linux_dsm_epyc7002/drivers/rtc/rtc-mxc_v2.c
Fabio Estevam 588519ff16 rtc: mxc_v2: Fix _iomem pointer notation
Fix the iomem pointer notation in order to fix the following sparse
warnings:

drivers/rtc/rtc-mxc_v2.c:280:18: warning: incorrect type in argument 1 (different address spaces)
drivers/rtc/rtc-mxc_v2.c:280:18:    expected void const volatile [noderef] <asn:2>*addr
drivers/rtc/rtc-mxc_v2.c:280:18:    got void *[noderef] <asn:2>ioaddr
drivers/rtc/rtc-mxc_v2.c:329:44: warning: incorrect type in argument 1 (different address spaces)
drivers/rtc/rtc-mxc_v2.c:329:44:    expected void *[noderef] <asn:2>ioaddr
drivers/rtc/rtc-mxc_v2.c:329:44:    got void [noderef] <asn:2>*
drivers/rtc/rtc-mxc_v2.c:339:44: warning: incorrect type in argument 1 (different address spaces)
drivers/rtc/rtc-mxc_v2.c:339:44:    expected void *[noderef] <asn:2>ioaddr
drivers/rtc/rtc-mxc_v2.c:339:44:    got void [noderef] <asn:2>*

Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2018-03-01 10:49:36 +01:00

420 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Real Time Clock (RTC) Driver for i.MX53
* Copyright (c) 2004-2011 Freescale Semiconductor, Inc.
* Copyright (c) 2017 Beckhoff Automation GmbH & Co. KG
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#define SRTC_LPPDR_INIT 0x41736166 /* init for glitch detect */
#define SRTC_LPCR_EN_LP BIT(3) /* lp enable */
#define SRTC_LPCR_WAE BIT(4) /* lp wakeup alarm enable */
#define SRTC_LPCR_ALP BIT(7) /* lp alarm flag */
#define SRTC_LPCR_NSA BIT(11) /* lp non secure access */
#define SRTC_LPCR_NVE BIT(14) /* lp non valid state exit bit */
#define SRTC_LPCR_IE BIT(15) /* lp init state exit bit */
#define SRTC_LPSR_ALP BIT(3) /* lp alarm flag */
#define SRTC_LPSR_NVES BIT(14) /* lp non-valid state exit status */
#define SRTC_LPSR_IES BIT(15) /* lp init state exit status */
#define SRTC_LPSCMR 0x00 /* LP Secure Counter MSB Reg */
#define SRTC_LPSCLR 0x04 /* LP Secure Counter LSB Reg */
#define SRTC_LPSAR 0x08 /* LP Secure Alarm Reg */
#define SRTC_LPCR 0x10 /* LP Control Reg */
#define SRTC_LPSR 0x14 /* LP Status Reg */
#define SRTC_LPPDR 0x18 /* LP Power Supply Glitch Detector Reg */
/* max. number of retries to read registers, 120 was max during test */
#define REG_READ_TIMEOUT 2000
struct mxc_rtc_data {
struct rtc_device *rtc;
void __iomem *ioaddr;
struct clk *clk;
spinlock_t lock; /* protects register access */
int irq;
};
/*
* This function does write synchronization for writes to the lp srtc block.
* To take care of the asynchronous CKIL clock, all writes from the IP domain
* will be synchronized to the CKIL domain.
