mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 19:39:56 +07:00
74a0496748
ADI is a new feature supported on SPARC M7 and newer processors to allow hardware to catch rogue accesses to memory. ADI is supported for data fetches only and not instruction fetches. An app can enable ADI on its data pages, set version tags on them and use versioned addresses to access the data pages. Upper bits of the address contain the version tag. On M7 processors, upper four bits (bits 63-60) contain the version tag. If a rogue app attempts to access ADI enabled data pages, its access is blocked and processor generates an exception. Please see Documentation/sparc/adi.txt for further details. This patch extends mprotect to enable ADI (TSTATE.mcde), enable/disable MCD (Memory Corruption Detection) on selected memory ranges, enable TTE.mcd in PTEs, return ADI parameters to userspace and save/restore ADI version tags on page swap out/in or migration. ADI is not enabled by default for any task. A task must explicitly enable ADI on a memory range and set version tag for ADI to be effective for the task. Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Khalid Aziz <khalid@gonehiking.org> Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
193 lines
5.4 KiB
C
193 lines
5.4 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __SPARC64_MMU_CONTEXT_H
|
|
#define __SPARC64_MMU_CONTEXT_H
|
|
|
|
/* Derived heavily from Linus's Alpha/AXP ASN code... */
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/spitfire.h>
|
|
#include <asm/adi_64.h>
|
|
#include <asm-generic/mm_hooks.h>
|
|
#include <asm/percpu.h>
|
|
|
|
static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
|
|
{
|
|
}
|
|
|
|
extern spinlock_t ctx_alloc_lock;
|
|
extern unsigned long tlb_context_cache;
|
|
extern unsigned long mmu_context_bmap[];
|
|
|
|
DECLARE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm);
|
|
void get_new_mmu_context(struct mm_struct *mm);
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
|
|
void destroy_context(struct mm_struct *mm);
|
|
|
|
void __tsb_context_switch(unsigned long pgd_pa,
|
|
struct tsb_config *tsb_base,
|
|
struct tsb_config *tsb_huge,
|
|
unsigned long tsb_descr_pa,
|
|
unsigned long secondary_ctx);
|
|
|
|
static inline void tsb_context_switch_ctx(struct mm_struct *mm,
|
|
unsigned long ctx)
|
|
{
|
|
__tsb_context_switch(__pa(mm->pgd),
|
|
&mm->context.tsb_block[MM_TSB_BASE],
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
(mm->context.tsb_block[MM_TSB_HUGE].tsb ?
|
|
&mm->context.tsb_block[MM_TSB_HUGE] :
|
|
NULL)
|
|
#else
|
|
NULL
|
|
#endif
|
|
, __pa(&mm->context.tsb_descr[MM_TSB_BASE]),
|
|
ctx);
|
|
}
|
|
|
|
#define tsb_context_switch(X) tsb_context_switch_ctx(X, 0)
|
|
|
|
void tsb_grow(struct mm_struct *mm,
|
|
unsigned long tsb_index,
|
|
unsigned long mm_rss);
|
|
#ifdef CONFIG_SMP
|
|
void smp_tsb_sync(struct mm_struct *mm);
|
|
#else
|
|
#define smp_tsb_sync(__mm) do { } while (0)
|
|
#endif
|
|
|
|
/* Set MMU context in the actual hardware. */
|
|
#define load_secondary_context(__mm) \
|
|
__asm__ __volatile__( \
|
|
"\n661: stxa %0, [%1] %2\n" \
|
|
" .section .sun4v_1insn_patch, \"ax\"\n" \
|
|
" .word 661b\n" \
|
|
" stxa %0, [%1] %3\n" \
|
|
" .previous\n" \
|
|
" flush %%g6\n" \
|
|
: /* No outputs */ \
|
|
: "r" (CTX_HWBITS((__mm)->context)), \
|
|
"r" (SECONDARY_CONTEXT), "i" (ASI_DMMU), "i" (ASI_MMU))
|
|
|
|
void __flush_tlb_mm(unsigned long, unsigned long);
|
|
|
|
/* Switch the current MM context. */
|
|
static inline void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk)
|
|
{
|
|
unsigned long ctx_valid, flags;
|
|
int cpu = smp_processor_id();
|
|
|
|
per_cpu(per_cpu_secondary_mm, cpu) = mm;
|
|
if (unlikely(mm == &init_mm))
|
|
return;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
ctx_valid = CTX_VALID(mm->context);
|
|
if (!ctx_valid)
|
|
get_new_mmu_context(mm);
|
|
|
|
/* We have to be extremely careful here or else we will miss
|
|
* a TSB grow if we switch back and forth between a kernel
|
|
* thread and an address space which has it's TSB size increased
|
|
* on another processor.
