|
|
unsigned long addr, gfp_t gfp_flags,
|
|
struct mempolicy **mpol, nodemask_t **nodemask)
|
|
{
|
|
*mpol = NULL;
|
|
*nodemask = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static inline bool init_nodemask_of_mempolicy(nodemask_t *m)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
|
|
const nodemask_t *to, int flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void check_highest_zone(int k)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_TMPFS
|
|
static inline int mpol_parse_str(char *str, struct mempolicy **mpol)
|
|
{
|
|
return 1; /* error */
|
|
}
|
|
#endif
|
|
|
|
static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
return -1; /* no node preference */
|
|
}
|
|
|
|
static inline void mpol_put_task_policy(struct task_struct *task)
|
|
{
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
#endif
|