* The caller should hold the pdata->lock
*/
static void mxc_rtc_sync_lp_locked(struct device *dev, void __iomem *ioaddr)
{
unsigned int i;
/* Wait for 3 CKIL cycles */
for (i = 0; i < 3; i++) {
const u32 count = readl(ioaddr + SRTC_LPSCLR);
unsigned int timeout = REG_READ_TIMEOUT;
while ((readl(ioaddr + SRTC_LPSCLR)) == count) {
if (!--timeout) {
dev_err_once(dev, "SRTC_LPSCLR stuck! Check your hw.\n");
return;
}
}
}
}
/* This function is the RTC interrupt service routine. */
static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
{
struct device *dev = dev_id;
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
void __iomem *ioaddr = pdata->ioaddr;
unsigned long flags;
u32 lp_status;
u32 lp_cr;
spin_lock_irqsave(&pdata->lock, flags);
if (clk_enable(pdata->clk)) {
spin_unlock_irqrestore(&pdata->lock, flags);
return IRQ_NONE;
}
lp_status = readl(ioaddr + SRTC_LPSR);
lp_cr = readl(ioaddr + SRTC_LPCR);
/* update irq data & counter */
if (lp_status & SRTC_LPSR_ALP) {
if (lp_cr & SRTC_LPCR_ALP)
rtc_update_irq(pdata->rtc, 1, RTC_AF | RTC_IRQF);
/* disable further lp alarm interrupts */
lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
}
/* Update interrupt enables */
writel(lp_cr, ioaddr + SRTC_LPCR);
/* clear interrupt status */
writel(lp_status, ioaddr + SRTC_LPSR);
mxc_rtc_sync_lp_locked(dev, ioaddr);
clk_disable(pdata->clk);
spin_unlock_irqrestore(&pdata->lock, flags);
return IRQ_HANDLED;
}
/*
* Enable clk and aquire spinlock
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_lock(struct mxc_rtc_data *const pdata)
{
int ret;
spin_lock_irq(&pdata->lock);
ret = clk_enable(pdata->clk);
if (ret) {
spin_unlock_irq(&pdata->lock);
return ret;
}
return 0;
}
static int mxc_rtc_unlock(struct mxc_rtc_data *const pdata)
{
clk_disable(pdata->clk);
spin_unlock_irq(&pdata->lock);
return 0;
}
/*
* This function reads the current RTC time into tm in Gregorian date.
*
* @param tm contains the RTC time value upon return
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
const int clk_failed = clk_enable(pdata->clk);
if (!clk_failed) {
const time64_t now = readl(pdata->ioaddr + SRTC_LPSCMR);
rtc_time64_to_tm(now, tm);
clk_disable(pdata->clk);
return 0;
}
return clk_failed;
}
/*
* This function sets the internal RTC time based on tm in Gregorian date.
*
* @param tm the time value to be set in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
time64_t time = rtc_tm_to_time64(tm);
int ret;
if (time > U32_MAX) {
dev_err(dev, "RTC exceeded by %llus\n", time - U32_MAX);
return -EINVAL;
}
ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
writel(time, pdata->ioaddr + SRTC_LPSCMR);
mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
return mxc_rtc_unlock(pdata);
}
/*
* This function reads the current alarm value into the passed in \b alrm
* argument. It updates the \b alrm's pending field value based on the whether
* an alarm interrupt occurs or not.
*
* @param alrm contains the RTC alarm value upon return
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
void __iomem *ioaddr = pdata->ioaddr;
int ret;
ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
rtc_time_to_tm(readl(ioaddr + SRTC_LPSAR), &alrm->time);
alrm->pending = !!(readl(ioaddr + SRTC_LPSR) & SRTC_LPSR_ALP);
return mxc_rtc_unlock(pdata);
}
/*
* Enable/Disable alarm interrupt
* The caller should hold the pdata->lock
*/
static void mxc_rtc_alarm_irq_enable_locked(struct mxc_rtc_data *pdata,
unsigned int enable)
{
u32 lp_cr = readl(pdata->ioaddr + SRTC_LPCR);
if (enable)
lp_cr |= (SRTC_LPCR_ALP | SRTC_LPCR_WAE);
else
lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
writel(lp_cr, pdata->ioaddr + SRTC_LPCR);
}
static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
int ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
mxc_rtc_alarm_irq_enable_locked(pdata, enable);
return mxc_rtc_unlock(pdata);
}
/*
* This function sets the RTC alarm based on passed in alrm.