|
|
*
|
|
* It is possible to play some games in order to optimize the
|
|
* switch, but the safest thing to do is to unconditionally
|
|
* perform the secondary context load and the TSB context switch.
|
|
*
|
|
* For reference the bad case is, for address space "A":
|
|
*
|
|
* CPU 0 CPU 1
|
|
* run address space A
|
|
* set cpu0's bits in cpu_vm_mask
|
|
* switch to kernel thread, borrow
|
|
* address space A via entry_lazy_tlb
|
|
* run address space A
|
|
* set cpu1's bit in cpu_vm_mask
|
|
* flush_tlb_pending()
|
|
* reset cpu_vm_mask to just cpu1
|
|
* TSB grow
|
|
* run address space A
|
|
* context was valid, so skip
|
|
* TSB context switch
|
|
*
|
|
* At that point cpu0 continues to use a stale TSB, the one from
|
|
* before the TSB grow performed on cpu1. cpu1 did not cross-call
|
|
* cpu0 to update it's TSB because at that point the cpu_vm_mask
|
|
* only had cpu1 set in it.
|
|
*/
|
|
tsb_context_switch_ctx(mm, CTX_HWBITS(mm->context));
|
|
|
|
/* Any time a processor runs a context on an address space
|
|
* for the first time, we must flush that context out of the
|
|
* local TLB.
|
|
*/
|
|
if (!ctx_valid || !cpumask_test_cpu(cpu, mm_cpumask(mm))) {
|
|
cpumask_set_cpu(cpu, mm_cpumask(mm));
|
|
__flush_tlb_mm(CTX_HWBITS(mm->context),
|
|
SECONDARY_CONTEXT);
|
|
}
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
#define deactivate_mm(tsk,mm) do { } while (0)
|
|
#define activate_mm(active_mm, mm) switch_mm(active_mm, mm, NULL)
|
|
|
|
#define __HAVE_ARCH_START_CONTEXT_SWITCH
|
|
static inline void arch_start_context_switch(struct task_struct *prev)
|
|
{
|
|
/* Save the current state of MCDPER register for the process
|
|
* we are switching from
|
|
*/
|
|
if (adi_capable()) {
|
|
register unsigned long tmp_mcdper;
|
|
|
|
__asm__ __volatile__(
|
|
".word 0x83438000\n\t" /* rd %mcdper, %g1 */
|
|
"mov %%g1, %0\n\t"
|
|
: "=r" (tmp_mcdper)
|
|
:
|
|
: "g1");
|
|
if (tmp_mcdper)
|
|
set_tsk_thread_flag(prev, TIF_MCDPER);
|
|
else
|
|
clear_tsk_thread_flag(prev, TIF_MCDPER);
|
|
}
|
|
}
|
|
|
|
#define finish_arch_post_lock_switch finish_arch_post_lock_switch
|
|
static inline void finish_arch_post_lock_switch(void)
|
|
{
|
|
/* Restore the state of MCDPER register for the new process
|
|
* just switched to.
|
|
*/
|
|
if (adi_capable()) {
|
|
register unsigned long tmp_mcdper;
|
|
|
|
tmp_mcdper = test_thread_flag(TIF_MCDPER);
|
|
__asm__ __volatile__(
|
|
"mov %0, %%g1\n\t"
|
|
".word 0x9d800001\n\t" /* wr %g0, %g1, %mcdper" */
|
|
".word 0xaf902001\n\t" /* wrpr %g0, 1, %pmcdper */
|
|
:
|
|
: "ir" (tmp_mcdper)
|
|
: "g1");
|
|
if (current && current->mm && current->mm->context.adi) {
|
|
struct pt_regs *regs;
|
|
|
|
regs = task_pt_regs(current);
|
|
regs->tstate |= TSTATE_MCDE;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* !(__ASSEMBLY__) */
|
|
|
|
#endif /* !(__SPARC64_MMU_CONTEXT_H) */
|