*
* @param alrm the alarm value to be set in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
const time64_t time = rtc_tm_to_time64(&alrm->time);
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
int ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
if (time > U32_MAX) {
dev_err(dev, "Hopefully I am out of service by then :-(\n");
return -EINVAL;
}
writel((u32)time, pdata->ioaddr + SRTC_LPSAR);
/* clear alarm interrupt status bit */
writel(SRTC_LPSR_ALP, pdata->ioaddr + SRTC_LPSR);
mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
mxc_rtc_alarm_irq_enable_locked(pdata, alrm->enabled);
mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
mxc_rtc_unlock(pdata);
return ret;
}
static const struct rtc_class_ops mxc_rtc_ops = {
.read_time = mxc_rtc_read_time,
.set_time = mxc_rtc_set_time,
.read_alarm = mxc_rtc_read_alarm,
.set_alarm = mxc_rtc_set_alarm,
.alarm_irq_enable = mxc_rtc_alarm_irq_enable,
};
static int mxc_rtc_wait_for_flag(void __iomem *ioaddr, int flag)
{
unsigned int timeout = REG_READ_TIMEOUT;
while (!(readl(ioaddr) & flag)) {
if (!--timeout)
return -EBUSY;
}
return 0;
}
static int mxc_rtc_probe(struct platform_device *pdev)
{
struct mxc_rtc_data *pdata;
struct resource *res;
void __iomem *ioaddr;
int ret = 0;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pdata->ioaddr))
return PTR_ERR(pdata->ioaddr);
ioaddr = pdata->ioaddr;
pdata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pdata->clk)) {
dev_err(&pdev->dev, "unable to get rtc clock!\n");
return PTR_ERR(pdata->clk);
}
spin_lock_init(&pdata->lock);
pdata->irq = platform_get_irq(pdev, 0);
if (pdata->irq < 0)
return pdata->irq;
device_init_wakeup(&pdev->dev, 1);
ret = clk_prepare_enable(pdata->clk);
if (ret)
return ret;
/* initialize glitch detect */
writel(SRTC_LPPDR_INIT, ioaddr + SRTC_LPPDR);
/* clear lp interrupt status */
writel(0xFFFFFFFF, ioaddr + SRTC_LPSR);
/* move out of init state */
writel((SRTC_LPCR_IE | SRTC_LPCR_NSA), ioaddr + SRTC_LPCR);
ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_IES);
if (ret) {
dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_IES\n");
clk_disable_unprepare(pdata->clk);
return ret;
}
/* move out of non-valid state */
writel((SRTC_LPCR_IE | SRTC_LPCR_NVE | SRTC_LPCR_NSA |
SRTC_LPCR_EN_LP), ioaddr + SRTC_LPCR);
ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_NVES);
if (ret) {
dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_NVES\n");
clk_disable_unprepare(pdata->clk);
return ret;
}
clk_disable(pdata->clk);
platform_set_drvdata(pdev, pdata);
ret =
devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 0,
pdev->name, &pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "interrupt not available.\n");
clk_unprepare(pdata->clk);
return ret;
}
pdata->rtc =
devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
THIS_MODULE);
if (IS_ERR(pdata->rtc)) {
clk_unprepare(pdata->clk);
return PTR_ERR(pdata->rtc);
}
return 0;
}
static int mxc_rtc_remove(struct platform_device *pdev)
{
struct mxc_rtc_data *pdata = platform_get_drvdata(pdev);
clk_disable_unprepare(pdata->clk);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mxc_rtc_suspend(struct device *dev)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(pdata->irq);
return 0;
}
static int mxc_rtc_resume(struct device *dev)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(pdata->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
static const struct of_device_id mxc_ids[] = {
{ .compatible = "fsl,imx53-rtc", },
{}
};
static struct platform_driver mxc_rtc_driver = {
.driver = {
.name = "mxc_rtc_v2",
.of_match_table = mxc_ids,
.pm = &mxc_rtc_pm_ops,
},
.probe = mxc_rtc_probe,
.remove = mxc_rtc_remove,
};
module_platform_driver(mxc_rtc_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Real Time Clock (RTC) Driver for i.MX53");
MODULE_LICENSE("GPL");